• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número4

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número4"

Copied!
4
0
0

Texto

(1)

Dynamial Behavior of the Four-Body Transverse

Ising Model with Random Bonds and Fields

Beatriz Boehat, ClaudetteCordeiro,

InstitutodeFsia,UniversidadeFederalFluminense,

24210-340Niteroi,RiodeJaneiro,Brazil

O.F. de Alantara Bonm,

Department ofPhysis,ReedCollege,Portland, Oregon97202, USA

J.Florenio, and F.C. SaBarreto

Departamento deFsia-ICEX,UniversidadeFederaldeMinasGerais,

30123-970BeloHorizonte,MinasGerais,Brazil

Reeivedon10August,2000

Westudytheeetofrandombondsandeldsonthedynamialbehavioroftheone-dimensional

transverseIsing modelwith four-spininterations. We onsidernitehainsof inreasingsize to

determinethetime-dependentorrelationfuntionandthelongitudinalrelaxation funtionofthe

innitehain. Inthisfullydisorderedsystemweobservearossoverfromaolletivemodetypeof

dynamistothatofaentralregime.

Thedynamialbehaviorofpurequantumspin

sys-temshasbeenthesubjetofmuhresearhativityin

the pastdeades[1℄. Onlyreently, moreattentionhas

been devoted to the investigation of the time

evolu-tionofdisorderedsystems. Anumberofstudiesabout

the phase diagram and thermodynami funtions has

demonstrated that thebehaviorofmagneti materials

maybedrastiallyaetedbythepreseneof

random-ness. Amongthesystemsstudied,thetransverseIsing

model(TIM) hasattratedonsiderableinterestin

re-entyears[2,3,4, 5℄andisregardedasoneofthe

sim-plestmodelswith non-trivialdynamis.

Inthisworkweareinterestedin thetimeevolution

oftheone-dimensionalTIMwithfour-spininterations.

ThemodelHamiltonianis

H = 8 L

X

i=1 J

i S

z

i S

z

i+1 S

z

i+2 S

z

i+3 L

X

i=1 B

i S

x

i

; (1)

where S

i

( = x;y;z) is the spin-1/2 operator at

site i and L is the number of sites of the lattie.

The four-spin interations J

i

and the magneti eld

B

i

are unorrelated variables hosen at random from

the probability distributions P(J

i

) and P(B

i ),

re-spetively. There have been several studies on the

modelwithuniformexhangeinterationandzero

mag-malization group[9℄, series expansions[10℄ and Monte

Carlo simulations[8, 11℄. The resulting phase

dia-gram has a triritial point whih separates regions

of rst and seond-order transitions. The pure TIM

was also employed to desribe the phase transition

in poly(vinylidene uoride-triuoroethylene)

[P(VDF-TrFE)℄opolymers[12℄. Morereently,somestudieson

the dynamis of this model in the presene of

disor-dershowedthatthesystemundergoesarossoverfrom

aolletive mode exitation regime to aentral mode

type of dynamis asa funtion of the bond and eld

energies[4, 13℄. Dierently from the usual two-body

model[14,15℄,thefour-spininterationmodeldoesnot

allowaGaussiandeayfortheorrelationfuntion.

The problem of disorder in magneti systems is a

fasinatingphenomenonthathasbeometheobjetof

intensestudy. Inmostmaterials,thepreseneof

mag-neti and nonmagneti ions leads to a distribution of

exhangeouplingsbetweenpairsofspins. Intheideal

ase,therandominterations J

i

fordierentpairsare

totallyunorrelated. Thesimplestaseourswhenall

theouplingsareofthesamesignbutvaryinstrength.

Other interestingbehaviorours when the model

in-ludes random magneti elds. In this ase, there is

(2)

J

i

or to followthe loal eld B

i

. The interation

en-ergies an be quite smaller than the thermal energy

even, say, at room temperature. In those aseswhere

J

i

=kT << 1 and B

i

=kT << 1 the dynamis an be

studiedintheinnite-temperaturelimit. Inthatlimit,

itisawellknownfatthat thedynamis isinsensitive

to the sign of the interation, sine only even powers

oftheinterationouplingandeldome intothe

mo-mentsoftheautoorrelationfuntion[4,15,16℄.

Thedynamisofthefour-spinTIManbeobtained

throughthetime-dependentautoorrelationfuntionof

S z i denedby C(fJ i g;fB i g;t)=

<S z i S z i (t)> <S z i S z i > : (2)

In the high temperature limit it takes the following

form, <S z i S z i (t)>= 1 2 L TrS z i e iHt S z i e iHt : (3)

We shall peform our alulations in nite rings, i.e.,

linear hains with periodi boundary onditions. The

exatbehaviorofthethermodynamisystems,atshort

times, is inferred from the dynamis obtainedfor

sys-temsofseveralsizes(L=7,9and11). Numerialresults

willbepresentedonlyforthelargestring(L=11),whih

showssignsofhavingattainedtheasymptotibehavior

ofthethermodynamisystemat largetimes.

In the general problem of quenhed disorder, the

physialpropertiesofasystemareobtainedby

perform-ingaongurationalaverageinthestatistialensemble

of realizations of the random variables. Formally, the

averagedautoorrelationfuntion isdenedas,

C(t)= Z Z C(fJ i g;fB i

g;t)P(J

i )P(B i )dJ i dB i : (4)

InourapproahthemeanautoorrelationfuntionC(t)

is obtained as follows. We rst diagonalize the full

Hamiltonian to determine the energies

n

and

eigen-vetorsjn > for alarge number of realizations in the

statistialensembleofenergyouplingrandomness.We

employed1000 to10000ongurationstoobtain

aver-agesovertherandomvariables; sothat the errorbars

fall within the thiknessof the urvespresented. The

results are then used to determine the mean

autoor-relation funtion, whih is ast in the following form

[17℄, C(t)= 4 2 L X n;m os( n m

)tj<njS z

i jm>j

2

; (5)

Anotherquantity of interestis the averaged

longi-tudinal relaxationshapefuntion,denedas

(!)= Z 1 0 C(t)e i!t dt; (6)

where C(t) isgivenbyEq. (5). Therealpartof (!)

givesdiretly aphysially aessiblequantity,the

lon-gitudinal relaxation funtion,F(!) =Re (!), whih

anbemeasureddiretlyinnulearmagnetiresonane

(NMR) experiments |the so-alled NMR line shape

[18℄. Thelongitudinal relaxationfuntion is also very

usefulintheunderstandingofthedynamisofthe

sys-tem,sinedierentdynamibehaviorshavedistint

sig-naturesin thatquantity[19℄.

Weinvestigatedthefour-bodyTImodelhain

on-sidering bimodal probability distributions for the

ex-hange ouplingandmagnetield,

P(J

i

)=(1 p)Æ(J

i J

1

)+pÆ(J

i J 2 ); (7) and P(B i

)=(1 p 0

)Æ(B

i B

1 )+p

0 Æ(B i B 2 ); (8)

where p is the onentration of ouplings of type J

2 ,

and p 0

is the onentration of magneti eld of type

B

2

. We determined the time-dependent

autoorrela-tion funtion and the longitudinal relaxationfuntion

fortheset(J

i ,B

i

)withseveralvaluesofpandp 0

.

InouralulationsweonsideredthevaluesJ

1 =1

and J

2

= 0:5 in the bimodal probability distribution

for theexhangeinteration, andseveral valuesof the

onentration pof J

2

-ouplings. Theoupling J

1 =1

is kept xed and sets the energy and time sales. As

to the eld probability distribution weonsidered the

ases where B

1

=1:5 and B

2

= 0:5, alsowith several

onentrationsp 0

. Forsimpliity, wewill present here

onlythepartiularasewherep=p 0

. Theonvergene

ofourresultsasthehainsizeinreasesisreahedwith

theL=11hainin thetimedomain shownin the

g-ures, 0t 8. In all asesstudied, our alulations

alsoreovertheresultsforthepureTImodelwith

four-spininterations(p=0) [4℄.

Theresultsforthetime-dependentorrelation

fun-tionare shownin Figs.1and 2. Theenergyouplings

are J

1

= 1 and J

2

= 0:5 with probability p, and the

elds areB

1

=1:5andB

2

=0:5, thelatterwith

prob-ability p 0

= p = 0, 0:2, 0:5 and 0:8. The urves for

p= 0orresponds to the pure asedominated by the

stronger eld energy. The orrelation funtion is

os-illatoryand damped, falling oquiklytowardszero.

Thelongitudinalshapefuntionshowsapeakata

non-zero frequeny. Hene, at p = 0the system is at the

(3)

eld axis. As we inrease p from 0 to 0.2, the

or-relation funtion still osillates. However,the peak in

thelongitudinalshapefuntionhasnowmovedtowards

lowerfrequenies. Whenp=0:5, theorrelation

fun-tiondeaysmonotoniallyto zero. Theshapefuntion

isnowpeakedatzerofrequeny,andallthesystemhas

undergonearossoverto aentral modebehavior. As

p is inreased further, theorrelation funtion deays

more slowly, and theentralpeak is enhaned,asan

beseenfrom theasep=0:8.

Figure1. Time-dependentorrelationfuntionforthe

four-bodytransverseIsingmodelwithrandombondsandelds.

The ouplings and the magneti eldsare distributed

a-ording to bimodal probability distributions, and an

as-sumethevaluesJ1 andB1 withprobability(1 p)andJ2

andB2 withprobabilityp. Theenergyandtimesalesare

setbytheouplingJ1 =1:0. Theurvesrepresenttheases

J

2

=0:5, B

1

=1:5 and B

2

=0:5 for variousvaluesofthe

probabilityp.

Figure 2. Longitudinal relaxation funtion (in arbitrary

units)vsfrequeny. Thesystemundergoesarossoverfrom

olletivemodebehaviortoaentralmodeaspisinreased.

In onlusion, we have studied the dynamial

be-haviorofthetransverseIsing model withfour-spin

in-viaexatdiagonalizationofnitehains. Wehave

al-ulated the time-dependent orrelation funtions and

thelongitudinalrelaxationfuntionsforsystemofsizes

L =7, 9and 11. We present the resultsonly for the

size L = 11, for whih the dynami orrelation

fun-tionshavealreadyonvergedtothoseatthe

thermody-namilimit. Our resultsshow that disorderinduesa

rossoverfromaolletivemodetypeofdynamistoa

entralmodebehaviorasafuntion ofdisorder.

This work was partially supported by FAPERJ,

FAPEMIG,CNPqandMCT (Brazilianagenies).

Referenes

[1℄ J.BernasoniandT.Shneider,Physisinone

Dimen-sion(Springer,Berlin,1981);MagnetiExitationsand

Flutuations II,editedbyU.Baluanietal. (Springer,

Berlin, 1987); A.S.T. Pires, Helv. Phys. Ata 61, 988

(1988).

[2℄ R.W.Youngblood,G.Aeppli, J.D.Axe andJ.A.

Grif-n, Phys. Rev. Lett. 49, 1724 (1982); J. Kotzler, H.

Neuhaus-Steinmetz, A. Froese and G. Gorlitz, Phys.

Rev.Lett. 60, 647(1988); C. Leeand S.I. Kobayashi,

Phys.Rev.Lett.62,1061 (1989);E.H.Lieb,T.Shultz

andD.C.Mattis,Ann.Phys.(N.Y.)16,407(1961).

[3℄ B.Boehat,R..RdosSantoseM.A.Continentino,Phys.

Rev. B 49, R6404 (1994); Phys. Rev. B 50, 13528

(1994).

[4℄ J.Florenio,O.F.deAlantaraBonmandF.C.Sa

Bar-reto,PhysiaA235,523(1997).

[5℄ J.FlorenioandF.C.SaBarreto,Phys.Rev.B60,9555

(1999); M.H. Lee, Phys. Rev. Lett. 49, 1072 (1982);

H. Mori, Progr.Theor. Phys.33, 423(1965); 34, 399

(1965);M.H.Leeetal,Phys.SriptaT19B,498(1987);

J. Florenio and M.H. Lee, Phys. Rev. A 31, 3231

(1985).

[6℄ R.J. Baxter and F.Y. Wu, Phys. Rev Lett. 31, 1294

(1973); M. Yamashita, H. Nakano and K. Yamada,

Progr.Theor.Phys.62,1225(1979).

[7℄ O.Mitran, J. Phys. C 12, 557 (1979); ibidem 7, L54

(1979); B.Frank and M. Danino, J.Phys.C 19,2529

(1986).

[8℄ O.G.Mouritsen,S.J.KnakJensen,andB.Frank,Phys.

Rev.B23,976(1981);ibidem24,347(1981).

[9℄ A.Aharony,Phys.Rev.B9,2416(1974);M.Gitterman

andM.Mikulinsky,J.Phys.C10,4073(1977).

[10℄ M.Suzuki,Phys.Lett.28,267(1972);D.W.Woodand

H.P.GriÆth, J.Math.Phys.14,1715 (1973); J.Phys.

C7,L54(1974);H.P.GriÆthandD.W.Wood,J.Phys.

C6,2533(1973);ibidem7,4021 (1974).

[11℄ O.G. Mouritsen, B. Frank, and D. Mukamel, Phys.

Rev.B27,3018(1983);B.FrankandO.G.Mouritsen,

J.Phys.C16,2481(1983);F.C.Alaraz,L.Jaobs,and

R.Savit, Phys.Lett.89A,49(1982).

(4)

[13℄ B.Boehat,C.Cordeiro,J.Florenio,F.C.SaBarreto

andO.FdeAlantaraBonm,Phys.Rev.B61,14327

(2000).

[14℄ U.Brandtand K.Jaoby,Z. Phys.B25,181(1976);

H.W.CapelandJ.H.H.Perk,PhysiaA87,211(1977).

[15℄ J. Florenio and M.H. Lee, Phys. Rev. B 35, 1835

(1987).

[16℄ S.Sen,M.Long,J.Florenio,Z.X.Cai,J.Appl.Phys.

73, 5471 (1993); S. Sen, S.D.Mahanti, and Z.X. Cai,

Phys.Rev.B43,10990(1991);J.Stolze,G.Muller,and

V.S. Viswanath, Z. Phys.B 89,45 (1992); I. Sawada,

Phys.Rev.Lett.83,1668(1999);PhysiaB284,1541

(2000).

[17℄ A.SurandI.J.Lowe,Phys.Rev.B11,1980(1975);A.

Sur,D. Jasnow,and I.J.Lowe,Phys.Rev.B 12,3845

(1975).

[18℄ M.Engelsberg,I.J.Lowe,andJ.L.Carolan,Phys.Rev.

B7,924(1973).

[19℄ S.W. Lovesey, Condensed Matter Physis: Dynami

Imagem

Figure 1. Time-dependent orrelation funtion for the four-

Referências

Documentos relacionados

ritial behavior is haraterized at high magneti onentrations..

transition in suh a model, and study the orresponding ritial temperature as the spin value ande. the

the master equation on the phase spae, and the evolution of loal and global spin autoorrelation.. funtions, in terms of independent relaxation modes, whih are eigenvetors of the

We propose an improvement of a Monte Carlo method designed to treat the Ising model in a

universality lass at the ritial point marking

We alulate the spatial and temperature dependenes of various spin orre-.. lation funtions, as well as the wave-vetor dependene of the spin suseptibility for

elds on the phases and phase transitions of Ising sys-.. tems has attrated onsiderable attention,

The results show that the Ising model and real magneti materials have.. provided an unusually rih and produtive eld for the interation between theory