• Nenhum resultado encontrado

2.6.1 Microscópios de Transmissão (TEM)

1) FEI TECNAI G2 STwin, canhão LaB6, câmera CCD Gatan Orius (14 bits, 2048x2048 pixeis) e o sistema de precessão ASTAR (Nanomegas) - Laboratório de Caracterização Estrutural (DEMa, UFSCar).

2.7 Referências

1. Zhiping Luo. A Practical Guide to Transmission Electron Microscopy: Fundamentals. (Momentum Press, 2016).

2. Williams, D. B. & Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science. (Springer Science, 2009).

3. Reimer, L. & Kohl, H. Transmission Electron Microscopy. vol. 36 (Springer New York, 2008).

4. De Graef, M. Introduction to Conventional Transmission Electron Microscopy. (Cambridge University Press, 2003).

5. Cullity, B. D. & Stock, S. R. Elementes of X-Ray Diffraction. (Pearson Education Limited, 2014).

6. Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).

7. Barringer, R. Illuminating the secrets of crystals: microcrystal electron diffraction in structural biology. Biosci. Horizons Int. J. Student Res. 11, (2018).

8. Cowley, J. M. Diffraction Physics. (Elsevier, 1995).

9. Dinnebier, R. E. & Billinge, S. J. L. Powder Diffraction. (Royal Society of Chemistry, 2008).

10. Hirsch, P. B. Electron Microscopy of Thin Crystals. (Butterworth & Co., 1971). 11. Kirkland, E. J. Advanced Computing in Electron Microscopy. (Springer US, 2010). 12. Hall, B. D., Ugarte, D., Reinhard, D. & Monot, R. Calculations of the dynamic Debye–

Scherrer diffraction patterns for small metal particles. J. Chem. Phys. 103, 2384–2394 (1995).

13. Vincent, R. & Midgley, P. A. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53, 271–282 (1994).

14. White, T. A., Eggeman, A. S. & Midgley, P. A. Is precession electron diffraction kinematical? Part I: Ultramicroscopy 110, 763–770 (2010).

15. Eggeman, A. S., White, T. A. & Midgley, P. A. Is precession electron diffraction kinematical? Part II. Ultramicroscopy 110, 771–777 (2010).

16. Own, C. S., Sinkler, W. & Marks, L. D. Rapid structure determination of a metal oxide from pseudo-kinematical electron diffraction data. Ultramicroscopy 106, 114–122 (2006).

17. Klein, H. & David, J. The quality of precession electron diffraction data is higher than necessary for structure solution of unknown crystalline phases. Acta Crystallogr. Sect. A Found. Crystallogr. 67, 297–302 (2011).

18. Hoque, M. M., Vergara, S., Das, P. P., Ugarte, D., Santiago, U., Kumara, C., Whetten, R. L., Dass, A. & Ponce, A. Structural Analysis of Ligand-Protected Smaller Metallic Nanocrystals by Atomic Pair Distribution Function under Precession Electron Diffraction. J. Phys. Chem. C 123, 19894–19902 (2019).

19. Palatinus, L., Jacob, D., Cuvillier, P., Klementová, M., Sinkler, W. & Marks, L. D. Structure refinement from precession electron diffraction data. Acta Crystallogr. Sect. A Found. Crystallogr. 69, 171–188 (2013).

20. Gjønnes, K. On the integration of electron diffraction intensities in the Vincent-Midgley precession technique. Ultramicroscopy 69, 1–11 (1997).

21. Own, C. S.-Y. System Design and Verification of the Precession Electron Diffraction Technique. (Northwestern University, 2005).

22. Oleynikov, P., Hovmöller, S. & Zou, X. D. Precession electron diffraction: Observed and calculated intensities. Ultramicroscopy 107, 523–533 (2007).

23. Eggeman, A. S. & Midgley, P. A. Precession Electron Diffraction. in Advances in Imaging and Electron Physics (ed. Hawkes, P. W.) 1–63 (Elsevier Ltd., 2012).

24. Midgley, P. A. & Eggeman, A. S. Precession electron diffraction – a topical review. IUCrJ 2, 126–136 (2015).

25. Rauch, E. F., Portillo, J., Nicolopoulos, S., Bultreys, D., Rouvimov, S. & Moeck, P. Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Zeitschrift für Krist. 225, (2010).

26. Gontard, L. C., Barroso-Bogeat, A., Dunin-Borkowski, R. E. & Calvino, J. J. A single slice approach for simulating two-beam electron diffraction of nanocrystals. Ultramicroscopy 195, 171–188 (2018).

27. Martineau, B. H., Johnstone, D. N., van Helvoort, A. T. J., Midgley, P. A. & Eggeman, A. S. Unsupervised machine learning applied to scanning precession electron diffraction data. Adv. Struct. Chem. Imaging 5, 3 (2019).

28. Billinge, S. J. L. & Levin, I. The Problem with Determining Atomic Structure at the Nanoscale. Science 316, 561–565 (2007).

29. Holder, C. F. & Schaak, R. E. Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 13, 7359–7365 (2019).

30. Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969).

31. Pecharsky, V. & Zavalij, P. Fundamentals of Powder Diffraction and Structural Characterization of Materials. (Springer US, 2009).

32. Egami, T. & Billinge, S. J. . Underneath the Bragg Peaks. Materials Today vol. 6 (Elsevier Ltd., 2003).

33. Tran, D. T., Svensson, G. & Tai, C.-W. SUePDF : a program to obtain quantitative pair distribution functions from electron diffraction data. J. Appl. Crystallogr. 50, 304–312 (2017).

34. Willinger, E. Analysis of Local Structure by Atomic Pair Distribution Function. Lecture series: Modern Methods in Heterogeneous Catalysis Research 65 http://www.fhi- berlin.mpg.de/acnew/department/pages/teaching/pages/teaching__wintersemester__20 16_2017/elena_willinger__analysis_of_local_structure_by_atomic_pair_distribution_f unction__170203.pdf (2016).

35. Mott, N. F. The scattering of electrons by atoms. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character 127, 658–665 (1930).

36. Peng, L.-M. & Cowley, J. M. Errors arising from numerical use of the Mott formula in electron image simulation. Acta Crystallogr. Sect. A Found. Crystallogr. 44, 1–6 (1988). 37. Hecht, E. Optics. (Pearson Education Limited, 2016).

38. Hammond, C. The Basics of Crystallography and Diffraction. (Oxford University Press, 2015).

39. Warren, B. E. X-Ray Diffraction. (Dover Publications Inc., 1990).

40. Farrow, C. L. & Billinge, S. J. L. Relationship between the atomic pair distribution function and small-angle scattering: implications for modeling of nanoparticles. Acta Crystallogr. Sect. A Found. Crystallogr. 65, 232–239 (2009).

41. Gilbert, B. Finite size effects on the real-space pair distribution function of nanoparticles. J. Appl. Crystallogr. 41, 554–562 (2008).

42. Guinier, A. & Fournet, G. Small Angle Scattering of X-rays. (Wiley, 1955). 43. Debye, P. Zerstreuung von Röntgenstrahlen. Ann. Phys. 351, 809–823 (1915).

44. Banerjee, S., Liu, C.-H., Lee, J. D., Kovyakh, A., Grasmik, V., Prymak, O., Koenigsmann, C., Liu, H., Wang, L., Abeykoon, A. M. M., Wong, S. S., Epple, M., Murray, C. B. & Billinge, S. J. L. Improved Models for Metallic Nanoparticle Cores from Atomic Pair Distribution Function (PDF) Analysis. J. Phys. Chem. C 122, 29498– 29506 (2018).

45. Guinier, A. X-Ray Diffraction: In Crystals, Imperfect Crystals, and Amorphous Bodies. (Dover Publications Inc., 1963).

46. de Sá, A. D. T., Abrao Oiko, V. T., di Domenicantonio, G. & Rodrigues, V. New experimental setup for metallic clusters production based on hollow cylindrical magnetron sputtering. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 32, 061804–061812 (2014).

47. Huttel, Y. Gas-Phase Synthesis of Nanoparticles. (Wiley-VCH Verlag GmbH & Co. KGaA, 2017).

48. Markov, I. V. Crystal Growth for Beginners. (WORLD SCIENTIFIC, 2017).

49. Marks, L. D. Experimental studies of small particle structures. Reports Prog. Phys. 57, 603–649 (1994).

50. Zanchet, D. Nanopatículas de Ouro Passivadas com Tiois: Caracterização Estrutural e Formação de Supercristais Auto-Organizados. (Universidade Estadual de Campinas, 1999).

51. Mackay, A. L. A dense non-crystallographic packing of equal spheres. Acta Crystallogr. 15, 916–918 (1962).

52. BAGLEY, B. G. A Dense Packing of Hard Spheres with Five-fold Symmetry. Nature 208, 674–675 (1965).

53. Yang, C. Y. Crystallography of decahedral and icosahedral particles. J. Cryst. Growth 47, 274–282 (1979).

Capítulo 3

Resultados

O sistema utilizado para a implementação do cálculo rPDF+ PED foi uma amostra de nanopartículas de Au0.70Ag0.30 sintetizadas na fonte de clusters presente no grupo [1], como foi

descrito em detalhe no capítulo anterior. A partir de imagens de TEM obtemos um diâmetro médio das NPs de aproximadamente 6 nm. Ao fim de comparação, foram medidos diagramas de difração tipo SAED comum e PED (ângulo de precessão φ = 2°), ambas as medidas foram realizadas exatamente na mesma região da amostra (ver exemplo na Fig. 3.1b).

Figura 3.2: a) Imagem da amostra de Au0.70Ag0.30; é possível observar um estágio inicial de coalescência e uma

distribuição no tamanho das nanopartículas. b) diagrama de difração SAPED de um conjunto de nanopartículas (aproximadamente um total de 2000 NPs, determinado pelo diâmetro da abertura de seleção de área).