• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número4

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número4"

Copied!
5
0
0

Texto

(1)

Quantum to Classial Crossover in the

2D Easy-Plane XXZ Model

H. Fehske, C. Shindelin, A. Weie, H. Buttner,

PhysikalishesInstitut,UniversitatBayreuth,D-95440 Bayreuth,Germany

and D. Ihle

Institut f urTheoretishePhysik,UniversitatLeipzig,D-04109Leipzig,Germany

Reeivedon5August,2000

Ground-stateandthermodynamipropertiesofthespin-1/2two-dimensionaleasy-planeXXZmodel

are investigatedby both aGreen's-funtion approahand by Lanzos diagonalization onlatties

withupto 36sites. Wealulatethe spatialandtemperaturedependenesofvariousspin

orre-lationfuntions,aswellasthewave-vetordependeneofthespinsuseptibilityfor allanisotropy

parameters. Intheeasy{planeferromagnetiregion( 1<<0),thelongitudinalorrelators

ofspinsatdistanerhangesignatanitetemperatureT

0

(;r). Thistransition,observedinthe

2Daseforthersttime,anbeinterpretedasaquantumtolassialrossover.

I Introdution

The magneti properties of low-dimensional quantum

spin systems with spin anisotropy, suh as the

quasi-one-dimensional (1D) uprates [1℄ and the quasi-2D

high-T

parentompounds [2℄,areof growinginterest.

TheS=1=2XXZmodel

H= J

2 X

hi;ji (S

+

i S

j

+S

z

i S

z

j

) (1)

(hi;ji denote nearest-neighbor(NN) sites; throughout

we set J =1) usually servesas thegeneri model for

thosesystems.

Reently, in the ferromagneti(FM) region ( 1<

<0)of the1Dmodel aquantum-lassialrossover

inthelongitudinalspinorrelatorswasfoundbymeans

ofexatdiagonalization(ED)[3℄andaGreen's-funtion

theory [4℄. For the XXZ model on a square lattie,

an analytial approah to the spin suseptibility

tak-ing into aountmagneti short-rangeorder(SRO) at

arbitrarytemperaturesdoesnotyetexist.

Inthisontributionthespinorrelationsinthe

easy-plane region 1 < < 1 of the 2D XXZ model are

examined by both a Green's-funtion theory outlined

in the Appendix and by exat nite-luster

diagonal-izationsofthemodel(1)onlattieswithupto36spins

using periodi boundary onditions. Wemainly fous

on theharateristisof apossiblequantum to

lassi-alrossoverin theFM regime. Moreover,fortherst

time,theompletewave-vetor,temperatureand

de-suseptibilitiesarealulated.

II Ground-state properties

In Fig. 1 our resultsfor the magnetization m() are

omparedwithavailablequantumMonteCarlo(QMC)

data [5℄, where the ED/QMC data for the

ground-state energy per site "() (inset) is taken as input

for the Green's-funtion approah (C zz

10 =

1

2

"=,

C +

10

="=2 C zz

10 ).

Figure 1. Magnetization m and ground-state energy " of

(2)

tionsalulatedanalytiallyarein exellentagreement

withourEDdata. Letusstressthatthenite-size

de-pendene ofthe EDdata isalmost negligiblebygoing

from a32-toa36-sitelattie. At=1therotational

symmetry C +

r

= 2C zz

r

is visible. At the quantum

ritial point = 1 we have C +

r; ~

H = 2C

zz

r

= 1=6

(f. Eq. (14)). The non-analytial limiting behavior

lim

! 1

+C zz

r

=0resultsfromboththeQMC[5℄and

EDdata(obtainedinthesubspaewithtotalspin

pro-jetionS z

=0).

Thestati spinsuseptibilities

q

()are depited

in Fig.3. IntheFM region,forsuÆientlylow

val-ues, zz

q

showsamaximumatq=0beingapreursor

oftheFMinstability(inthezz-orrelators)at= 1.

Note that( +

Q )

1

=0,reetingthetransverse

long-rangeorder(LRO)atT =0,byEq.(13)orrespondsto

( +

0; ~

H )

1

=0. Inthe antiferromagneti(AFM) region

0<<1themaximumin zz

q

atq=Qis indiative

of thelongitudinalAFMLROat 1.

Finally,inFig.4weshowthelongitudinalspin-wave

spetrum ! zz

q

(f. Eq. (7)). Forq jqj 1wehave

! zz

q =

zz

s

q, where thespin-waveveloity zz

s

inreases

with over the whole easy-plane region. The

mini-mumin! zz

q

atq=Qin theAFMregion orresponds

to the maximum in zz

q

(f. Fig. 3a) and reets the

inreaseofthelongitudinalAFMSROwith(seealso

C zz

r

()in Fig.2).

Figure2. Transverseandlongitudinalspinorrelation

fun-tionsC

r

atT=0. SymbolsdenoteEDresultsobtainedfor

a66lattie.

Figure3. Wave-vetordependene ofthe longitudinal (a)

andtransverse(b)statisuseptibilities

q

atT =0.

III Finite-temperature results

Thetemperaturedependene of theshort-ranged

lon-gitudinalspinorrelationsisdisplayedinFig.5. Again

the analytial results agree remarkably well with the

EDdata. In the FM region, for the rst time in the

2Dmodel,weobservetheso-alled\sign-hanging"

ef-fetwhih wasfound numerially[3℄ in the 1Dmodel

and later on reprodued by our Green's-funtion

al-ulations [4℄. That is, at xed separationr and with

inreasing temperature or at xed temperature and

with inreasing r, C zz

r

hanges sign from negative

to positive values. The temperatures T

0

(;r) where

C zz

r (T

0

(;r);)=0aregiveninTableI.Asinthe1D

ase,T

0

atxed dereaseswith inreasing r.

How-ever,omparedtothe1Dase[4℄,ouranalytialresults

areinmuhbetteragreementwiththeEDdata.

The sign hange of C zz

r

may be interpreted as a

quantumtolassialrossover[3℄beausewith

inreas-ing temperature the system behaves more lassially,

i.e.,itbeomesdominatedbythepotentialenergy

(neg-ative term of the Hamiltonian favoring the parallel

alignmentoftwospins). IntheAFMregionweobtain

theexpetedalternatingsignsofC zz

(3)

thelongitudinalAFMSRO.

InFig.6varioussuseptibilities

q

atq=0;Qare

plottedasfuntionsofT andomparedwithnumerial

data. For =0:5thelongitudinalandtransverse

uni-form suseptibilities are in reasonableagreementwith

the QMC results [5℄ and our ED data (the up- and

downturn atlowertemperaturesis anite-sizeeet).

Theinreaseof

0

(T),themaximumneartheexhange

energy (J = 1), and the rossoverto the Curie-Weiss

lawareduetothedereaseofAFMSROwith

inreas-ing temperature. On the other hand, the staggered

suseptibility zz

Q

isenhanedasomparedwith zz

0 by

thelongitudinalAFMSRO.IntheFMregion(Fig.6b,

= 0:5) themaximumin zz

0

, wherethe analytial

and numerial results yield nearly the same position,

maybeexplainedasaombinedSROandsignhanging

eet as disussed forthe 1D model in Ref. [4℄.

Con-trarytotheAFMregion, zz

Q

issuppressedasompared

with zz

0

whihisausedbytheFMorrelationsabove

T

0 .

Figure4. TemperaturedependeneoftheNN(a)andnext

NN (b)longitudinal spinorrelation funtions C zz

r

.

Sym-bolsdenoteEDresultsobtainedfora44lattie.

Thetemperaturedependene of +

0 =

+

~ may

beexplainedagainasaSROeet.

Figure5. Longitudinalandtransversestatispin

susepti-bilities

q

as funtionsoftemperatureT forthe 2DAFM

(a)andFM(b)easy-planeXXZmodels.

Figure6. Longitudinalspin-wave dispersion! zz

q

alongthe

major symmetrydiretionsofthe2DBrillouinzone.

Here,thetransverseFMSROresultsinaspin

sti-nessagainsttheorientationofthetransversespin

om-ponents along a staggered eld perpendiular to the

z-diretion,sothat +

Q; ~

H

issuppressedatlow

(4)

Table1: TemperatureT

0

(;r)ofthesignhangeinthe

longitudinal orrelationfuntions C zz

r

(T;). The

or-responding resultsobtained from ED of a44 lattie

aregivenin parenthesis.

T

0 (;r)

r=(1;0) r=(1;1) r=(2;0)

-0.1 2.98[2.540℄ 1.76 1.76[1.520℄

-0.3 0.96[0.931℄ 0.74 0.72[0.713℄

-0.5 0.66[0.605℄ 0.52[0.527℄ 0.50[0.476℄

-0.7 0.46[0.391℄ 0.36[0.303℄ 0.34[0.301℄

-0.9 <0.2[0.125℄ <0.2[0.106℄ <0.2[0.106℄

IV Summary

To summarize, we presented a Green's-funtion

the-ory of magneti LRO and SRO in the 2D easy-plane

XXZ model whih allows the omplete alulation of

all stati magneti properties in exellent agreement

with numerial diagonalization data. In partiular,

in the FM region we found a quantum to lassial

rossoverinthelongitudinalspinorrelations. We

on-lude that our approah is promising for appliation

to otheranisotropispinmodels,suh asthequasi-2D

XXZmodelfortheparentompoundsofhigh-T

super-ondutors.

Appendix: Green's-funtion

the-ory

Thespinsuseptibilities +

q

(!)= hhS + q ;S q ii ! and zz q

(!) = hhS z q ;S z q ii !

, expressed in terms of

two-time retarded ommutator Green's funtions, are

de-termined bytheprojetionmethod,developed,forthe

XXZ hain, in Ref. [4℄. Taking thetwo-operator basis

(S + q ;i _ S + q ) T and(S z q ;i _ S z q ) T weobtain q (!)= M q ! 2 (! q ) 2

; =+ ;zz; (2)

with M + q = 4[C + 10 (1 q )+2C

zz 10 ( q )℄;(3) M zz q = 4C + 10 (1 q

); (4)

C nm C r , C + r = hS + 0 S r i, C zz r = hS z 0 S z r i, r =

ne x +me y , and q

= (osq

x

+osq

y

)=2. The spin

orrelatorsareobtainedfromEq.(2) as

C r = 1 N X q M q 2! q

[1+2p(! q )℄e iqr ; (5) where p(! q ) = (e

! q =T 1) 1

. The spetra !

q ,

al-ulated in the approximations  S + =(! + ) 2 S + and  S z q = (! zz q ) 2 S z q

introduing vertex parameters

i

(i=1;2),aregivenby

(! +

q )

2

= [(1+2 + 2 (C + 20 +2C + 11 )℄(1 q )

+(1+4 + 2 (C zz 20 +2C zz 11 )℄( q ) +2 + 1 [C + 10 (4 2 q 3 q ) +2C zz 10 (4 2 q 1 3 q

)℄; (6)

(! zz q ) 2 = 2(1 q

)[1+2 zz 2 (C + 20 +2C + 11 ) 2 zz 1 C + 10

(1+4

q

)℄: (7)

In the easy-plane region 1 < < 1, the

long-range order at T = 0 is reeted in our theory by

! +

Q

=0 [Q= (;)℄. Aordingly, the ondensation

partCe iQr

is separatedfrom C +

r

(f. Eq. (5)), and

themagnetization misalulatedas

m 2 = 1 N X r C + r e iQr

=C: (8)

The parameters

1

(T) are determined from the sum

rules C +

00

= 1=2 and C zz

00

= 1=4. To obtain

2 (T)

we adjust C

10

(T = 0) taken from our ED data and

assume,asadditionalonditions forthe alulationof

zz q (!)and + q

(!),temperatureindependentratios

R zz = zz 2 (T) 1 zz 1 (T) 1 (9) and R + > = + 2

(T) 1

+

1

(T) 1

for >0; (10)

R + < = + 2

(T) 1

zz

1

(T) 1

for <0; (11)

respetively. Forthedisussion itis usefulto perform

theunitary transformationwhih rotatesthe spinson

thesublattieBaroundthez-axisbytheangle, ~ S i = U + S i

U withU = Q

l2B 2S

z

l

. Weget ~ S x;y i =e iQri S x;y i , ~ S z i =S z i and ~ H= 1 2 X hi;ji ( S + i S j +S z i S z j

): (12)

DuetohAi

H =h ~ Ai ~ H

foranyoperatorA,weobtainthe

relations + q;H (!) = + k; ~ H

(!); k=q Q; (13)

C + r;H = e iQr C + r; ~ H ; (14) zz q;H (!) = zz q; ~ H

(!), and C zz r;H =C zz r; ~ H

. As shown in

Ref. [4℄, the rotational symmetry at = 1 is

(5)

Referenes

[1℄ D. C. Johnston, in K.H. J. Bushow, editor,

Hand-book of Magneti Materials, volume 10, Elsevier

Si-ene,(Amsterdam1997).

[2℄ M. Matsumura, F. Raa, and D. Brinkmann, Phys.

Rev.B60,6285(1999).

[3℄ K.FabriiusandB.M. MCoy,Phys.Rev.B59,381

(1999).

[4℄ C. Shindelin, H. Fehske, H. Buttner, and D. Ihle,

ond-mat/9911447.

[5℄ Y.OkabeandM.Kikuhi,J.Phys.So.Japan57,4351

Imagem

Figure 1. Magnetization m and ground-state energy &#34; of
Figure 2. Transverse and longitudinal spin orrelation fun-
Figure 5. Longitudinal and transverse stati spin susepti-
Table 1: Temperature T

Referências

Documentos relacionados

We calculate the spin gap of homogeneous and inhomogeneous spin chains, using the White’s density matrix renormalization group technique.. We found that the spin gap is related to

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

We determine the longitudinal spin autocorrelation functions of the spin- 1 2 XY chain and ladder in the presence of disordered elds by using the method of recurrence relations..

Samuel Melro / Direção Regional de Cultura do Alentejo Susana Correia / Direção Regional de Cultura do

The simple and modified probit and logit models used here were estimated using the term structure of interest rates components as explanatory variables, in addition to

The goal of this study was to determine the spatial and temporal patterns or clusters of malaria distribution and socio-demographic characteristics of malaria patients in

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

Diante dessa situação e tendo em vista a importância que a gestão do conhecimento tem para a competitividade das empresas, este estudo visa verificar se a gestão do