• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número4

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número4"

Copied!
11
0
0

Texto

(1)

Experimental Charaterization of the Ising Model

in Disordered Antiferromagnets

D. P.Belanger

Department ofPhysis,UniversityofCalifornia,Santa Cruz,CA95064USA

Reeivedon5August,2000

Theurrent status of experiments onthe d = 2 and d = 3 random-exhange and random-eld

Isingmodels,asrealizedindiluteanisotropiantiferromagnets,isdisussed. Twoareasofurrent

investigationareemphasized. Ford=3,thelargerandomeldlimitisinvestigatedandequilibrium

ritialbehaviorisharaterizedathighmagnetionentrations.

I Introdution

The Ising model is one of the most studied and

ba-si models for phase transitions. In this artile, the

urrent status of experimental studies haraterizing

two lassi models of seond-order phase transitions

in short-range interation systems in the presene of

quenhed disorder, the random-exhange Ising model

(REIM) and the random-eld Ising model (RFIM), is

presented. Thedisussiononentratesonexperiments

in dilute, insulating, anisotropiantiferromagnets,the

systemsthathaveyieldedthebestunderstooddatafor

these twomodels. TheREIM is realized in zero

mag-netieldandtheRFIMwithaeldappliedalongthe

spin-orderingdiretion.

TheREIM is rather well haraterized

experimen-tally, theoretially and throughomputersimulations.

Thed=2RFIMis fairly wellharaterized, although

the saling behavior of sattering near the destroyed

phasetransitionisstillbeinginvestigated.

The understanding of the RFIM for d = 3 is not

asomplete,thoughsigniantprogresshasbeenmade

in thepastfewyears, anditis thismodel thatwill be

themain fousofthis short review. Theearly history

of the d=3RFIM wasfraught with ontroversial

in-terpretationsofthedata,aresultofsevere

nonequilib-rium eets. Nevertheless, some experimental groups

realized from the start that underlying the observed,

ompliatedbehaviorisanewkindofphasetransition.

Eorts to haraterizethe new ritial behavior were

thwarted by the severe nonequilibrium eets. These

nonequilibrium eetshavereentlybeenoveromeby

goingtosuÆientlyhighmagnetionentrationanda

ompleteharaterizationoftheuniversald=3RFIM

ritial behavioris possible and underway. The most

reent statiritial behavior will be ompared to

re-sultsfromomputersimulationsandtheory.

Inaddition to these low-eld behaviors, muh has

An overview will be given of the phase diagram and

thedierentbehaviorsobserved.

Experiments have been performed on REIM and

RFIM systems for more than two deades. Sine the

experiments performed some time ago have been

re-viewed previously[1℄, they will be inluded here only

asneededtogiveaperspetiveontheurrentphysial

understandingofthemodels.

Theory and simulation results will be inluded as

neededfortheinterpretationoftheexperiments.

Another lassi model of ordering in the presene

of disorder, the spinglass, will be overed in another

review[2℄ in this Ising Colloquium and so will not be

disussed here in detail, although somespin-glass-like

behaviorsdoouratlowmagnetionentrationsand

at highmagnetields.

TableI showsthe mostfrequentlymeasured stati

ritial behaviors assoiated with a phase transition.

Wewillmakereferenetotheuniversalparameters

de-ned inTableI asneeded.

speiheat C=A

jtj

+B

for!0 C=Alnjtj

orderparameter(T <T

) M

s =M

o jtj

utuationorrelationlength =

o jtj

=1=

staggeredsuseptibility

s =

o jtj

disonnetedsuseptibility d

s =

d

o jtj

Table 1. Asymptoti forms for ommonly measured

stati ritialbehaviors. Thesupersript +(-)on the

amplitudes signies T > T

(T < T

). The exponent

values and the amplitude ratios are universal

(2)

II Experiments on Pure d = 2

and d = 3 Anisotropi

Anti-ferromagnets

Observations of asymptoti stati ritial behavior in

the pure d = 2 and d = 3 Ising antiferromagnets

are verywelldoumented. Themagneti speiheat

(C

m

)ritialbehaviorhasbeenharaterizedusing

op-tial linear birefringenetehniques[3, 4℄on thed=2

Rb

2 CoF

4

system[5℄andthed=3FeF

2

system[6℄.

The measuredpure Ising ritial exponents and

the amplitude ratios A +

=A are in superb agreement

withverymanytheoretialandsimulationresults. The

birefringenetehniqueispartiularlyusefulandmore

auratethanpulsedspeiheattehniquessineitis

insensitivetothelargephononontributionswhihare

partiularlydiÆultto handleford=2.

Theritialbehaviorofthestaggeredsuseptibility

andorrelationlengthhavebeendeterminedwith

neu-tronsatteringforK

2 CoF

4

[7℄ford=2and inFeF

2 [8℄

ford=3.

In general, the sattering line shapes for the pure

and REIM systems away from the Bragg sattering

pointfollowthesalingbehaviorofthespin-spin

orre-lation funtion

s

(q)=A

2

f(q=) ; (1)

where =(2 ).

Forbothd=2andd=3,thesalingfuntionsused

in dataanalysisareapproximateones[9,10℄thatdier

signiantlyfromthemean-eld(MF)Lorentzian

f(q=)= 1

1+(q=) 2

; (2)

asanbeseeninFig.1wherevarioussalingfuntions

are ompared. The deviation from the Lorentzian is

morepronounedford=2andforT <T

(H)inboth

dimensions.

Theorderparameterritialbehaviorhasbeen

de-terminedusing neutronsattering[7℄inthed=2

om-pounds. TheMossbauertehnique[11℄ was usedin the

study ofthed=3system.

Theresults for thepure Ising model in d =2and

d=3aresummarizedin Table2. Notethatthe

Rush-brookesalingrelation

2++2 (3)

is satised as an equality for both ases. Inluded in

Table2aretheresultsfrom afewtheoretialand

sim-ulationstudies. Noattemptismadetoreviewthevast

literatureonthepureIsingmodels.

Figure1. Aomparisonofthelogarithmofthesaling

fun-tionsf(q=)versusq=fordierentmodels(SeeEq.1). The

pureasesarefromapproximateexpressionsfromnumerial

studies[9 ,10 ℄. TheREIMand RFIMare determinedfrom

theexperiments.NotethattheorretionstotheMF

equa-tionarelargestbelowthetransitionandareverysigniant

forthepured=2andrandom-eldd=3ases.

III Random-Exhange

Experi-ments in Dilute d = 2 and

d = 3 Anisotropi

Antiferro-magnets

TheREIM is realizedin dilute, anisotropi insulating

antiferromagnetswhenthesitedilutiondoesnotresult

instronglyfrustratedbonds(whihwouldleadto

spin-glass behavior). Random-exhange phase transitions

areobservedin d=2andd=3systemsandthese

ap-peartobeingoodaordwiththeoryandsimulations.

Thed=2REIMC

m

ritialbehaviorwasobserved

usingthebirefringenetehnique[5℄onthemagnetially

dilute antiferromagnet Rb

2 Co

0:85

Mg F

4

(3)

ap-proximatelylogarithmidivergene isompatible with

theoretialpreditions[17,18℄.

Thesatteringritialbehavior[19℄oftheompound

Rb

2 Co

x Mg

1 x F

4

wasanalyzedusingapproximate

sat-tering line shapes[9, 10℄ developedfor the pure d= 2

Ising model. The suessful analysis using these line

shapes suggeststhat theorret line shapeis lose to

thepureone. Thestatiritial behaviorofthed=2

Ising model isquitewellharaterizedby experiments

andtheoryasshowninTable3.

Thed=3REIMissimilarlywellharaterizedwith

birefringene,neutronsatteringandMossbauer

exper-iments employing Fe

x Zn

1 x F

2

with the results shown

in Table3alongwithsometheoretial andsimulation

results, with whih they agree very well. The

riti-al behavior of the spei heat of the d = 3 REIM,

measured with birefringene tehniques[21℄, is shown

in Fig. 2. Monte Carlo simulations[27℄ based on the

Fe

x Zn

1 x F

2

systemareshownin Fig.3.

Figure2. Cmvs.T forFe0:93Zn0:07F2 atH=7Tas

deter-mined using the birefringene tehnique. Theinset shows

the FC data. There appears to be atiny hysteresis very

lose to the transition, perhaps a onsequene of

random-eldativateddynamis.

The birefringene tehnique yields a negative

spe-iheat exponentas predited[28℄, onsistentwith

auniversalitylassdierentfromthepureIsingmodel

where is positive. Note that, just as in the

pure ase, the birefringene tehnique is onsistent

with pulsed spei heat tehniques, though the

lat-ter tehniquesuers from greateronentration

gradi-ent sensitivity[29℄ and the large phonon spei heat

Figure3. C

m

vs.T fromMonteCarlosimulationsmodeled

aftertheFe

0:8 Zn

0:2 F

2

system. Thesimularitywiththedata

is striking,though notall MonteCarlosimulationsyielda

sharppeakinC

m .

Theritial behaviorsof the staggered

suseptibil-ity and orrelation length were determined from

neu-tron sattering experiments[26℄. The order

parame-ter ritial behavior was determined from Mossbauer

studies[25℄. Thesatteringlineshapesalingfuntions

are not known from theory and were therefore

deter-mineddiretlyfromthesatteringdatainneutron

sat-tering experiments[30℄ using Fe

0:93 Zn

0:07 F

2

. The

re-sults shown in Fig. 1 learlyindiate that the saling

funtionsarefairlylosetothoseofthepured=3ase.

The REIM universal stati ritial parameters for

d=2andd=3areshowninTable3alongwith

theo-retialand simulationresults. In both dimensionsthe

agreementisexellent. NotethattheRushbrooke

sal-ing relation (Eq. 3) is satised as an equality for the

REIM.

IV The d = 3 Magneti

Pero-lation Threshold

Conentra-tion

As the magneti perolation threshold onentration,

x

p

,isapproahedfrom abovein zeroeld,the

equilib-riumphasetransitionisexpetedtoapproahzero

tem-perature. For apartiular magneti struture, x

p

de-pendsonwhat interations existbetweenthedierent

neighboring spins. Forexample,forFe

x Zn

1 x F

2 ,x

p =

0:245;providedonlythedominantinterationbetween

(4)

Pured=2 Experiment Theory[12℄

0:000:01[6℄ O(logjtj)

A +

=A 1:010:00[6℄ 1(logjtj)

0:1550:02[7℄ 1=8

1:020:05

+

[7℄ 1

1:121:13 [7℄

+

= 0:540:06[7℄ 1=2

1:820:07

+

[7℄ 7=4

1:920:20 [7℄

+

= 32:63:7[7℄ 37:33

Pured=3 Experiment Theory

0:110:005[13℄ 0:10990:0007[14℄

0:1090:004[15℄

A +

=A 0:540:02[13℄ 0:55[16℄

0:3250:005[11℄ 0:326480:00018[14℄

0:32580:0014[15℄

0:640:01[8℄ 0:630020:00023[14℄

0:63040:0013[15℄

+

= 0:530:01[8℄ 0:52[16℄

1:250:02[8℄ 1:23710:0004[14℄

1:23960:0013[15℄

+

= 4:60:2[8℄ 4:8[16℄

Table2. The pured=2and d=3Ising statiritial exponentsobtained from experiments, theory andMonte

Carlosimulations.

d=2Random Experiment Theory[20,17℄

Exhange (H=0)

O(logjtj)[5℄ O(log (log1=jtj))

A +

=A 0:950:10[5℄ 1(logjtj)

0:130:02[19℄ 1=8

1:080:06

+

[19℄ 1

1:580:52 [19℄

+

= 0:980:02[19℄ 1=2

1:750:07

+

[19℄ 7=4

2:60:6 [19℄

+

= 19:15:0[19℄ 37.33

d=3Random Experiment Theory

Exhange (H=0)

0:100:02[21℄ 0:0510:013[22℄

A +

=A 1:550:15[23℄ 0:5[24℄

0:3500:009[25℄ 0:35460:0028[22℄

0:690:01[26℄ 0:68370:0053[22℄

+

= 0:540:06[26℄ 0:83[24℄

1:310:03[26℄ 1:3420:010[22℄

+

= 2:80:2[26℄ 1:7[24℄

Table3. The d=2and d= 3REIM Ising stati ritialexponentsobtainedfrom experiments, simulations and

(5)

d=3Random Fe

x Zn

1 x F

2

MonteCarlo

Field (H >0) &ExatGroundState

0:00:02[21℄ 0:50:2[31℄

0:550:2[32℄

notmeasured[33℄ 0:000:05[31℄

0:020:01[32℄

0:250:03[27℄

0:880:05[30℄ 1:10:2[31℄

1:140:10[32℄

1:580:13[30℄ 1:70:2[31℄

1:50:2[32℄

2=3:160:26 3:30:6[31℄

3:40:4[32℄

Table4. Thed=3RFIMIsingstatiritialexponentsobtainedfromexperiments,simulationsandtheory.

Exept very lose to x

p

, the muh smaller

inter-ations an be ignored. Close to x

p

, however, the

smaller interations may drastially aet the

behav-iorandevenpreventorderingabovex

p

whenthey

frus-tratethepredominantinteration. Boththeextremely

slowdynamis near perolation[35℄and thesensitivity

totinyfrustratinginterations[36℄anausethesystem

toexhibit spin-glass-likebehavior.

Agooddealofeorthasfousedonthepropertiesof

thesystemFe

x Zn

1 x F

2

forx nearx

p

. Thissystemhas

asmall frustrating interation[37℄. Thespin-glass-like

propertieswerersteluidatedinexperimentsby

Mon-tenegroetal. [38-43℄. ForH>0andx=x

p

,there

ex-istsaboundarythat resemblesadeAlmeida-Thouless

boundarywithurvatureT T

o H

2=

where=3:4,

atypialspin-glass value. It wasshown with neutron

sattering[44℄ that there is no antiferromagneti

long-range ordering below this boundary. Muh of the

be-havior is very reminisent of a anonial spin glass.

Thedetailed behaviorofthis samplehasbeenstudied

experimentally[38,45℄andextensivelymodeledinloal

mean-eld[46,47℄ andMonteCarlosimulations[48℄.

V d =2 Random-Field Behavior

Saling arguments for Zeeman and domain wall

en-ergies by Imry and Ma[49℄ as well as onsiderations

by Binder[50℄ leave little doubt that the d = 2 Ising

transition is destroyed by the introdution of

arbi-trarily small random elds. Birefringene[5℄ and

neu-tron Bragg sattering[51℄ experiments bear this out;

no sharp phase transition is observed in equilibrium,

though the rounded transition exhibits the expeted

salingbehavior.

The equilibrium region is separated from a lower

temperatureregionofstronghysteresisobservedinthe

dierene between data obtained upon heating after

oolingin zeroeld tolowtemperaturesand then

ap-pleintheeld(FC).Theboundaryseparatingthese

re-gionsistime-saledependent[52℄. Thedomain

dynam-isinduedwith theappliation ofamagnetield as

wellasthoseremainingaftertheeldisremovedatlow

temperatureshavebeenstudied experimentally[53,54℄

andtheoretially[55℄.

VI d = 3 RFIM behavior for

x

p

<x <x

e

at low elds.

The behavior for onentrations between x

p

and the

perolationthresholdonentrationforvaanies,x

e =

1 x

p

, with a relatively small applied eld oupied

the bulkof early experimental eorts[1℄. Muh of the

ontroversy over interpretations of experimental data

involvedthisregionofonentrationandelds.

As a result of the equivalene[56, 57℄ of the

di-luteanisotropiantiferromagnetinsmalleldsandthe

random-eldferromagnetoftenstudiedtheoretially,it

was believed that onentrations near x = 0:5 would

yield strong random-eld eets in reasonably small

elds and would bethe best realizations of thed =3

RFIM for phase transition studies. At the time of

therstexperiments[58-61℄,itwasgenerallybelieved,

based on many theoretial arguments, that no phase

transition would be observed. Indeed, early neutron

sattering FC experiments, by Yoshizawa et al.[61℄,

seemed to bear this out. In partiular, a

resolution-limited Gaussian Bragg peak does not our upon

FC,althoughsubsequentexperiments[54℄showthatthe

samplesretainlong-rangeorderbelowthephase

bound-ary if ZFC. In ontrast, the rst C

m

studies[60, 62℄

yielded ompelling evidene for a fundamentally new

phase transition governing the behavior. The phase

boundaryT T

(H)H 2=

behavesaspredited[63℄

with =1:420:03forrandom-exhangeto

random-eld rossover[64℄.

Despite the sharp C

m

(6)

sition. The most reent of these disussions is the

\trompel'oeiltransition"phenomenologialmodel[65℄.

Amongtheassumptionsofthismodelarethatthe

bire-fringene and C

m

experiments do not yield the same

behavior,theuniformmagnetizationisreetedbythe

square of the staggered magnetization, and

onven-tional saling is inoperative. This phenomenologial

modelwasshowntobeinonsistent[66℄whenall

avail-abledataareonsidered.

In ontrast, more proven and onventional

teh-niquesofanalyzingtheexperimentaldata,asdesribed

inthisreview,havebeenveryfruitfulinproviding

on-sistentresultsinameaningfulsalingontext.

It islear that thephasetransition underlying the

behaviorisobsuredbynonequilibriumbehaviorbelow

theboundary,T

eq

(H),lyingjust abovethephase

tran-sition and saling in the same manner, albeit with a

slightlylargeramplitude[67℄. Theequilibriumbehavior

aboveT

eq

(H)anbeusedtoextrapolatethesattering

datato theobsuredphasetransition boundary.

When done arefully, the boundary determined in

this way oinides with that determined via C

m

ex-periments, whih are muh less sensitive to the

non-equilibrium behaviorthatdistortstheneutron

satter-ing data. For a longtime, the nonequilibrium

experi-ments represented the best random-eld results

avail-able. Oneofthepartiularlyinterestingpreditions[31℄

of the hange in the ritial behaviorindued by the

random elds is that the order parameter ritial

ex-ponent should derease from 0:35 to a value near

zero. This an only be measured below T

(H), i.e.,

in the nonequilibrium region,soit wasnotlearwhat

would be observed. Experiments on thin lms were

made[68℄ forx =0:52, well belowx

e

0:76. Not

sur-prisingly, the results were peuliar. The urvature of

theBraggintensityversusT wassuhthatitwould

re-quire >> 0:5, whih is hardto justify theoretially.

Magnetix-raysatteringdatashowedsimilarbehavior

near surfaes inbulksamples, thoughtheywere

inter-preted under the \trompe l'oeil" phenomenology and

the Bragg sattering was notseparated from the

u-tuation sattering[65℄.

For some years it appeared that the problems of

metastability below T

eq

(H)ould notbeavoided,i.e.,

thattheywereintrinsitotherandom-eldbehavioras

realized in dilute antiferromagnets. However, insight

into the origins of the metastabledomains nally led

toexperiments[30℄athighmagnetionentrationasa

waytoavoidthenonequilibriumbehavior,asdisussed

below.

ThemetastabledomainsformeduponFCare

them-selvesquiteinterestingandtheirdynamiswerestudied

in some detailboth experimentally[69, 70, 71, 62, 72℄

VII RFIM behavior for x

p

< x <

x

e

at high elds.

The general phase diagram features, shown in Fig. 4

for the RFIM at high elds were investigated in

pio-neeringpulsed-eldmagnetizationmeasurements[76℄in

Fe

x Zn

1 x F

2

. Lowtemperaturesinglespinipsandthe

phaseboundaryareshownin Fig.5and,interestingly,

thebehaviorof the upper phaseboundaryappears to

be dierent for x < x

e

and x > x

e

. This is

onsis-tentwith thedierentiation ofthe behaviorsobserved

inneutronsatteringexperimentsaboveandbelowx

e .

Figure4. TheH T phasediagramforFexZn1 xF2

mea-suredinpulsedmagnetields. Theonentrationsfor the

alphabetilabelsaregiveninFig.5.

In reent years, it has beome lear that weak

RFIM (small applied eld) and strong RFIM regimes

exist for x

p

< x < x

e

. The Fe

0:31 Zn

0:69 F

2

system

exhibits[77℄ typial low-eld behavior for H < 1:5 T,

with T

N T

(H) and T

N T

eq

(H) saling as H 2=

with 1:4. At largerelds, however, theurvature

for T

N T

eq

(H) hanges to 3:4, a value lose to

that observed in spin glasses. Some of these features

weresuggestedqualitativelyin[78, 79℄.

Whilethelowerregionhasbeenshowntohave

anti-ferromagnetilong-rangeorderuponZFC[80℄,no

long-range antiferromagneti order is observed at higher

elds below T

eq

(H). Instead, spin-glass-like behavior

is observed. This is learly the same type of

behav-iorobserved for all elds at the perolation threshold

onentration[81℄. Thesametypeofdistintivelowand

(7)

Figure5. Low temperaturespinipsand phaseboundary

for Fe

x Zn

1 x F

2

as afuntion of x. Note that the phase

boundarybehaviorisquitedierentforx<xeandx>xe.

The two regions are separated by an equilibrium

boundary[82,83℄,asobservedforx=0:56(Fig.6)and

0:60, and it appears to derease towards the H = 0

boundaryat nite temperature well belowT

(H) and

approahthephasetransitionlineatniteeld,apoint

separating the sharp transition observed at low eld

and the more glassy transition at higher elds. This

also is onsistent[84℄ with spei heat peaks that are

very sharp at low elds and quite rounded at high

elds[85, 65℄.

Thedistintionbetweenhigh- andlow-eld

behav-iorisobservedaswellin asuseptibilityexperiments.

At low elds, there exists a single peak whih seems

to be assoiatedwith extremely slowdynamis, either

fromativateddynamisoratleastpower-lawbehavior

with a verylarge dynami exponent[86, 87℄. There is

littlehysteresisbetweentheZFCandFCproeduresat

lowH. Atlargereldsthepeaksplitsin theZFC

pro-edure only, with a sharp peak at slightly lower

tem-peratures than the broader peak[88, 84℄. This

split-ting appears to be assoiated with the upper region

of the phase diagram orresponding to spin-glass-like

behavior[84℄.

Theseeetshavenotbeeninvestigatedforx>x

p .

Thehigheldregionfortheseonentrationsisstillan

Figure6. TheH T phasediagramfor x=0:56showing

theupperequilibriumboundary,thephaseboundaryanda

lowerequilibriumboundary.

VIII d = 3 RFIM Equilibrium

Critial Behavior for x >

x

e

Itwas,ofourse,realizedveryearlythatthemetastable

domain wallsat lowmagnetionentrationstook

ad-vantageof vaanies. What was notfully appreiated

wasthattheImry-Madomainwallenergyargument[49℄

isnotappliablewhendomainwallsantoagreat

ex-tent passthrough vaanies, avoiding the energy ost

ofbreakingmagnetibonds. WithsuÆientvaanies,

i.e., for x < x

e

, domain walls an take advantage of

vaanies to suh an extent that the domain wall

en-ergy an be insigniant. Interestingly, every

experi-mentthatouldhavedetetedlowtemperature

hystere-sis,partiularlyneutronsatteringandapaitane[67℄

experiments, was done for x 0:72, whih is below

x

e

= 0:76. Higher onentrations were avoided sine

thegeneratedrandomeldsaresmall,resultinginquite

narrowasymptotirandom-eldritialregionsaround

T

(H). Nevertheless,onentrationswellabovex

e are

neessarytostudytheequilibriumritialbehaviorand

requirehighmagnetields andverynetemperature

resolution.

Fig. 2 shows the spei heat data for

Fe

0:93 Zn

0:07 F

2

, measured with optial linear

birefrin-gene. Thespei heat wasalsomeasuredto

demon-strate that, in agreementwith theory[3℄ and ontrary

to theso-alled`trompel'oeil'phenomenology[65℄, the

data from the both tehniques yield the same

(8)

the onentration gradients that tend to smear the

transition[29℄.

Interestingly, the ritial behavior appears to be

very similar to that of lower onentrations where

metastable domains dominate the sattering

behav-ior. The spei heat was studied using Monte Carlo

simulations[27℄basedontheFe

0:93 Zn

0:07 F

2

systemand

the resultsare shown in Fig. 3. Although the

simula-tionsarenotofsuÆientresolutiontoextratthe

rit-ialexponent,thesimilaritiesintheshapesofboththe

REIM andRFIMindiate thesamequalitativehange

fromtheasymmetriuspatH=0tothenearly

sym-metri peaks at H > 0. This result, however, is not

seeninallMC simulations[31℄.

The neutron sattering experiments[30℄ on

Fe

0:93 Zn

0:07 F

2

shownohysteresisbelowthephase

tran-sition, in stark ontrast with samples with x < x

e .

There is noevidene that domains form uponZFCor

FCinthisonentrationrangeandtheline shapesare

independentofthethermalylingproedure,implying

equilibrium onditions.

Neutronsatteringexperimentsonthissamplewere

diÆult to analyze sine the RFIM line shape is not

known from theory. In general, two dierent saling

funtions areinvolvedwiththeform

s (q)=A

2

f(q=)+B

4

g(q=) : (4)

with two independent sets of ritial behavior

expo-nents. However,simulations[22℄and hightemperature

series expansions[89℄ strongly suggest a simpler

se-nario. Thepreditionsarethattheexponentsare

sim-ply related,beingtwie, andthenewsaling

fun-tion g(q=) is, to a good approximation, the square

of f(q=). Not only were the universal RFIM

riti-alparametersobtainedinthisexperimentalstudy[30℄,

but the saling analysis yielded the spin-spin

orrela-tionsalingfuntion f(q=).

This saling funtion is ompared to several other

known spin-spin orrelation saling funtions in Fig.

1. Note that thed =3RFIM one seems thefurthest

away from the MF Lorentzian of all the examples for

T >T

(H),whereasforT >T

(H)thepured=2ase

is furtherthanthe d=3RFIM,thoughbothare very

farfrom MFbehavior.

Theritial parametersfortheRFIM withx >x

e

areshowninTable4.Certainlymoreeortisneededto

ompletetheexperimentalentriesandtond

reonili-ationbetweenthesimulationandexperimentalresults.

Note thatsomesets ofexponentsfromthesimulations

IX The Vaany Perolation

Threshold Conentration

Theregionsoflowtemperaturenonequilibrium

behav-iorandequilibriumbehaviorhavebeenshowntobe

sep-aratedat relativelysmall H byanearly vertialsharp

boundary at x x

e

= 0:755 in Fe

x Zn

1 x F

2 , using

Monte Carlostudies[90℄. Fig. 7shows simulationson

threedimensionallattieswithtwosublatties,eahof

sizeL 3

withL=64,modelledloselyafterFe

x Zn

1 x F

2 .

Hysteresis is observed upon FC and ZFC for x < x

e

butnotabove. Thehysteresisforx<x

e

inreasesfor

largerlattiesorslowerthermalyling, showingthat

itisnotsimplyanartifatofthesimulationsnotbeing

run long enough. The onentration dividing

equilib-rium and nonequilibrium behavior is very lose to or

equalto the vaany perolation threshold

onentra-tionx

e

=0:755. Apparently, the perolation vaany

struturefailitatestheformationofdomainwalls.

Tofurther investigatethis boundary, reent

exper-imentshavebeendone[91℄ onasamplewithx =0:76,

just above x

e

. No evidene of domains has been

ob-served for small H. Sine earlier experiments[67℄ for

x=0:72inFe

x Zn

1 x F

2

gavelearevidenefordomain

formation, inluding a reversal of the Bragg intensity

urvature just below T

(H) upon ZFC, the boundary

mustbe0:72<x

e

<0:76, in agreementwith theMC

simulations. Therehavebeennotheoretialstudies

re-portedexplainingtheexisteneornatureofthis

bound-ary.

Figure 7. Monte Carlo simulation data for the staggered

magnetizationversusTformagnetionentrations0:5,0:6,

0:7and 0:8. TheZFC andFCproeduresexhibit

hystere-sisfor the loweronentrations,whih onlygetsworsefor

(9)

X The Current Situation and

Outlook

Thereentmeasurementoftheequilibriumritial

be-haviorintherandom-eldIsingmodelhasside-stepped

the great diÆulties enountered in theinterpretation

of data below the transition that are obsured by

nonequilibrium phenomena in many studies at lower

onentrations.

Certainly, there is wide agreement that a phase

transition exists. Although experiments for x > x

e

are muh more diÆult sine the random-eld region

is verynarrow,theyarebeingdone. Interestingly,the

experimental results are not in agreement with muh

of thetheoryand simulationresults,unliketheREIM

and pure Ising model. A reliable haraterization of

ertain aspets of the d = 3 RFIM universality lass

behaviorremainstobeompleted. Thephasediagram

ofFe

x Zn

1 x F

2

hasproventobequiterihindetail. An

importantareaofthephasediagramforwhihagood

understanding is beingdeveloped is the largerandom

eld limit for x

p

< x < x

e

. With the the progress

being made along these twolines of inquiry, arather

ompleteexperimentalharaterizationoftheRFIMin

diluteantiferromagnetsseemsnearathand.

Reentwork hasbeensupportedbyDepartmentof

EnergyGrantNo. DE-FG03-87ER45324.

Referenes

[1℄ D.P.BelangerandA.P.Young,J.Mag.Mag.Mater.

100,272(1991);D.P.Belanger,in\SpinGlassesand

RandomFields",editedby A.P.Young,(World

Si-enti, Singapore, 1998), p.251; T. Nattermann, in

\SpinGlasses and Random Fields", edited by A. P.

Young,(WorldSienti,Singapore,1998),p.277.

[2℄ P.Nordblad,thisvolume.

[3℄ J.FerreandG.A.Gehring,Rep.Prog.Phys.47,513

(1984).

[4℄ D. P.Belanger, A. R.King and V.Jaarino, Phys.

Rev.B29,2636(1984).

[5℄ I.B.Ferreira, A.R.King,V.Jaarino, J.L. Cardy

andH.J.Guggenheim,Phys.Rev.B28,5192(1983).

[6℄ P.Nordblad,D.P.Belanger,A.R.King,V.Jaarino,

andH.Ikeda,Phys.Rev.B28,278(1983).

[7℄ R.A.Cowley,M.HagenandD.P.Belanger,J.Phys.

C17,3763(1984).

[8℄ D. P.Belanger andH. Yoshizawa, Phys.Rev.B 35,

4823(1987).

[9℄ H.B.TarkoandM.E.Fisher,Phys.Rev.B11,1217

(1975).

[10℄ M.E.FisherandR.J.Burford,Phys.Rev.156,583

[11℄ G.K.WertheimandD. N.E.Buhanan,Phys.Rev.

161478,(1967).

[12℄ L.Onsager,Phys.Rev.65,117(1944).

[13℄ D.P.Belanger,P.Nordblad,A.R.King,V.Jaarino,

L.LundgrenandO.Bekman,J.Magn.Magn.Mater.

31-34,1095(1983).

[14℄ M.Campostrini,A.Pelissetto,P.RossiandE.Viari,

ond-mat/9905078(1999).

[15℄ R. Guida and J. Zinn-Justin, J. Phys. A 31, 8103

(1998).

[16℄ E. Brezin,J.C.LeGuillouand J.Zinn-Justin,Phys.

Lett.A47,285(1974).

[17℄ E.S.Sorensen,ond-mat/0006233(2000).

[18℄ R.Folk,Yu.HolovathandT.Yavors'kii,Phys.Rev.

B61,15114(2000).

[19℄ M.Hagen,R.A.Cowley,R.M.NiklowandH.Ikeda,

Phys.Rev.B36,401(1987).

[20℄ V. S.. DotsenkoandV. S.Dotsenko,J. Phys.C 15,

495(1983);J.Phys.C15,L557(1983).

[21℄ Z.SlaniandD.P.Belanger,J.Magn.Magn.Mater.

186,65(1998).

[22℄ H.G.Ballesteros,L.A.Fernandez,V.Mart

in-Mayor,

A. M. Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo,

Phys.Rev.B 58,2740 (1998); alsoseeA. Pelissetto

and E. Viari, ond-mat/0002402 (2000) and D. V.

PakhninandA.I.Sokolov,ond-mat/9912071(1999).

[23℄ J.WangandD.P.Belanger, unpublished.

[24℄ S.A.Newlove,J.Phys.C16,L423(1983);C.

Bervil-lier and M. Shpot, Phys.Rev.B46, 955(1992); N.

A.Shpot,Sov.Phys.JETP71,989(1990).

[25℄ N. Rosov, A. Kleinhammes,P. Lidbjork, C.

Hohen-emser and M. Eibshutz, Phys. Rev. B 37, 3265

(1988).

[26℄ D. P.Belanger, A.R.King,and V.Jaarino, Phys.

Rev.B34,452(1986).

[27℄ W.C.BarberandD.P.Belanger,ICM2000.

[28℄ A.B.Harris,J.Phys.C7,1671 (1974).

[29℄ D.P.Belanger, A.R.King, I.B.Ferreira, andV.

Ja-arino,Phys.Rev.B37,226(1987).

[30℄ Z.Slani,D. P.BelangerandJ.A.Fernandez-Baa,

Phys.Rev.Lett.82,426(1999).

[31℄ H. Rieger, Phys.Rev.B 52,6659 (1995); H. Rieger

and A. P. Young, J. Phys. A 26, 5279 (1993); J.

Mahta, M. E. J.Newman and L. B.Chayes,

ond-mat/0006267(2000).

[32℄ U.Nowak,K.D.UsadelandJ.Esser,PhysiaA250,

1(1998).

[33℄ Theonlymeasurementisusingthedilationtehnique

atloweronentrationwherethesystemisnotin

equi-libriumbyC.A.Ramos,A.R.King,V.Jaarinoand

S.M.Rezende,J.dePhys.49,C8-1241(1988).

[34℄ M.F.SykesandJ.W.Essam,Phys.Rev.133,A310

(10)

[36℄ B.W.Southern,A.P.YoungandP.Pfeuty,J.Phys.

C12,683(1979).

[37℄ W.C. BarberandD. P.Belanger, Phys.Rev.B61,

8960 (2000).

[38℄ S. M. Rezende, F.C. Montenegro, M. D.

Coutinho-Filho,C.C.BeerraandA.Paduan-Filho,J.dePhys.

C8,1267 (1988).

[39℄ F. C.Montenegro, M. D. Coutinho-Filho and S.M.

Rezende,Europhys.Lett.8,382(1989).

[40℄ F. C. Montenegro, J. C. O. de Jesus, F. L. A.

Mahado, E. Montarroyos, and S. M. Rezende, J.

Magn.Magn.Mater.104-107,277(1992).

[41℄ F.C.Montenegro,U.A.Leit~ao,M.D.Coutinho-Filho

andS.M. Rezende,J.Appl.Phys.67,5243(1990).

[42℄ J.H.deAraujo,J.B. M.daCunha,A.Vasquez,L..

Amaral,J.T.Moro,F.C.Montenegro,S.M.Rezende

andM.D.Coutinho-Filho,Rev.Brasil.deFisia21,

115(1991).

[43℄ F. C. Montenegro, S. M. Rezende and M. D.

Coutinho-Filho,J.Appl.Phys.63,3755(1988).

[44℄ D. P. Belangerand H. Yoshizawa Phys. Rev.B 47,

5051 (1993).

[45℄ K. Jonason , C. Djurberg , P. Nordblad and D. P.

BelangerPhys.Rev.B56,5404(1997).

[46℄ E.P.Raposo,M.D.Coutinho-FilhoandF.C.

Mon-tenegro, Europhys. Lett. 29, 507 (1995); J. Magn.

Magn.154,L155(1996).

[47℄ E. P.Raposo andM. D. Coutinho-Filho,Phys.Rev.

B57,3495(1998).

[48℄ P.Barbosa,E.P.RaposoandM.D.Coutinho-Filho,

J.Appl.Phys.87,6531(2000).

[49℄ Y. Imry and S. K. Ma, Phys. Rev. Lett. 35, 1399

(1975).

[50℄ K.Binder, Z. Phys.B50, 343(1983); Phys.Rev.B

29,5184(1984).

[51℄ D. P.Belanger, A. R. Kingand V. Jaarino, Phys.

Rev.Lett.54,577(1985).

[52℄ A.R.King,V.Jaarino,M.Motokawa,K.Sugiyama

andM.Date,J.Appl.Phys.57,3297(1985).

[53℄ W. Kleemann , Ch. Jakobs , Ch. Binek and D. P.

Belanger, J.Magn.Magn.Mater.177,209(1998).

[54℄ D. P.Belanger, A. R. Kingand V. Jaarino, Phys.

Rev.B31,4538(1985).

[55℄ M. Staats, U. Nowak and K. D. Usadel, J. Magn.

Magn.Mat.177-181,85(1998).

[56℄ J.L.Cardy,Phy.Rev.B29,505(1984).

[57℄ S. Fishman and A. Aharony, J. Phys. C 12, L729

(1979).

[58℄ H.Rohrer,J.Appl.Phys.52,1708(1981).

[59℄ D.P.Belanger,A.R.KingandV.Jaarino,J.Appl.

Phys. 53, 2702 (1982); Phys. Rev. Lett. 48, 1050

(1982).

[60℄ D. P. Belanger, A. R. King, V. Jaarino and J. L.

[61℄ H. Yoshizawa, R. A. Cowley, G. Shirane, R. J.

Bir-geneau,H. J.Guggenheimand H.Ikeda, Phys.Rev.

Lett.48,438(1982).

[62℄ U.A.Leit~aoandW.Kleemann,Phys.Rev.B29,505

(1984);Phys.Rev.B35,8696(1987).

[63℄ A.Aharony,Europhys.Lett.1,617(1986).

[64℄ I.B.Ferreira,A.R.King,V.Jaarino,Phys.Rev.B

43,10797(1991);J.Appl.Phys.69,5246(1991).

[65℄ R.J.Birgeneau,Q.Feng,Q.J.Harris,J.P.Hill,A.P.

Ramirez,T.R.Thurston, Phys.Rev.Lett. 75,1198

(1995);Phys.Rev.Lett.77,2342(1996).

[66℄ D.P.Belanger,W.KleemannandF.C.Montenegro

,Phys.Rev.Lett.77,2341 (1996).

[67℄ A.R. King,V. Jaarino, D. P.Belanger andS.M.

Rezende,Phys.Rev.B32,503(1985).

[68℄ D.P. Belanger, J.Wang, Z. Slani,S-J. Han,R.M.

Niklow, M. Lui, C. A. Ramos and D. Lederman,

Phys.Rev.B54,3420 (1996).

[69℄ M.Lederman, J.V. Selinger, R.Bruinsma, J.

Ham-manandR.Orbah,Phys.Rev.Lett.68,2086(1992).

[70℄ U.A. Leit~ao,W.Kleemannand I.B.Ferreira,Phys.

Rev.B38,4765 (1988).

[71℄ P. Pollak, W. Kleemann and D. P. Belanger, Phys.

Rev.B38,4773 (1988).

[72℄ J.Mattsson,C.DjurburgandP.Nordblad,Phys.Rev.

B61,11274 (2000).

[73℄ U.Nowak andK.D. Usadel, Phys.Rev.B44,7426

(1991);Phys.Rev.B46,8329 (1992); Phys.Rev.B

43,851(1991).

[74℄ S-J.HanandD.P.Belanger, Phys.Rev.B46,2926

(1992).

[75℄ S-J. Han, D. P. Belanger, W. Kleemann and U.

Nowak,Phys.Rev.B45,9728 (1992).

[76℄ A. R. King, V. Jaarino, T. Sakakibara, M.

Mo-tokawa and M. Date, J. Magn. Magn. Mat. 31-34,

1119(1983);Phys.Rev.Lett.47,117(1981).

[77℄ F.C.Montenegro,A.R.King,V.Jaarino,S.-J.Han

andD.P.Belanger,Phys.Rev.B44,2155(1991).

[78℄ C.M.Soukoulis, G.S.Grest,C.RoandK.Levin,J.

Appl.Phys.57,3300(1985).

[79℄ J.R.L.deAlmeidaand R.Bruinsma,Phys.Rev.B

35,7267(1987).

[80℄ D.P.Belanger,Wm.Murray,F.C.Montenegro,A.R.

KingandV.Jaarino,Phys.Rev.B44,2161(1991).

[81℄ K.Jonason, P.Nordblad and F.C. Montenegro,

un-published.

[82℄ F.C.Montenegro,K.A..Lima,M.S.Torikahviliand

A.H.Laerda,J.Magn.Magn.Mater.177-181,145

(1998);IsingCentennialColloquium.

[83℄ F.C.Montenegro,K.A.Lima,M.S.Torikahviliand

A. H. Laerda, in: Proeedings ofthe Fourth Latin

AmerianWorkshoponMagnetism, Magneti

(11)

Mate-[84℄ A.Rosales-Rivera,J.M.FerreiraandF.C.

Montene-gro, Europhys. Lett. 50, 264 (2000); ICM2000

pro-eedings.

[85℄ J. Satooka, H. Aruga Katori, A. Tobo and K.

Kat-sumata,Phys.Rev.Lett.81,709(1988).

[86℄ A. R. King, J. A. Mydosh and V. Jaarino, Phys.

Rev.Lett.56,2525 (1986).

[87℄ A.E.Nash,A.R.KingandV.Jaarino,Phys.Rev.

B43,1272(1991).

[88℄ Ch.Binek,S.KuttlerandW.Kleemann,Phys.Rev.

Lett.75,2412(1995).

[89℄ M. Gofman,J. Adler,A. Aharony,A.B. Harrisand

M.Shwartz,Phys.Rev.B53,6362(1996).

[90℄ W.C.BarberandD.P.Belanger, J.Appl.Phys.87,

7049(2000).

[91℄ W. C. Barber, F. Ye, D. P. Belanger and J. A.

Imagem

Table 2 are the results from a few theoretial and sim-
Figure 2. Cm vs. T for Fe0:93Zn0:07F2 at H = 7 T as deter-
Table 2. The pure d = 2 and d = 3 Ising stati ritial exponents obtained from experiments, theory and Monte
Table 4. The d = 3 RFIM Ising stati ritial exponents obtained from experiments, simulations and theory.
+4

Referências

Documentos relacionados

body transverse Ising model with random bonds and elds. The ouplings and the magneti elds are

transition in suh a model, and study the orresponding ritial temperature as the spin value ande. the

the master equation on the phase spae, and the evolution of loal and global spin autoorrelation.. funtions, in terms of independent relaxation modes, whih are eigenvetors of the

We propose an improvement of a Monte Carlo method designed to treat the Ising model in a

universality lass at the ritial point marking

We alulate the spatial and temperature dependenes of various spin orre-.. lation funtions, as well as the wave-vetor dependene of the spin suseptibility for

relations has been applied to obtain the time evolution of a non-ommuting spin

The kineti Ising model on an n-isotopi hain is onsidered in the framework of Glauber dynamis.. The hain is omposed of N segments with n sites, eah one oupied by a