• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número4

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número4"

Copied!
4
0
0

Texto

(1)

The Two-Dimensional Quantum Heisenberg

Antiferromagnet with Ising-Like Anisotropy

AlessandroCuoli,Valerio Tognetti,TommasoRosilde, PaolaVerruhi,

DipartimentodiFisiadell'Universitadi Firenze

andIstituto NazionalediFisiadellaMateria(INFM),

LargoE.Fermi2,I-50125Firenze,Italy

and RuggeroVaia

Istituto diElettroniaQuantistiadelConsiglioNazionaledelleRierhe,

viaPaniatihi 56/30,I-50127Firenze,Italy,

andIstituto NazionalediFisiadellaMateria(INFM)

Reeivedon5August,2000

WestudythetwodimensionalquantumHeisenbergantiferromagnetonthesquarelattiewith

easy-axisexhangeanisotropybythesemilassialmethodalledpure-quantumself-onsistentharmoni

approximation. Inpartiular, we fous on the problem of the existene of a nite-temperature

transitioninsuhamodel,andstudytheorrespondingritialtemperatureasthespinvalueand

the anisotropy vary. Wendthat anIsing-like transition haraterizes the modelevenwhenthe

anisotropyisoftheorderof10 2

J(Jbeingtheintra-layerexhangeintegral). Thegoodagreement

found between our theoretial results and the experimental data for the ompounds Rb

2 MnF

4 ,

K2MnF4,andK2NiF4showsthattheinsertionoftheeasy-axisexhangeanisotropy,withquantum

eetsproperlytakenintoaount,providesaquantitativedesriptionandexplanationofthereal

system'sritialbehaviour.

Theeasy-axisquantumHeisenbergantiferromagnet

onthesquarelattie(EA-QHAF)isdened bythe

fol-lowingHamiltonian:

^

H= J

2 X

i;d h

^

S x

i ^

S x

i+d +

^

S y

i ^

S y

i+d

+ ^

S z

i ^

S z

i+d i

(1)

where i = (i

1 ;i

2

) runs over the sites of a square

lat-tie, d onnets eah site to its four nearest

neigh-bours, J > 0 is the antiferromagneti exhange

in-tegral and the anisotropy parameter takes values

2[0;1) foreasy-axismodels. Thespinoperators ^

S

i

( = x;y;z) are suh that j ^

Sj 2

= S(S+1) and obey

[ ^

S

i ;

^

S

j ℄=i"

Æ

ij ^

S

i .

Theanisotropyparametermeasuresthe strength

of theeasy-axisharaterofthemodel: For =0the

Ising-limit (equivalenttotheIsingmodelifS=1=2)is

reovered;in theoppositelimit,Eq.(1)with=1

de-sribesthefullyisotropiQHAF.Atalassiallevelthe

EA-HAF isknownto share itsritial behaviour with

the Ising model [1℄, with a nite-temperature

seond-order phase transition orresponding to the onset of

Neelantiferromagnetiorder. Theritialtemperature

T l

isadereasingfuntionof,andvanishes

logarith-miallyintheisotropilimit[2℄.

Whenquantum eets are onsidered,one expets

the ritial behaviour of the model to remain the

same, as the universality lass of the system annot

be hanged by short-rangedquantum utuations [3℄;

however,these may be responsiblefor anevident

low-eringoftheritial temperature, asquantum disorder

opposestheonsetofNeelorder. Inpriniple,thiseet

ouldbestrongenoughtopushtheritialtemperature

downtoT

=0,thusdestroyingthetransitionitself;the

parameterregionwhere suh asenarioouldpossibly

ouristhat of low ritialtemperatures('1) and

strongquantumeets (S=1=2)[4℄.

Toaddresstheproblem of theexistene ofa nite

temperaturetransitionintheEA-QHAF,oneneedsto

analyse the -dependene of the ritial temperature

for dierent spins; results relativeto preise spin and

anisotropyvalues,typialoutputofquantumnumerial

simulations, are heneinsuÆient, albeit useful. The

maingoalofthispaperisinfattodeterminethe

riti-altemperatureoftheEA-QHAFasafuntionofboth

andS, andompare ourtheoretial resultswiththe

(2)

There exist several real ompounds whose

mag-neti behaviour [5℄ is well desribed by the

Hamilto-nianEq.(1);mostofthem,despitebeingharaterized

by a veryweak easy-axisanisotropy ( ' 1), show a

nite-temperaturephase-transition. Whetherthe

tran-sition is due to the anisotropy-driven onset of

two-dimensional Neel order or to some other eet (suh

as the inter-layer exhange interation), is not

eas-ilydetetableexperimentally,but strongindiationsin

favouroftherstpossibilityderivefromtheanalysisof

severalthermodynamiquantities. Thisworkonrms

suhapiture, astheritial temperaturesrelativeto

the ompounds Rb

2 MnF

4

[6℄ (S = 5=2, = 0:994),

K

2 MnF

4

[7℄ (S = 5=2, = 0:995) and K

2 NiF

4 [8℄

(S = 1, = 0:996) agree niely with the theoretial

resultsforthetwo-dimensionalEA-QHAF.

In order to study the thermodynami and ritial

behaviour of the model desribed by Eq. (1), we use

thepure-quantumself-onsistentharmoni

approxima-tion (PQSCHA)[9℄: this approximation allowsoneto

take into aount exatly the full lassial, and the

linear quantum ontributions to the thermodynamis

ofthesystem,thusapproximating(one-looplevel)the

non-linearpure-quantumontributiononly. Asthe

lat-ter plays a seondary role in determining the ritial

properties of models with a not-too-strong quantum

harater, the PQSCHA is an ideal tool to study the

thermodynami and ritial behaviour of many

quan-tum systems, as shown by its many suessful

appli-ations[10℄, inpartiularto low-dimensionalmagneti

systems[11,12℄.

The method, based on the path-integral

formula-tion of quantum statistial mehanis, allows one to

write statistial averages of quantum operators in the

form of lassial-like expressions: These may then be

evaluated by lassial(possiblynumerial)tehniques,

like the transfer-matrix method in one dimension, or

lassialMonteCarlosimulationintwodimensions. In

greaterdetail,thePQSCHAexpressionforthe

statisti-alaverageofaofquantumoperator ^

O,foramagneti

systemN spins,reads

h ^ Oi= 1 Z e Z d N sO e e H e (2)

where =T 1 , Z e = R d N se H e

, s=(s x ;s y ;s z )

isalassialunit vetor,and R d N s= N i=1 R ds i .

Quantum eets ome into play via the spin and

temperaturedependene of H

e andO

e

: this

depen-denerelatestheoriginalquantumsystemtoaninnite

lassof lassialeasy-axismodels, eah denedby

dif-ferent parameters. This means that the PQSCHA

re-duesthestudy ofquantum statistialaveragesto the

evaluationoflassial-likeeetiveaveragesdened by

Eq. (2), forto eetivemodels whih are dierentfor

dierenttemperaturesandspinvalues.

The spei PQSCHA expression for the eetive

HamiltonianoftheEA-QHAFisfoundtobe

H e = 1 2 J e S 2 X i;d h 4 ? s x i s x i+d +s y i s y i+d + 2 k 2 ? s z i s z i+d i + G(t; e

S); (3)

d

where, e

S = S +1=2, and t = T=J e

S 2

is the redued

temperatureusedhereafter.

Therenormalizationparametersare

2 k =1 D k 2 ; 2 ? =1 D ? 2 ; (4)

wheretheoeÆients

D k = 1 N e S X k a k b k 1 k L k ; D ? = 1 N e S X k a k b k 1 k L k (5)

areself-onsistentlydeterminedbysolvingEqs.(4)and

(5),with a 2 =4 2 k + 2 ? k ; b 2 =4 2 k 2 ? k ; (6) and k = 1 4 X d e ikd ; L k

=othf

k 1 f k ; f k = a k b k 2 e St ;

kbeingthewavevetorintherstBrillouinzone.

Thetemperatureandspindependentuniformterm

G(t; e

S)=2J e S 2 (1 2 k 2 ? )+J

e S 2 t X k ln sinhf k 2 ? f k ;

does not enter the expressions for the statistial

av-erages, but ontributes to the free energy and to the

relatedthermodynamiquantities.

Ifonedenestheeetiveexhangeintegraland

ef-fetiveanisotropy,

(3)

Eq. (3)anbewritten intheform

H

e =

1

2 J

e e

S 2

X

i;d h

e

s x

i s

x

i+d +s

y

i s

y

i+d

+s z

i s

z

i+d i

+ G(t; e

S); (7)

d

showingthatthethermodynamibehaviourofthe

EA-QHAF is that of a lassial EA-HAF with exhange

integralJ

e

(t;S) and anisotropy parameter

e (t;S).

As J

e

<J and

e

>weseethat quantum

utua-tionsindueasofteningofboththeenergysaleandthe

anisotropy,thusinduingahigherdegreeofdisorderin

thesystem.

In Fig.1 we show j

e =J

e

=J as afuntion of t,

for dierentspin and anisotropyvalues: Quantum

ef-fetsaremarkedlystrongerforlowerspins,whilethe

-dependene oftheenergysalerenormalizationisseen

to beextremelyweak.

Figure 1. Renormalizedexhangeintegral je =Je=J vs.

tforS=1=2,1,and5=2;dierentvaluesoftheanisotropy

parameter=0:9,0:5,and0arealsoshownbythedashed,

full anddottedurves,respetively.

In Fig.2, the ratio (

e

)= is plotted against

fordierentspinandtemperaturevalues: the

quan-tumrenormalizationishereseentomorestronglyaet

themostanisotropimodels,duetothefatthat,when

foredtoalignalongtheeasyaxis,eahspinreatswith

larger quantum utuations perpendiular to theaxis

itself.

Figure2. Ratio(e )=vs.for S=1=2,1,and5=2;

dierenttemperaturevaluest=0:001and0:1areshownby

thefullanddashedurves,respetively.

FromEq. (7)wesee that thesymmetryproperties

ofthe originalquantum Hamiltonianare preservedby

therenormalization proedure leading to the eetive

Hamiltonian: thismeansthattheritialbehaviourof

theEA-QHAFanbediretlyrelatedtothat ofits

ef-fetive lassialounterpart. In partiular, if t l

() is

thereduedritialtemperatureofalassialEA-HAF

with anisotropy parameter , then, for the quantum

system,itis

t

(S;)= t

l

e (t

)

j

e (t

)

: (8)

For xed S and , the t dependene of j

e and

e

make Eq. (8) rather ompliated. Its solution,

how-ever,anbeobtainediteratively,onet l

()isavailable

asan analytialfuntion of . Toobtainsuh a

fun-tionweusedthelassialMonteCarlodatareportedin

Refs.[13℄ and[14℄: thesedataarewelldistributedover

the interval 0 < 1 and an aurate interpolating

funtion mayhenebedetermined. Inpartiular we

haveused

l

()=a=

1+b 2

+ 4

d ln (1 2

)

; (9)

witha=0:917,b=0:068,=0:097,and d=0:0636.

Thelogarithmidependene upon (1 2

)isrequired

in order to properly desribe the logarithmi drop of

t l

for ! 1; l

(4)

to ensure the ferro- and antiferromagneti models to

be equivalent, as required for the stati behaviour of

lassialmagnetisystems.

Figure 3. Critial temperature t(S;) of the EA-QHAF

vs. ln(1 ) for S = 1=2, 1, 5=2, and 1

(lassi-al model). Large symbols indiate the experimentally

determined ritial temperatures for Rb2MnF4 (triangle),

K2MnF4 (square), andK2NiF4 (irle). Smallsymbolsare

lassialMonteCarlodatafromRefs.[13 ℄and[14 ℄,upwards

anddownwardstriangles,respetively. Thedottedurveis

theinterpolatingfuntion l

()(seetext).

InFig.3theresultingsolutionofEq.(8)isplotted

against ln(1 )to expandthe'1region,where

data for real ompounds are available; the agreement

betweenoururvesandtheexperimentallydetermined

ritial temperaturesis verygoodfor bothS =1and

S=5=2,givenalsothefatthatnobest-tproedureis

involvedintheomparison. Ontheotherhand,the

ex-atlyknown[15℄ritialtemperatureoftheIsingmodel

t

(1=2;0)=0:567,notrepresentedinFigure,isnotwell

reproduedin viewofthelargevaluesofthe

renormal-izationoeÆientsEq.(5),andweexpetourresultsto

beonlyqualitativelysigniantintheextremeS=1=2

quantum ase. This respet, we annotgiveadenite

answerto theproblem, reentlyaddressed in Ref. [4℄,

oftheexisteneofanite-interval,neartheisotropi

limit = 1, where t (1=2;)=0, i.e. where the

EA-QHAFshowsnonite-temperaturetransition.

In onlusion, we have studied the EA-QHAF in

terms of the eetive Hamiltonian determined by the

PQSCHA method; by analyzing the ritial

tempera-ture dependene on the anisotropy parameter , the

Ising-likephase-transitionharaterizingthemodelhas

beenfoundto ourat nite temperature8 <1and

8S1;aqualitativeindiationinfavourofthevalidity

ofthisresultforS=1=2hasalsobeenobtained.

Referenes

[1℄ M. BanderandD. L. Mills, Phys.Rev.B 38,12015

(1988).

[2℄ L.P.Kadanoetal.,Rev.Mod.Phys.39,395(1967).

[3℄ J.A.Hertz,Phys.Rev.B14,1165(1976).

[4℄ N.S.BranoandJ.RiardodeSousa,preprint,

ond-mat/0006345(June2000).

[5℄ J. Kanamori, in Magnetism vol.1, ed. G.T.Rado e

H.Suhl,AademiPress,New York(1963).

[6℄ R. A. Cowley, G. Shirane, R. J. Birgeneau, H. J.

Guggenheim,Phys.Rev.B15,4292(1977).

[7℄ R.J.Birgeneau,H.J.Guggenheim,G.Shirane,Phys.

Rev.B8,304(1973).

[8℄ H.W.deWijn,L. R.Walker,R.E.Walstedt,Phys.

Rev.B8,285(1973).

[9℄ A. Cuoli, V. Tognetti, P. Verruhi and R. Vaia,

Phys.Rev.A45,8418 (1992).

[10℄ A.Cuoli,R.Giahetti,V.Tognetti,R.Vaia,andP.

Verruhi,J.Phys.,Condens.Matter7,7891(1995).

[11℄ A. Cuoli, V. Tognetti, R. Vaia, and P. Verruhi

Phys.Rev.B46,11601(1992).

[12℄ A. Cuoli, V. Tognetti, R. Vaia, and P. Verruhi

Phys.Rev.Lett. 77, 3439 (1996), Phys.Rev.B 56,

14456(1997).

[13℄ P.A.Serena,N.GaraandA.Levanyuk,Phys.Rev.

B47,5027(1993).

[14℄ M.E.Gouv^eaelal.,Phys.Rev.B59,6229 (1999).

Imagem

Figure 2. Ratio (e )= vs.  for S = 1=2, 1, and 5=2;
Figure 3. Critial temperature t(S; ) of the EA-QHAF

Referências

Documentos relacionados

ritial behavior is haraterized at high magneti onentrations..

body transverse Ising model with random bonds and elds. The ouplings and the magneti elds are

the master equation on the phase spae, and the evolution of loal and global spin autoorrelation.. funtions, in terms of independent relaxation modes, whih are eigenvetors of the

We propose an improvement of a Monte Carlo method designed to treat the Ising model in a

universality lass at the ritial point marking

We alulate the spatial and temperature dependenes of various spin orre-.. lation funtions, as well as the wave-vetor dependene of the spin suseptibility for

relations has been applied to obtain the time evolution of a non-ommuting spin

The kineti Ising model on an n-isotopi hain is onsidered in the framework of Glauber dynamis.. The hain is omposed of N segments with n sites, eah one oupied by a