• Nenhum resultado encontrado

Vibrations of an Elastic Orthotropic Unmoment Open Cylindrical Shell with Variable Curvature and Free End, when Other Edges are Rigid–Clamped

N/A
N/A
Protected

Academic year: 2016

Share "Vibrations of an Elastic Orthotropic Unmoment Open Cylindrical Shell with Variable Curvature and Free End, when Other Edges are Rigid–Clamped"

Copied!
13
0
0

Texto

(1)

Ա Ա Ա Ի Ի ՈՒԹ ՈՒ ԻԱ Ա Ի Ա Ա ԻԱ Ի Ղ Ա Ի

64, №1, 2011 539.3:534.1

Ы

Ы Ё Щ Ё Ы

. ., . .

ч ы : , , , , ,

.

Keywords: vibrations, unmoment, classical, cylindrical, continuous spectrum, characteristics.

Ղ . . , Խ Ա.Ա.

Ա և ,

և ,

:

, և (

).

: Պ և

: Ghulghazaryan G.R., Khachanyan A.A.

Vibrations of an Elastic Orthotropic Unmoment Open Cylindrical Shell with Variable Curvature and Free End, when Other Edges are Rigid–Clamped

The problem of existence of free vibrations of an elastic orthotropic open cylindrical shell (with arbitrary directional curve) with free end, when other edges are rigid – clamped is studied. The investigation is carried out for elastic orthotropic shell when bending rigidity is vanishingly small (the moment free shell). The dispersion equations for finding the natural frequencies of vibrations are derived. The calculations were carried out for the shells with directing curve in form of a parabola with different values of curvature and lengths.

, ё ё . ,

ё ё (

).

.

.

.

.

, ,

, . .

[1],

,

.

,

-.

[2-7].

[8-11]. .

-, .

-, .

(2)

-.

,

-. .

-– [12-15]. :

( ) 1 cos

,

2 / , 0

,

1,

m

w

β = −

km

β

k

= π

s

≤ β ≤

s m

= +∞

. (1)

s

,

– . ,

(0)

( )

0,

(0)

( )

0

m m m m

w

=

w s

=

w

=

w s

=

. (2)

1. ч ы ч .

. -

.

.1.

( , )

α β

, α(0≤ α ≤l) β ≤ β ≤(0 s)

( . 1). l

, s– . ,

2 2

0 1 1

( / 2

m m

cos

),

2 / , 0

,

m m

R

=

k r

+

=

r

km

β

k

= π

s

≤ β ≤

s

=

r

< +∞

. (1.1)

, ,

-,

-,

α β

,

[16]

2 2 2

3

1 1 2

11 2 66 2

(

12 66

)

12 1

u

u

u

u

B

B

B

B

B

u

R

∂ ⎛ ⎞

+

+

= λ

∂α

∂β

∂α∂β

∂α ⎝ ⎠

,

2 2 2

3

1 2 2

12 66 66 2 22 2 22 2

(

B

B

)

u

B

u

B

u

B

u

u

R

∂ ⎛ ⎞

+

+

= λ

∂α∂β

∂α

∂β

∂α ⎝ ⎠

, (1.2)

O

y

β

α

M(α,β)

(3)

12 1 22 2 22

3 3

2

B

u

B

u

B

u

u

R

R

R

+

= λ

∂α

∂β

.

3 2 1

,

u

,

u

u

– ,

β

α

,

,

B

ik– , 1 1

( )

R− =R− β

– .

λ

=

ω

2

ρ

,

ω

,

ρ

– .

[16]:

3

1 12 2 1 2

0

11 0

0

u

u

B

u

u

u

B

R

α= α=

+

=

+

=

∂α

∂β

∂β

∂α

, (1.3)

1 l 2 l

0

u

α=

=

u

α=

=

, (1.4)

1 0,s 2 0,s

0

u

β=

=

u

β=

=

, (1.5)

(1.3)

α =

0

, a

(1.4), (1.5) – α= β= β=l, 0, s

. - ( ) ( ) ( ) ( )

1 2 3

( , ) ( , , ), 1,2 j j j j

f α β =u u u j=

3

(1) ( 2) (1) ( 2) 1

0 0

(

,

)

l s j j

j

f

f

=

∫ ∫

=

u u

d d

β α

. (1.6)

- (1.6)

) ( 2 G

L , G=[0,l]x[0,s]. L2(G), , )

, (f f

f = . (1.2)-(1.5) ё

( . [9], . 84, [17]).

(c ) 0

L

.

L

(c )0

. ,

, (1.2),

,

[

0

,

λ

0

]

2 2 4

66 11 22 12

4 4 2 2 2

66 11 22 11 22 12 12 66

(

)

( )sin

( , )

(

sin

cos

) (

2

) cos

sin

0

, 0

2

B

B B

B R

B

B

B

B B

B

B B

s

β

θ

Ω β θ =

θ+

θ +

θ

θ

≤ β ≤

≤ θ ≤ π

(1.7)

,

(1.2) – .

-, ,

.

(1.2)-(1.5)

.

( – )

[18]. , (1.2)-(1.5) –

( . [8];[9], . 97; [11])

2 2 2

66 22 22 11 11 22 12

( , ) ( ( )) ( ( ) ( )) 0,

0

Q B B R B B B B B R

s

− −

λ β = λ − β + λ λ − − β ≠

≤ β ≤ . (1.8)

λ

, (1.8), . .

( , )

0, 0

(4)

γ

Ω

.

[

0

,

λ

0

]

Ω

γ

L

(c )0

(1.8) [8], [11].

: ɜɧɟ ɦɧɨɠɟɫɬɜɚ [0,λ0]∪Ωγ ɫɩɟɤɬɪ

ɨɩɟɪɚɬɨɪɚ (c ) 0

L

ɫɨɫɬɨɢɬ ɢɡ ɢɡɨɥɢɪɨɜɚɧɧɵɯ ɫɨɛɫɬɜɟɧɧɵɯ ɡɧɚɱɟɧɢɣ ɤɨɧɟɱɧɨɣ

ɤɪɚɬɧɨɫɬɢ.

[8].

. ,

λ

(c ) 0

L

, ,

λ

– (1.2)-(1.5),

, (1.2) –

(1.2)-(1.5).

,

L

(c )0 e

-. .

2. ы

L

(c )0 .

(1.2), (1.5),

(

)

(

)

(

)

1 1 2 1

3 1

exp( ) sin , exp( ) (1 cos ) ,

exp( æ ) sin , / .

m m

m m

m m

u k u km u k v km

w k k w km w u R

∞ ∞

= =

∞ =

= χα β = χα − β

= α β =

(2.1)

,

,

m m m

u v w

– ,

χ

. (2.1) (1.2).

sin

km

β

, cos

km

β

0

s

. :

2 2 2

11 66 12 66 12

2 2 2

12 66 66 22 22

(

/

)

(

)

,

(

)

(

/

)

,

m m m

m m m

B

B m

k u

B

B

mv

B

w

B

B

mu

B

B m

k v

B mw

χ −

+ λ

+

+

χ

=

χ

+

χ

χ −

+ λ

=

⎪⎩

(2.2)

:

,

m m m m m m m m

c u

= χ

a w

c v

= −

m b w

, (2.3)

2 2 2 2

12 22 12

2

11 11 11 66

,

m

B

B

B

a

m

B

B

B

k B

λ

=

χ +

+

η

η =

,

2

2 2 2

11 22 12 12 66 22 22

11 66 11 11

m

B B

B

B B

B

B

b

m

B B

B

B

=

χ −

+

η

, (2.4)

2

4 11 22 12 12 66 2 2 11 66 2 2 2 2 22 2 66 2

11 66 11 11 11

2

( )

m

B B B B B B B B B

c m m m

B B B B B

⎛ ⎞

− − +

= χ − χ + η χ + −η − η

⎝ ⎠.

(1.2)

R

−1 (2.1)

. (1.1), (2.3),

([20], . 592), ,

sin

km

β

0

s

, ё

(5)

,

,

1

,

0

)

(

2

)

(

, 1 2 22 66 2

0

⎟⎟

+

=

=

⎜⎜

∞ ≠ = − +

m

w

A

r

r

w

B

B

A

r

r

m n n n n m n m n m m

m

η

(2.5)

2 2

12 22

,

,

1,

n n n n n n n

A

=

p c

p

= +

c

n b

B

B

χ

a

n

= +∞

. (2.6)

n

A

( )

2

1 n O

An = , ,

+∞ <

∞ =1| |

n An . (1.1),

(

+

)

(

+

)(

)

<

+∞

∞ = ∞ = − + ∞

=1 0 1 1

,m n m n m

3

/

2

m m n n

n

A

n

r

r

r

r

A

. (2.7)

, (2.5)

λ∉ λ ∪Ω

[0,

0

]

γ

χ

(2.6)

– [19]. (2.5)

, , ё

:

(

2 2

)

11 12 22 66 0 1

,

,

,

,

,

, , ,

,

m

,

0

D

χ η

B

B

B

B

r r

r

=

. (2.8)

,

χ χ

1

,

2– (2.8)

-,

χ = −χ

3 1

χ = −χ

4 2

(2.8).

(

, (2), , (),...

)

, 1,4 )

(

1 w w j=

w mj

j

j

(2.5)

χ

j

,

j

=

1, 4

. (1.2)-(1.5)

4 ( ) 4 ( )

1

,

1, 2,

1

,

j j

i j i j

u

=

=

u

i

=

w

=

=

w

(2.9)

4 , 1 , 2 , 1 , , ( ) ) ( = = j i w

uij j – (1.2), (2.1)

j

χ = χ . (2.9) (1.3), (1.4).

(1.3) (1.4)

sin

km

β

,

cos

km

β

,

0

s

, :

( ) ( )

4 4

1 ( ) 2 ( )

( ) ( ) 1 1 ( ) ( ) 4 4 ( ) ( ) ( ) ( ) 1 1

0 ,

0,

exp( )

0,

exp( )

0

m m

j j j j j

m m

j j

j m j m

j j

j m j m j

j m j m

j j

j m j m

R

R

w

w

c

c

a

b

z w

z w

c

c

= = = =

χ

=

=

χ

=

=

,

m

=

1

,

+∞

(2.10)

( ) 2 ( ) 12 2 ( ) 12 ( ) ( ) ( ) ( )

1 2

11 11

,

(

),

,

m j j j m j j

j j m m m j m m j j

B

B

R

a

m b

c

R

a

b

z

k

l

B

B

= χ

=

+

= χ

(2.11)

) ( ) ( ) (

,

,

mj mj

j

m

b

c

a

a

m

,

b

m

,

c

m (2.4) χ = χj .

(2.10) , ,

(6)

( ) ( ) ( ) ( )

11 12 11 1 12 2

( ) ( ) ( ) ( )

1 21 1 21 1 21 1 1 21 2

(1) (2) (1) (2)

1 1 2 2 1 2

(1) (2) (1) (2)

1 2

exp( ) exp( ) exp( ) exp( )

Det 0 , 1,

exp( ) exp( ) exp( ) exp( )

m m m m

m m m m

m m m m

m m m m

R R R z R z

R R R z R z

m

a z a z a a

b z b z b b

χ χ − χ − χ

= = +∞

χ χ − χ − χ

(2.12)

γ

λ

]

Ω

,

0

[

0

λ

- . (2.12)

:

(

) (

)

(

)

(

) (

)

(

)

2 2 2

2 1 2 0 1 2 0 1 1 2

2

1 2 0 1 1 2

2 2 2

1 2 5 0 1 5 0 1 1 2

( ) , , ,... ,... , , ,... ,... (1 exp(2( ))) 4 , , ,... ,... exp( )

( ) , , ,... ,... , , ,... ,... exp(2 ) exp(2 ) 0, 1, .

m m m m

m

m m m m

x x K r r r Q r r r z z

x x R r r r z z

x x K r r r Q r r r z z m

− η η + + +

+ η + −

− + η η + = = ∞

(2.13)

(

2

)

2 2

(

2 2

)

0 1 1 1 2 2 1 2 3 1 2 4

, , ,... ,...

( 1)

i

,

2,5

im m m

K

η

r r

r

= δ

x x

+ − δ

x x

+ δ

x

+

x

+ δ

i

=

,

(

2

)

2 2

(

2 2

)

0 1 1 1 2 2 1 2 3 1 2 4

, , ,... ,...

( 1)

i

,

2,5

im m m

Q

η

r r

r

= γ

x x

+ − γ

x x

+ γ

x

+

x

+ γ

i

=

,

(

2

)

( ) ( ) (1) (1) ( ) ( ) (2) (2)

0 1 12 22 11 21

, , ,... ,...

m m m m

m m m m m m

R

η

r r

r

=

R

R

a b

+

R

R

a b

,

2 2

2 11 22 12 11 22 12 12

1 2

11 11 66 11

,

,

m m

B B

B

B B

B

B

B

B B

B

m

η

δ =

η

η =

2 2

2 22 11 22 12 12 11 22 12 22 66 12 66 2

2 3 3

11 11

(

( )

,

m m

B B B B B B B B

B B B B

B B

⎛ − − − − ⎞

δ = −η + η

⎝ ⎠

(

)

(

)

2

2 2 12 66 12 22 4 2

12 11 22 12

3 3 4 3

11 11

(

)

(

)

1

,

1

,

m m m m

B B

B

B

B

B B

B

B

B

+

δ =

η

− η

δ =

η

− η

2

12 11 22 12 12 66

1 2

11 66

(

)

,

j j

,

1, 2 ,

B

B B

B

B B

x

j

B B

m

χ

γ =

=

=

(2.14)

2 2

2 12 11 22 12 22 66 12 66 22 11 22 12

2 2 3

11 66 11

(

(

)

,

m

B

B B

B

B B

B B

B

B B

B

B B

B

γ = −

+

η

(

2

)

2 2

12 22 22 22 12

3 2 4

11 11 11 11

1

m

,

(1

m

)

m

.

B B

B

B

B

B

B

B

B

γ = −

− η

γ = −

− η

+

η

(

)

2

( ) 11 22 12 12 66 2 2 12 66 2 2

1 2 2 2

11 11 11

1

,

m

j m j m m

B B

B B

B B

B

R

x

B

B

B

=

η

+

− η η

2

( ) 11 22 12 12 66 2 22 2

11 66 11

(1

),

j

m j m

B B

B

B B

B

b

x

B B

B

=

− η

2

( ) 11 22 12 2 12 22 2 ( ) 12 2 22 12 2

2 2

11 11 11 11 11

,

,

1, 2.

m j

j j m m j m

B B

B

B

B

B

B

B

R

x

a

x

j

B

B

B

B

B

+

=

+

η

=

+

+

η

=

, (2.13)

, (2.8)

.

. , 2

1

2 )

(xx ,

, .

(7)

(

2

) (

2

)

2 0 1 2 0 1 1 2

2 11 21 32 42 12 22 31 41 1 2 11 21 41 31 1 2

, , ,... ,... , , ,... ,... (1 exp (2 ( )))

4( ) exp ( ) 4 [ ]

m m m m

K r r r Q r r r z z

m m m m m m m m z z m m m m z z

η η + + +

+ + + − − (2.15)

(

)

(

)

(

)

11 21 31 42 32 41 31 41 11 22 12 21 1 2 2 1

11 22 12 21 31 42 32 41 1 2

2[ ( ) ( )][ ] exp( ) exp( )

( ) exp( 2 ) exp( 2 ) 0, 1, ,

m m m m m m m m m m m m z z z z

m m m m m m m m z z m

− + + + − −

− + + + = = +∞

2

( ) 11 22 12 12 66 2

11 11 12 2 2 1 2

11 11

,

(

),

m

m

B B

B B

B

m

R

m

x

x

B

B

=

=

η

+

2

( ) 11 22 12 2 2 12 22 2

21 1 21 22 2 1 2 1 2

11 11

(1) 12 2 2 22 12 2

31 1 32 1 2 1 2

11 11 11

2

(1) 11 22 12 12 66

41 42 1 2

11 66

,

(

)

,

,

(

)

,

,

(

).

m

m

m m

m

B B

B

B

B

m

x R

m

x

x

x x

B

B

B

B

B

m

x a

m

x

x

x x

B

B

B

B B

B

B B

m

b

m

x

x

B B

+

=

=

+

+

+

η

=

=

+

+

+

+

η

=

=

+

(2.16)

, : ɟɫɥɢ −2(β)

R ɦɨɠɧɨ

ɩɪɟɞɫɬɚɜɢɬɶɜɜɢɞɟ (1.1) ɢ

λ ∉

[0,

λ ∪ Ω

0

]

γ, ɬɨɭɪɚɜɧɟɧɢɹ (2.13) ɢ (2.15) ɹɜɥɹɸɬɫɹ

ɞɢɫɩɟɪɫɢɨɧɧɵɦɢ ɭɪɚɜɧɟɧɢɹɦɢ ɨɩɟɪɚɬɨɪɚ (c ) 0

L

, ɝɞɟ æ2=mx2 ɢ æ2=mx2? –

ɪɚɡɥɢɱɧɵɟɤɨɪɧɢɭɪɚɜɧɟɧɢɹ (2.8) ɫɧɟɩɨɥɨɠɢɬɟɥɶɧɵɦɢɞɟɣɫɬɜɢɬɟɥɶɧɵɦɢɱɚɫɬɹɦɢ.

,

χ =

1

mx

1

χ =

2

mx

2

,

ml

(2.13) (2.16) :

(

2

)

2 2

(

2 2

)

2m m

, , ,... ,...

0 1 m 1 1 2 2 1 2 3 1 2 4

0,

K

η

r r

r

= δ

x x

x x

x

+

x

+δ =

m

=

1

,

+∞

(2.17)

(

2

)

2 2

(

2 2

)

2m m

, , ,... ,...

0 1 m 1 1 2 2 1 2 3 1 2 4

0,

1,

Q

η

r r

r

= γ

x x

+ γ

x x

+ γ

x

+

x

+ γ =

m

= +∞

(2.18)

(2.17)

, ё

( . [11]). (2.18) ,

ё ё .

3. ы ч . (2.8)

. .

ч a)

R

−2

=

k

2

r

0

/

2

(

r

m

=

0

,

m

=

1

,

+∞

)

, . .

ё . (2.5)

2 66 0 2

22

(

m

)

m

2

m

0,

1,

B

r

r

A

w

m

B

η

=

= ∞

, (3.1)

, (2.8)

2 66 0

22

2 0, 1,

mm m m

B

r r p c m

B

= − η = = +∞, (3.2)

2 2

2 11 22 12 0 4 2 11 22 12 12 66 2 11 66 2

11 66 11 66 11

2 ( )

2

r B B B B B B B

B B B

m

B B B B B

⎛ − ⎞ ⎛ − − +

η − χ − η − η +

⎜ ⎟ ⎜

(8)

2

2 2 2 2 2 2

11 22 12 66 22 0 22 66 22 0

11 66 11 11 11

( ) 0, 1,

2 2

B B B B B r B B B r

m m m

B B B B B

⎞ ⎛ ⎞

− +

+ χ + + η −η − η + = = +∞

⎝ ⎠

(3.3)

0

[0, ]

γ

λ∉ λ ∪Ω

χ χ

1

,

2 (3.3)

-. (3.3) ,

2 2 1 2

χ χ

,

χ +χ

12 22 .

(2.13), ё

ё .

(

) (

)

(

)

(

)

(

) (

)

(

)

2 2 2

2 1 2 0 2 0 1 2

2 2 2 2

1 2 0 1 2 2 1 5 0 5 0

1 2

(

)

,

,

1 exp(2(

))

4

,

exp(

) (

)

,

,

exp(2 ) exp(2 )

0,

1,

m m m m

m m m m m

x

x

K

r Q

r

z

z

x x R

r

z

z

x

x

K

r Q

r

z

z

m

η

η

+

+

η

+

+

η

η

×

×

+

=

= ∞

(3.4)

(

)

(

)

2 2

2 2 11 22 12 2 1 2 11 22 12

0 1 2

11 66 11 66

, (1 ) 1 ( 1)i , 2,5

im m m m m m m

B B B B B B

K r x x i

B B B B

⎡ − ⎤ ⎛ − ⎞

η = −η +ε −η + − η − ε =

⎣ ⎦ ⎝ ⎠ ,

(

)

2

2 2 66 22 2 11 22 12

0 1 2

11 11 11 66

,

(1

)

( 1)

i

,

2,5;

im m m m m m

B

B

B B

B

Q

r

x x

i

B

B

B B

η

= − η

ε + −

η −

ε

=

( )

(

)

2

2 2 12 66 2 22 11 22 12 11 12 2 0

0 2

11 11 11 66 11

, 2(1 ) 1 , .

2

m m m m m m m

B B B B B B B B r

R r

B B B B B m

⎡ ⎤

⎛ + ⎞ − +

η = −η η − ε ⎟⎢ +ε − η ε =

⎝ ⎠⎣ ⎦ (3.5)

,

χ =

1

mx

1

χ =

2

mx

2

,

l

(3.4) :

(

2

)

2

(

)

11 22 122 2 2 11 22 122

2 0 1 2

11 66 11 66

, (1 ) 1 0

m m m m m m m

B B B B B B

K r x x

B B B B

⎡ − ⎤ ⎛ − ⎞

η = − η + ε − η − η − ε =

⎣ ⎦ ⎝ ⎠ , (3.6)

(

)

2

2 2 66 2 22 2 11 22 12

2 0 1 2

11 11 11 66

, (1 ) 0,

1, .

m m m m m m m

B B B B B

Q r x x

B B B B

m

⎛ ⎞

⎛ ⎞ −

η = −η η − ε + η − ε =

⎝ ⎠ ⎝ ⎠

= +∞

(3.7)

(3.6)

.

(3.7) (1.2)-(1.5) ( . (1.8) (1.9)).

, , (3.7) 2

2

66 22 0 2

11 11

2

2 2

2

0 66 0

22 11 22 12

2 2 2

11 11 11 66

(1 )

2

1 1 0, 1,

2 2

B B r

m B B

r B r

B B B B

m

m B m B m B B

⎛ ⎞

η

η − +

⎝ ⎠

⎛ ⎞

⎛ ⎞

⎛ η ⎞ ⎛ ⎞ η −

+ η − = = +∞

⎝ ⎠

⎝ ⎠⎝ ⎠⎝ ⎠

(3.8)

m

(3.8)

2

2 2 2

66 22 0 22 11 22 12 0

11 11 11 11 66

0,

2

2

B

B

r

B

B B

B

r

B

B

B

B B

η −

+

η η −

=

(9)

oe (1.2) – (1.5) R−2 =k2r0/2

.

ε →

m

0

(3.3) 2

4 11 22 12 12 66 2 11 66 2 2

11 66 11

2 ( )

cm B B B B B m B B

B B B

⎛ − − + ⎞

= χ − − η χ +

⎝ ⎠

2 2 22 2 66 2

11 11

(m ) B m B 0, m 1, ,

B B

⎛ ⎞

+ − η − η = = +∞

⎝ ⎠ (3.10)

,

-. (3.4)

(

)

(

)

2 2 2

2 1 2 2 1 2

2 2 2 2

1 2 1 2 2 1 5 5

1 2

(

)

(

)

(

) 1 exp(2(

))

4

(

) exp(

)

(

)

(

)

(

)

exp(2 )

exp(2

)

0,

1, ;

m m m m

m m m m m

x

x

K

Q

z

z

x x R

z

z

x

x

K

Q

z

z

m

η

η

+

+

η

+

+

η

η ×

×

+

=

= ∞

(3.11)

2

2 2 11 22 12 2 1 2

1 2 11 66

(

)

(1

)

( 1)

i

,

2,5

im m m m m

B B

B

K

x x

i

B B

η = − η

− η + −

η

=

,

2 2 66

1 2 11

(

)

(1

)

( 1)

i

0,

1,

,

2, 5

im m m

B

Q

x x

m

i

B

η = − η

+ −

=

= +∞

=

, (3.12)

( )

2

2 12 66 2 11 22 12 11 12 2

11 11 66 11

2

(1

)

m m m

B

B

B B

B

B

B

R

B

B B

B

+

+

η =

− η

η

.

1

x m

1

,

2

x m

2

χ =

χ =

– (3.10)

-. (3.11)

ё ё .

1

mx

1

χ =

χ =

2

mx

2 ,

∞ →

l (3.11)

( )

2

2 2 11 22 12 2 2

2 1 2

11 66

(1

)

0,

1,

m m m m m

B B

B

K

x x

m

B B

η = − η

− η − η

=

= +∞

, (3.13)

2 2 66

2 1 2

11

(

)

(1

)

0,

1,

.

m m m

B

Q

x x

m

B

η = − η

+

=

= +∞

(3.14)

(3.13)

-– ё ё

[11].

ч ) −2

=

2

(

0

/

2

+

1

cos

)

(

=

0

,

=

2

,

+∞

m

r

k

r

r

k

R

β

m .

(2.5) :

{

r p

1 m−1

ω

m−1

+

r

mm

ω +

m

r p

1 m+1

ω

m+1

=

0,

m

= +∞

1,

, (3.15) 2

0 66 22

/

,

2

/

,

m

w

m

c

m

r

mm

r p

m

B

c

m

B

ω =

=

η

(3.16)

m m

c

p

,

(2.6), (3.10).

(3.15) ,

(10)

(

2 2

)

11 12 22 66 0 1

,

,

,

,

,

, ,

0

D

χ η

B

B

B

B

r r

=

, (3.17)

2

χ

- (3.17) . ё ё

D

n

:

(

2 2

)

11 12 22 66 0 1

,

,

,

,

,

, ,

0

n

D

χ η

B

B

B

B

r r

=

. (3.18)

n

χ

- (3.18).

(3.17)

χ

n

n

.

D

m

, :

3

,

2 1 2 1 1 2 1 2 1 1 22 2 11 1

=

=

=

− −

r

p

p

D

m

D

r

D

p

p

r

D

r

D

r

D

m m m m mm m (3.19)

[11]: ɩɪɢ ɮɢɤɫɢɪɨɜɚɧɧɨɦ

m

2

ɢ ɩɪɢ

ɭɫɥɨɜɢɢ

λ ∉

[0,

λ ∪ Ω

0

]

γ ɭɪɚɜɧɟɧɢɹ (3.17) ɢɦɟɸɬ 2

χ

-ɮɨɪɦɚɥɶɧɵɟɪɟɲɟɧɢɹɜɢɞɚ

( ) ( )

2 2

( ) ( ) ( ) 2 ( ) 4

1 1

,

,

1, 2

i m m i

j j j

r

jm

r

i j

χ

= χ

+ α

+ β

+

=

, (3.20)

ɝɞɟ ( )m j

χ

– ɤɨɪɧɢ ɭɪɚɜɧɟɧɢɹ

r

mm

=

0

(ɢɥɢ ɭɪɚɜɧɟɧɢɹ (3.3)) ɫ ɧɟɩɨɥɨɠɢɬɟɥɶɧɵɦɢ

ɞɟɣɫɬɜɢɬɟɥɶɧɵɦɢɱɚɫɬɹɦɢɢ

( ) 1 1 1 1 1 1 ( )

1 1 1 1

(

)

,

1, 2

m j m m m m m m m m

j

m m m m mm

p

p

r

p

r

j

r

r

r

− + + + − −

− − + + χ=χ

+

α

=

=

. (3.21)

mm

r

– χ2. ,

2 , 1 , , ) ( = j i kχji

ё

( )

(

2

)

1 2 ( ) ( ) ( ) 2

1

, ,

1, 2

i m m

j j j

r

i j

χ ≈ − χ

+ α

=

, (3.22)

/

m

η

– (2.13), (2.15). ч )

R

−2

=

k r

21

cos

k

β

(

r

0

=

0

,

r

m

=

0

,

m

=

2

,

+∞

)

.

,

0 0=

r ( . [21]).

mm

r

α

( )jm

,

j

=

1, 2

(3.16), (3.21) :

1 1 1 1

2 ( )

66 22 2 2 ' ( )

66 22 1 1

( )

2 / , , 1, 2, 0,

4( / )

m m m m m

m

mm m j m

j

m m m

p p c p c

r B B c j m

B B c c c

− + + − χ=χ − +

+

= − η α = = = +∞

η . (3.23)

(3.23)

χ

( )jm

,

j

=

1,2

(3.10) .

. 1– 4, (2.15), (3.4), (3.11),

/

m

η

m

,

a

,

b

2

,

2

;

1

,

2

;

),

(

2 2

2

=

=

=

=

=

b

a

b

a

a

x

x

a

ba

(11)

, : 0 / max{ Re 1/ , Re 2/ }

kχ m= k χ m k χ m (3.25)

. 1–4 1,2,3

;

0

2

=

R

R

−2

=

k

2

r

0

/

2

;

R

−2

=

k r

2

( / 2

0

+

r

1

cos

k

β

)

(3.24),

[22]

3 2.4 10

ρ = ⋅ / 3;

Ε

1

=

6

.

37

10

10 / 2;

Ε

2

=

1

.

47

10

10

;

G

=

4

.

9

10

6;

v

1=0.26;

2

v

=0.06 (3.26)

: ɚ=2,b=1,l=15,s=4.5912,

r

0

=

0

.

205

,

r

1

=

0

.

0306

;

1

,

2

=

=

b

ɚ

,

l

=

5

,

s

=

4

.

5912

,

r

0

=

0

.

205

,

r

1

=

0

.

0306

;

ɚ

=

2

,

b

=

2

,

l

=

15

,

s

=

5

.

9158

,

3021

.

0

,

8653

.

0

1

0

=

r

=

r

;

ɚ

=

2

,

b

=

2

,

l

=

5

,

s

=

5

.

9158

,

r

0

=

0

.

8653

,

r

1

=

0

.

3021

.

1

1 2 3

m

0

/

/

k

χ

m

η

m

k

χ

0

/

m

η

/

m

k

χ

0

/

m

η

/

m

1 -0.0650 0.9900

2 -0.0856 0.9825 -0.0689 0.9850 -0.0689 0.9850 3 -0.0865 0.9822 -0.0733 0.9831 -0.0733 0.9831 4 -0.0866 0.9821 -0.0743 0.9826 -0.0743 0.9826 5 -0.0866 0.9821 -0.0747 0.9824 -0.0747 0.9824 10 -0.0866 0.9821 -0.0752 0.9822 -0.0752 0.9822 20 -0.0866 0.9821 -0.0754 0.9821 -0.0754 0.9821 100 -0.0866 0.9821 -0.0754 0.9821 -0.0754 0.9821

2

1 2 3

m

0

/

/

k

χ

m

η

m

k

χ

0

/

m

η

/

m

k

χ

0

/

m

η

/

m

3 -0.0650 0.9900 -0.0373 0.9956 -0.0373 0.9956 4 -0.0797 0.9849 -0.0634 0.9874 -0.0634 0.9874 5 -0.0840 0.9832 -0.0704 0.9844 -0.0704 0.9844 6 -0.0856 0.9826 -0.0731 0.9832 -0.0731 0.9832 7 -0.0862 0.9823 -0.0742 0.9827 -0.0742 0.9827 10 -0.0865 0.9821 -0.0752 0.9822 -0.0752 0.9822 20 -0.0866 0.9821 -0.0754 0.9821 -0.0754 0.9821 100 -0.0866 0.9821 -0.0754 0.9821 -0.0754 0.9821

3

1 2 3

m

0

/

/

k

χ

m

η

m

k

χ

0

/

m

η

/

m

k

χ

0

/

m

η

/

m

1 -0.0650 0.9900

(12)

4

1 2 3

m

0

/

/

k

χ

m

η

m

k

χ

0

/

m

η

/

m

k

χ

0

/

m

η

/

m

3 -0.0650 0.9900

4 -0.0797 0.9849 -0.0278 0.9960 -0.0277 0.9960 5 -0.0840 0.9832 -0.0460 0.9889 -0.0460 0.9890 6 -0.0856 0.9826 -0.0522 0.9858 -0.0522 0.9858 7 -0.0862 0.9823 -0.0550 0.9842 -0.0550 0.9842 10 -0.0865 0.9821 -0.0576 0.9827 -0.0576 0.9827 20 -0.0866 0.9821 -0.0584 0.9822 -0.0584 0.9822 100 -0.0866 0.9821 -0.0585 0.9821 -0.0585 0.9821

ч . ,

-,

(1.1),

-, ё .

(2.13) (2.15).

– (3.4) (2.15) – (3.11) (2.15). -,

-. , ,

,

.

m

-, . , ml→∞

, .

-, .

1. . ., . ., . .

// . .: . . 1992. . 87-91.

2. . .

( ) // .

. . . .1961. .1. № 3. . 542-545.

3. . ., . ., . ., . .

-. : ,

1986. 170 .

4. . .

// . . . 1979.

№ 2. .139-143.

5. . ., . .

// . . 1972. .8. .8. .113–116. 6. Grigorenko Ya.M., Rozhok L. S. Solving the Stress Problem for Hollow Cylinders

with Corrugated Elliptical Cross Section// Int. Appl. Mech. 2004, 40, № 2. p. 169-175. 7. Semenyuk N.P., Babich I.Yu., Zhukova N.B. Natural Vibrations of Corrugated

(13)

8. . ., . ., . .

// . .

1973. .4. № 5. .978-986.

9. . ., . ., . . . .: , 1979. 383 .

10. . ., . . . .: , 1974. 156 .

11. , . .

-// . . . 2007. №1. . 84–99.

12. . .

// . 1932. № 11. .33-38; № 12. .21-26.

13. . .

// . . . . . . 1933. № 5. .647-653.

14. . ., . ., . .

-. -.

// . . . 1982. .44. № 6. . 1007-1013.

15. . .

– // . . 2008. .44.

№ 11. .99-111.

16. . . . .: , 1974. 446 .

17. ., – . . .: ,

1979. 587 .

18. . . ,

. – . // . . . 1964. . 28. . 665-706. . - , 1970. . 110. №6. .233-297.

19. . ., . . ё . .- .:

, 1952. 695 .

20. . . . .3.

.: , 1963. 656 .

21. . ., . .

// . . 2006. .42. № 12. .97-114.

22. . ., . .

, . // . .

. 1982. № 3. .171-174. х:

ч – .- . ., .

. . . .: (+37410) 64-91-21; -mail:

ghulgr@yahoo.com

ч . . .

.: (37410)63-86-83

Referências

Documentos relacionados

In order to study the free edge effect on the laminate strength, one group of test specimens was prepared with machined edges and another with molded edges for each family

Results obtained for frequency of bending mode, shear mode and thickness stretch mode of free vibra- tion of simply supported orthotropic square and rectangular plates are compared

Hryniewicz [17] investigated the vertical, horizontal and rocking vibrations of a rigid strip foundation on the surface of an elastic half-space and evaluated the numerical results

Therefore, the exact solution to free vibration of elastically restrained Timoshenko beam on an arbitrary variable elastic foundation using Green Function is pre sented

Figure 8: Coordinates from the clamped edge, and angle of rotation along the cantilever beam composed of linear- elastic material with Swift isotropic hardening: end of loading ( P

Table 2 shows the frequency analysis in free vibrations of a three stepped cylindrical shell with different axial lengths and SD-SD ended supports obtained by using VWM and the

Hierarchical finite element method; liquid; cylindrical rigid tank; free vibration; free surface; sloshing; displacement based.. Free Vibration Analysis of a Liquid in a

Using the third-order shear deformation theory (TSDT), an ana- lytical solution for deformations and stresses of axisymmetric clamped-clamped thick cylindrical shells made