• Nenhum resultado encontrado

Rev. Bras. Hematol. Hemoter. vol.37 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. Bras. Hematol. Hemoter. vol.37 número5"

Copied!
6
0
0

Texto

(1)

w w w . r b h h . o r g

Revista

Brasileira

de

Hematologia

e

Hemoterapia

Brazilian

Journal

of

Hematology

and

Hemotherapy

Review

article

Myeloproliferative

neoplasms

and

the

JAK/STAT

signaling

pathway:

an

overview

Renata

Mendes

de

Freitas

,

Carlos

Magno

da

Costa

Maranduba

UniversidadeFederaldeJuizdeFora(UFJF),JuizdeFora,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30June2014 Accepted19October2014 Availableonline9June2015

Keywords:

Hematologicneoplasms Januskinase2

STATtranscriptionfactors JAK2V617Fmutation

a

b

s

t

r

a

c

t

Myeloproliferativeneoplasmsarecausedbyaclonalproliferationofahematopoietic progen-itor.Firstdescribedin1951as‘MyeloproliferativeDiseases’andreevaluatedbytheWorld HealthOrganizationclassificationsystem in2011,myeloproliferativeneoplasmsinclude polycythemiavera,essentialthrombocythemiaandprimarymyelofibrosisinasubgroup calledbreakpointclusterregion-Abelsonfusiononcogene-negativeneoplasms.According toWorldHealthOrganizationregardingdiagnosiscriteriaformyeloproliferativeneoplasms, thepresenceoftheJAK2V617Fmutationisconsideredthemostimportantcriterionin thediagnosisofbreakpointclusterregion-Abelsonfusiononcogene-negativeneoplasms andisthususedasaclonalmarker.TheV617FmutationintheJanuskinase2(JAK2)gene producesanalteredproteinthatconstitutivelyactivatestheJanuskinase/signal transduc-ersandactivatorsoftranscriptionpathwayandotherpathwaysdownstreamasaresultof signaltransducersandactivatorsoftranscriptionwhicharesubsequentlyphosphorylated. Thisaffectstheexpressionofgenesinvolvedintheregulationofapoptosisandregulatory proteinsandmodifiestheproliferationrateofhematopoieticstemcells.

©2015Associac¸ãoBrasileiradeHematologia,HemoterapiaeTerapiaCelular.Published byElsevierEditoraLtda.Allrightsreserved.

Introduction

Myeloproliferativeneoplasms(MPNs)areclonaldisordersof hematopoietic stem cells, in which there is an increased proliferation ofthe myeloid lineage with effective matura-tionresultinginperipheralbloodleukocytosis,andincreased redbloodcellmass;theseneoplasmscanprogressto fibro-sis or leukemic transformation. The MPNs are a group of diseases that include polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF),

Correspondingauthorat:RuaAristótelesBraga,125,SãoPedro,JuizDeFora,MG,Brazil.

E-mailaddress:renata.mendes@ioc.fiocruz.br(R.M.deFreitas).

which are collectively known asbreakpointcluster region-Abelson fusion oncogene (BCR-ABL)-negative neoplasms. These threediseases share commonclinical features,such asproliferationofhematopoieticstemcellsindependentof growthfactors,bonemarrowhypercellularity,increasedrisk ofthromboticeventsandhemorrhages.1–4

Studiescarriedoutin2005identifiedabnormalitiesinthe functioning of the Janus kinase 2 (JAK2) protein which is expressedbytheJAK2gene.Here,asensemutationatexon 14 ofthe JAK2gene (g.1849 G>T)5,6 resultsin the

substitu-tion ofavalineforaphenylalanine atposition617located

http://dx.doi.org/10.1016/j.bjhh.2014.10.001

(2)

inthepseudokinaseJH2domain.Itisresponsiblefor consti-tutivelyactivatingtheJAK/signaltransducersandactivators oftranscription(STAT)signalingpathwayandotherpathways downstream.TheJAK2V617Fmutationoccursatafrequency of95%inPVandof55–60%inETandPMF.5–10

Myeloproliferative

neoplasms

Dameshek1 carried out the first classification of

Myelo-proliferative Diseases in 1951. However, the World Health Organization(WHO)classificationsystempublishedin2011 introducedanewclassificationoftumorsofhematopoietic and lymphoid tissue and changed the term to ‘myelopro-liferative neoplasms’. The MPNs include chronic myeloid leukemia(CML),PV, PMF,ET,chronic neutrophilicleukemia (CNL), chronic eosinophilic leukemia (CEL), mast cell dis-ease (MCD) and unclassified myeloproliferative neoplasms (MPN-u).11–13 CML is characterized by the presence of the

Philadelphiachromosome(Ph)resultingfromatranslocation betweenchromosomes9and22.Theresultinghybridgene, BCR-ABL,encodesa proteinof210kDa, displayingtyrosine kinaseactivityandaffectsgrowthandcelldifferentiation.14

In addition to their common features, PV is character-izedprimarilybyanincreaseinredbloodcellproduction,ET forexcessiveproductionofplatelets,andPMFfor morpho-logicalchangesinmegakaryocytesand thedevelopmentof monocytes thatlead tothe secretion ofangiogenicfactors responsibleforpromotingfibrosisinthebonemarrow.15

Table1presentstheMPNtypes,theincidencesandclinical aspectsofeach.

InadditiontotheJAK2gene,workscarriedoutsince2005 havefoundothermutationsincandidategenes,includingthe

myeloproliferativeleukemia(MPL),ten-eleventranslocation2(TET2) amemberoftheTEToncogenefamily,additionalsexcomb-like 1(ASXL1),CasitasB-lineagelymphoma(CBL),isocitrate dehydro-genase(IDH)andIKAROSfamilyzincfinger1(IKZF1)genes,all identifiedwithinthegroupofBCR-ABL-negativeneoplasms. MutationsintheJAK2andMPLencodergenesseemtohave greatereffectandaremoreassociatedwithPV,ETandPMF withfrequenciesaround95%,55%and60%forJAK2and0%, 0.3%and10%forMPL.16

ThefunctionalconsequencesofthesemutationsinMPNs include disruptionofthe JAK/STAT signaling pathway, epi-genetic modulation of transcription as well as abnormal accumulationofoncoproteins.However,itisstillunclearhow alltheseabnormalitiescontributetowarddiseaseonsetand clonalevolutionofcells.16

Pathogenesis

of

myeloproliferative

neoplasms

In the literature, some evidence suggests that phenotypic characteristics observed inMPNs are caused due to disor-dersinthehematopoieticcellsignalingprocess.Ithasbeen reportedthathematopoieticprogenitorsarehypersensitiveto severalgrowthfactorsinPV,ETandPMF,17 andthat

abnor-malmyeloproliferationinpatientswithMPNsoriginatesfrom constitutiveactivationofsignaltransductionpathways.These arecausedbygeneticrearrangementsormutationsthataffect tyrosinekinasesorassociatedmolecules.18Basedonthisand

otherevidence,someresearchgroupsstartedtoworkwiththe hypothesisthatalterationsinthefunctionoftheJAK2protein couldberelatedtoMPNs,sincethisproteinismainly respon-siblefortheactivationofmoleculesinvolvedincellsignaling processesandredbloodcellproduction.19

Table1–Myeloproliferativeneoplasms.

Incidence(cases/100,000inhabitants/year) Clinicalaspects

CML 1.5–1.3men:1woman Leukocytosis,splenomegaly,weakness,tiredness.

PV 0.7–2.6 Headache,tiredness,dizzinessandsweating.About40%ofpatientspresent

pruritus(attributedtoanincreaseinhistamineandmastcellsintheskin), and33%displaythromboticevents(strokes,Budd-Chiarisyndrome, myocardialinfarction,pulmonaryembolismordeepvenousthrombosis). Bleedinghasalsobeendocumentedin25%ofcases.

PMF 0.5–1.5 25%ofpatientsareasymptomatic.Therestpresentsecondarysymptoms

suchasanemia,splenomegaly,hypermetabolicstate(weightloss,night sweatsorfever),extramedullaryerythropoiesis,bleeding(gastrointestinal tracthemorrhage),osseousabnormalities(jointpainorosteosclerosis),and portalhypertension(ascites,gastricoresophagealvarices,hepatic encephalopathy,portalorhepaticveinthrombosis).

ET 1–2 Athirdtoaquarterofpatientsaresymptomaticand25–48%show

splenomegaly.Vasomotorsymptoms,characterizedbyheadache,syncope, atypicalchestpain,anderythromelalgia(burningofhandsorfeetassociated withrednessandheat)areobservedinabout40%ofcases.

CNL Rare Theincidenceaswellastheetiologyisunknown.Itaffectstheelderly. Splenomegaly,hepatomegalyandmucosalorgastrointestinalbleedingare present.Itisadiseasewithaslowlyprogressiveclinicalcourse.

CEL 9men:1womanaffected About10%ofpatientsarediagnosedbychancesincetheyareasymptomatic. Symptomssuchasfever,fatigue,cough,angioedema,musclepain,pruritus anddiarrheaarecommon.Anemia,thrombocytopenia,mucosalulceration, endomyocardialfibrosisandsplenomegalyarealsocommon.Peripheral neuropathy,centralnervoussystemdysfunctionandpulmonarysymptoms mayalsobepresent.

(3)

TheJanuskinase2gene

The JAK2 gene, located on chromosome 9p24 in humans, includes25 exonsencodingaproteinofabout 1132amino acids.ThisproteinisnamedJAK2anditisamemberofthe Januskinase(JAK)family.Fourmembersofthisfamilyhave alreadybeenidentified:JAK1,JAK2,JAK3andTyk2.20

In2005,thediscoveryoftheJAK2mutation(JAK2V617F) expandedtheknowledgeaboutthepathogenesisof BCR-ABL-negativeneoplasms.Amissensemutationatpositiong.1849 withaguanine-thyminetransversion(g.1849G>T)5,6was

iden-tifiedinexon14oftheJAK2gene.Thismutationresultsinthe substitutionofvalineforphenylalanineataminoacidposition p.617,5affectingthepseudokinasedomain(JH2)oftheprotein.

TheJAK2V617FmutationispresentinmostpatientswithPV andinasubgroupofpatientswithETandPMF(∼95%inPV,

50–60%inETand50–60%inPMF).5–9,19

It has been shown that the JAK2 V617F mutation causes genetic instability in gene expression by induc-ing changes in the chromatin structure and by reducing the apoptotic response to DNA damage. These are mech-anisms that can increase the accumulation of genetic lesionsleadingtomalignanttransformations.12Besidesthe

g.1849 G>T (p.V617F) mutation,5,6 other mutations were

found in exon 12 in 2007 namely: p.N542-543del, p.E543-D544del,p.K539L,p.F537-K539delinsL,p.H538-p.K539delinsL, p.H538QK539L, p.V536-1546dup11, p.F537-1546dup10+F547L, p.R541E543delinsK-and-p.I540E543delinsMK.21–23Thesewere

foundtoshowlowfrequenciesofabout3–4%inPVpatients. Therearevalidtechniquesthatdetectthesemutationsand theiractivesearchisjustifiednotonlyduetotheabsenceof theexon14mutation,butalsoinpatientsthathave erythro-cytosisandinthosewithlowlevelsoferythropoietin.24

TheJanuskinase2protein

MembersoftheJAK2proteinfamilyhavesevenhomologous domains(JH)thatarenumberedfrom1to7.TheJH1domain acts as a kinase domain, which contains the adenosine triphosphate(ATP)-bindingandsignalingpathwayactivation regions.TheJH2domainisapseudokinasethatishomologous totheJH1domain.Itlackscatalyticactivityduetoa substitu-tionofanaspartateresidueinthecatalyticloop(His–Arg–Asp– HRDmotif).JH2hasaninhibitoryfunctionthatregulatesboth thebasalactivityofJAKandthecytokine-inducedactivation byinteractingwiththeactivesite,JH1,blockingATPand/or substratesbindingtothecatalyticsite.25–27

Mutationsin exon 12 ofJAK2 are found in the binding regionoftheSrchomology2(SH2)andJH2domains.Although notdirectlylocatedintheJH2domain,thesemutationsmay modifythestructureofthepseudokinasedomain,inducing erythropoietinhypersensitivitysimilartothatcausedbythe JAK2p.V617Fmutation.5,9,28,29

TheJanuskinase2/signaltransducersandactivatorsof transcriptionsignalingpathway

Signalingreceptors

Cytokines from the hematopoietic system include inter-leukins (ILs), colony stimulating factors (CSFs), interferon

(INF), erythropoietin (EPO) and thrombopoietin (TPO) all of which activate the signal transduction of the JAK/STAT signalingpathway.30,31 Mostofthesereceptorsarepartofa

typeI-homodimerreceptorfamily,thatincludesthe erythro-poietin(EPO-R)andthrombopoietin(TPO-R)receptors.32

Thetype Ireceptoris specificallyexpressedduring ery-throid and myeloid differentiation and its expression may account for the preferential activity of JAK2 V617F over myeloid lineage cells rather than lymphoid lineage cells, whichlackthistypeofreceptor.32

Janus

kinases

JAKsareassociatedwiththeintracellulardomainsofcytokine receptors; they show intrinsic kinase activity mediated through their band-4.1 protein, ezrin, radixin, and moesin (FERM)andSH2domainsandarekeptinaninactivestatein theabsenceofspecificreceptor-activatingligands.33,34

Cytokine binding leads to a conformational change of thereceptor,cytoplasmicallyaffectingassociatedJAKs, caus-ingactivationandphosphorylation.Phosphorylatedtyrosine residues in JAKs actas binding sitesfor the SH2 domains in signaling molecules. Mutations in JAK2 generate con-stitutive activation of the JAK/STAT pathway, mainly in STAT3 and STAT5. In addition to ‘hot spot’ mutations, constitutive activation of tyrosine kinases also occurs by chromosomal translocation, deletion and tandem duplica-tion,whicharecommonpathogeniceventsinhematopoietic malignancies.10,27,31–35

TheSTATsarelocatedinthecytosoland migratetothe nucleus,regulatinggenetranscriptiononlyuponactivation. OnceassociatedwiththephosphorylatedsitesofJAK,these STATsalsophosphorylateanddimerize.26

DimerizedSTATsmigratetowardthenucleus,wherethey act as transcription factors, activating or repressing genes thatareimportantincellproliferationandsurvival.Someof thesegenesincludethosethatexpresscyclinsaswellas anti-apoptotic proteins.36 STAT dimers also activate genes that

encodeinhibitoryproteinsthatcontributetowardthe termi-nation ofcellularresponse.Someoftheseproteinsbindto phosphorylated JAKsand inactivate them,as well as their associated receptors. Others bind to phosphorylated STAT dimersandstopthemfrombindingtotheirtargetgene.37

JAK/STAT-mediatedsignalingcontrolmechanismsinclude dephosphorylationofJAKandSTAT.Thisiscausedbyan inhi-bition triggeredbysuppressorsofcytokinesignaling(SOCS) proteins,thelymphocyteadaptorprotein(LNKalsoknownas SH2B3)andCBL.30,32

NegativeregulationoftheJanuskinase2/signal transducersandactivatorsoftranscriptionpathway

(4)

threePIAS:SOCS,CBLandLymeneuroborreliosis(LNB) pro-teins.

SOCSproteinsareafamilyofcytokinesignaling suppres-sorsoftheJAK/STATpathway,characterizedbythepresenceof anamino-terminaldomainthatisvariableinsize.Itincludes aninhibitorydomain,aSH2domainandacarboxy-terminal domain called SOCS box. Currently, there are eight mem-bersin this family, namely: SOCS1, SOCS2, SOCS3, SOCS4, SOCS5,SOCS6,SOCS7andCIS.Undernormalconditions,they areexpressedatlowlevelsinunstimulatedcellswhiletheir expressionincreaseswhenSTATsareactivated.30,31,38

SOCS can inhibit the JAK/STAT signaling through two mechanisms: (1)inhibitionofJAK2 kinase activity by com-petingwiththeSTATsSH2domainsforbindingsitesinthe cytoplasmicdomainofthereceptoror(2)proteasomal degra-dationofsignalingproteinsbybindingtotheJH1domainof JAK2,inhibitingtheactivationofallotherJAK/STAT-associated pathways.39

SomemutationsindifferentSOCShavebeenidentifiedin MPNs,butarerarelyfound.HypermethylationofCpGislands in SOCS1 and SOCS3 is associated with a decrease in the expressionoftheseregulatorsinp.V617F-positivePVandET patients.5,10

Other important components of this negative regula-torycomplexincludemultifunctionalproteinswithubiquitin ligaseactivity, suchas CBL.CBL is usuallyinvolved inthe negativefeedbackoftyrosine kinase receptorsby competi-tiveblockingsignaling.Itinducesproteasomaldegradationof tyrosinekinasesactivatedbyubiquitination.AllCBLhave sin-gledomainproteinsthatrecognizesphosphorylatedtyrosine residuesthatarepresentonactivatedtyrosinekinases.10,40

LNK,includedintheSH2Bproteinfamily,negatively reg-ulatestheactivityofJAK2bybindingtoSH2-phosphorylated tyrosine.ItalsoregulatesthesignalingofTPO-RandEPO-R, anditisdetectedinbothJAK2V617F-positiveand-negative patients.10IncreasedLNKdeficiencyincreasestheoncogenic

ability of JAK2 to expand myeloid progenitors in vitro and

invivo.41

MutationintheJanuskinase2geneandchangesin proteinfunction

InadditiontoactivatingtheJAK/STATpathway,thep.V617F mutation5 also constitutively activates the rat sarcoma

(RAS)/Mitogen-activated proteinkinases (MAPK) and phos-phoinositide3-kinase(PI3K)/proteinkinaseB(PKB,akaAkt) pathways,whichresultsinanincreasedexpressionofmitotic proteins,regulatoryproteinsfromthecellularcycle[cyclins D1, CDC25A (cell division cycle)] and anti-apoptotic genes [B-celllymphoma-extra-large(Bcl-XL)andBcl2].These abnor-malitiesinvolvingtheJAK/STATandrelatedpathwaysresult inproliferationofaffectedcells(Figure1).10

In mutated cells, down-regulation becomes inadequate and/or inefficient. SH2 domains, normally present in PIAS proteins,cannotdephosphorylateJAK2.Inaddition,the anti-apoptotic mechanismsareexpressedatmuchhigherlevels thannormal.Anacquiredmutationinoneoftheseregulatory proteinscantriggeranexacerbatedactivationofSTAT,evenin theabsenceofspecificmutationsinJAK2.42

Additional molecular events appear to interfere with the activity of JAK2, such as cytogenetics, which increase

EPO-R

Linker

Extracellular

Intracellular

JAK2 JAK2

P13K

Akt

CORE

DNA

STAT

socs JAK2

JAK2 JAK2

JAK2

P P PP P P

P

P P

P P

P P

P P

P

STAT3,

STAT5

Negative feedback

SOCS, Bcl-xl, p21, MYC etc

Promoter

Figure1–Signalingpathwaysactivatedbycytokinereceptorbinding.PI3K,AktandSTATareactivatedafterthe

(5)

the kinase activity of the protein, the regulatory ability ofphosphorylasesandSOCS proteins,polymorphisms,and mutationsincytokinereceptors.43

Questionsaboutthedifferentphenotypesin

BCR-ABL-negativemyeloproliferativeneoplasmsandthe V617Fmutation

AfurtherintriguingquestionforresearchersregardingMPNs ishowthesame mutationcantriggerthreephenotypically differentdiseases.Thereisstillnoclearunderstandingofthe molecularmechanismsinvolvedintheprocess,just hypothe-ses.Oneofthemisthedose–responsegenehypothesis,which isassociatedwithallele load.Anotheristhattheremaybe epigeneticchangesthatpredisposethepatient’sorganismto developcertain MPNs aswell as changes ingenes specific inthedevelopmentofmalignancies,aswellasmutationsin othersignalingpathwaysthatmightaffectsignalingin regu-latoryproteins.16

For Kralovics et al., Plo et al., Smith & Fan, Cross and Pagliarini,26,44–47thephenotypeofthediseaseisrelatedtothe

conceptofallelicload.Thus,lowlevelsofmutantalleleswould resultinETphenotype,whilehigherlevelsofmutatedalleles wouldleadtoaphenotypesimilartoPV.Thesehigherlevelsof mutatedallelesinhematopoieticstemcellscouldbe associ-atedwiththepatient’shomozygouscondition,causedbyloss ofheterozygosity,asexplainedbythetheoryofuniparental disomy.48

Presumably,homozygosity confersaproliferative advan-tageoverothercells,whichpresentonlyonemutatedallele, increasingtheactivitylevelofthetyrosinekinasegenerated bythe mutatedJAK2.PatientswithETandPMFaremostly heterozygousandseldomshowhomozygosity.48

Besidestheassociationbetweenphenotypeand homozy-gosity/heterozygosity,thereare otherhypothesesthat have attempted to correlate the different phenotypes observed relatedtotheJAK2V617Fmutation.

Intheirstudy,Ploetal.45discussthegene-dose

hypothe-sis,whichpostulatesthattheJAK2mutationcanbeastarting pointforthethreepathologies.Theyalsodiscussthe exist-enceofothergeneticeventsthatcanmodifytheJAK2kinase activity,whichmayexplaintheheterogeneitypresentin clas-sicMPNs.Severalmechanismshavebeenproposedtoaidthe understandingoflossofheterozygosityand/orthepresence ofnewgeneticabnormalities,includingthedouble-stranded breakrepairmechanismsinDNA,homologousrecombination andnon-homologousendjoining.Alltheseleadtogenomic instability,whichhighlightshowessentialtheprecise regula-tionofthesemechanismsisforthemaintenanceofgenome stabilityanddiversity.49–51

AccordingtoMascarenhas et al.52 biological eventsthat

leadtotheinitiationandprogressionofMPNsarelinkednot onlytoacquisitionofgeneticmutationssuchasJAK2V617F. Theyarealsoduetoepigeneticchangesthatdonotaffectthe primaryDNAsequence,butthegeneexpressionresponsible forchromatinremodeling.Deregulationofmodulation pro-cessesbetweennucleosomesmayresultinsilencingoftumor suppressoraswellasdifferentiationgenes,promotingcell sur-vivalbyblockingapoptosis andsenescence,contributingto malignanttransformation.Theresearchersalsohighlighted

twocategoriesofepigeneticalterationsinMPNs:(1)changes inthegenesthatencodeproteinsinvolvedinremodelingof thechromatinstructure,suchastheTET2,ASXL1,JAK2genes, amongothers,and(2)changesinthepromotersiteofgenes essential for cell survival, differentiation and proliferation. Besides its role insignaling,the JAK2 V617Fmutationalso affects chromatin structure byblocking the recruitment of repressorproteins.9

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

r

e

f

e

r

e

n

c

e

s

1.DameshekW.Editorial:somespeculationsonthe myeloproliferativesyndromes.Blood.1951;6(4):372–5.

2.SpivakJL,BarosiG,TognoniG,BarbuiT,FinazziG,MarchioliR, etal.Chronicmyeloproliferativedisorders.HematolAmSoc HematolEducProgr.2003;2003(1):200–24.

3.FinazziG,BarbuiT.HowItreatpatientswithpolycythemia vera.Blood.2007;109(12):5104–11.

4.HaferlachT,BacherU,KernW,SchnittgerS,HaferlachC.The diagnosisofBCR/ABL-negativechronicmyeloproliferative diseases(CMPD):acomprehensiveapproachbasedon morphology,cytogenetics,andmolecularmarkers.Ann Hematol.2008;87(1):1–10.

5.denDunnenJT,AntonarakisSE.Mutationnomenclature extensionsandsuggestionstodescribecomplexmutations:a discussion.HumMutat.2000;15(1):7–12.

6.VainchenkerW,DelhommeauF,ConstantinescuSN,Bernard OA.Newmutationsandpathogenesisofmyeloproliferative neoplasms.Reviewarticle.Newmutationsandpathogenesis ofmyeloproliferativeneoplasms.Blood.2011;118(7):1723–35.

7.VannucchiAM,AntonioliE,GuglielmelliP,RambaldiA,Barosi G,MarchioliR,etal.ClinicalprofileofhomozygousJAK2 617V>Fmutationinpatientswithpolycythemiaveraor essentialthrombocythemia.Blood.2007;110(3):840–6.

8.TefferiA.Thehistoryofmyeloproliferativedisorders:before andafterDameshek.Leukemia.2008;22(1):3–13.

9.JonesAV,ChaseA,SilverRT,OscierD,ZoiK,WangYL,etal. JAK2haplotypeisamajorriskfactorforthedevelopmentof myeloproliferativeneoplasms.NatGenet.2009;41(4):446–9.

10.GäblerK,BehrmannI,HaanC.JAK2mutants(e.g.,JAK2V617F) andtheirimportanceasdrugtargetsinmyeloproliferative neoplasms.JAKSTAT.2013;2(3):e25025.

11.VardimanJW,ThieleJ,ArberDA,BrunningRD,BorowitzMJ, PorwitA,etal.The2008revisionoftheWorldHealth Organization(WHO)classificationofmyeloidneoplasmsand acuteleukemia:rationaleandimportantchanges.Blood. 2009;114(5):937–51.

12.KiladjianJJ.ThespectrumofJAK2-positivemyeloproliferative neoplasms.HematolAmSocHematolEducProgr.

2012;2012:561–6.

13.KimHR,ChoiHJ,KimYK,KimHJ,ShinJH,SuhSP,etal.Allelic expressionimbalanceofJAK2V617Fmutationin

BCR-ABL-negativemyeloproliferativeneoplasms.PLoSONE. 2013;8(1):e52518.

14.ChauffailleML.Neoplasiasmieloproliferativas:revisãodos critériosdiagnósticosedosaspectosclínicos.RevBras HematolHemoter.2010;32(4):308–16.

(6)

16.FreitasRM,SantosMO,MarandubaCM.TheJAK2geneasa protagonistinchronicmyeloproliferativeneoplasms.Rev BrasHematolHemoter.2013;35(4):278–9.

17.AxelradAA,EskinaziD,CorreaPN,AmatoD.Hypersensitivity ofcirculatingprogenitorcellstomegakaryocytegrowthand developmentfactor(PEG-rHuMGDF)inessential

thrombocythemia.Blood.2000;96(10):3310–21.

18.RöderS,SteimleC,MeinhardtG,PahlHL.STAT3is constitutivelyactiveinsomepatientswithPolycythemia rubravera.ExpHematol.2001;29(6):694–702.

19.KaushanskyK.Thechronicmyeloproliferativedisordersand mutationofJAK2:Dameshek’s54yearoldspeculationcomes ofage.BestPractResClinHaematol.2007;20(1):5–12.

20.YamaokaK,SaharinenP,PesuM,HoltVEIII,SilvennoinenO, O’SheaJJ.TheJanuskinases(Jaks).GenomeBiol.

2004;5(12):253–6.

21.CazzolaM.SomaticmutationsofJAK2exon12asamolecular basisoferythrocytosis.Haematologica.2007;92(12):1585–9.

22.WilliamsDM,KimAH,RogersO,SpivakJL,MoliternoAR. PhenotypicvariationsandnewmutationsinJAK2 V617F-negativepolycythemiavera,erythrocytosis,and idiopathicmyelofibrosis.ExpHematol.2007;35(11):1641–6.

23.LaughlinTS,MoliternoAR,SteinBL,RothbergPG.Detection ofexon12mutationsintheJAK2geneenhancedanalytical sensitivityusingclampedPCRandnucleotidesequencing.J MolDiagn.2010;12(3):278–82.

24.KjærL,WestmanM,HasselbalchRileyC,HøgdallE,Weis BjerrumO,HasselbalchH.Ahighlysensitivequantitative real-timePCRassayfordeterminationofmutantJAK2exon 12alleleburden.PLoSONE.2012;7(3):e33100.

25.SchaferAI.Molecularbasisofthediagnosisandtreatmentof polycythemiaveraandessentialthrombocythemia.Blood. 2006;107(11):4214–22.

26.SmithCA,FanG.ThesagaofJAK2mutationsand translocationsinhematologicdisorders:pathogenesis, diagnosticandtherapeuticprospects,andrevisedWorld HealthOrganizationdiagnosticcriteriaformyeloproliferative neoplasms.HumPathol.2008;39(6):795–810.

27.UngureanuD,WuJ,PekkalaT,NiranjanY,YoungC,Jensen ON,etal.ThepseudokinasedomainofJAK2isa

dual-specificityproteinkinasethatnegativelyregulates cytokinesignaling.NatStructMolBiol.2011;18(9):971–6.

28.LakeyMA,PardananiA,HoyerJD,NguyenPL,LashoTL, TefferiA,etal.Bonemarrowmorphologicfeaturesin polycythemiaverawithJAK2exon12mutations.AmJClin Pathol.2010;133(6):942–8.

29.IkedaK,OgawaK,TakeishiY.TheroleofHMGA2inthe proliferationandexpansionofahematopoieticcellin myeloproliferativeneoplasms.FukushimaJMedSci. 2012;58(2):91–100.

30.YoshimuraA,NakaT,KuboM.SOCSproteins,cytokine signallingandimmuneregulation.NatRevImmunol. 2007;7(6):454–65.

31.TamiyaT,KashiwagiI,TakahashiR,YasukawaH,Yoshimura A.Suppressorsofcytokinesignaling(SOCS)proteinsand JAK/STATpathways:regulationofT-cellinflammationby SOCS1andSOCS3.ArteriosclerThrombVascBiol. 2011;31(5):980–5.

32.MorganKJ,GillilandDG.AroleforJAK2mutationsin myeloproliferativediseases.AnnuRevMed.2008;59:213–22.

33.TanAY,WestermanDA,DobrovicA.Asimple,rapid,and sensitivemethodforthedetectionoftheJAK2V617F mutation.AmJClinPathol.2007;127(6):977–81.

34.GariM.TheroleofJanusKinase2(JAK2)inthe pathologenesisofmyeloproliferativedisorders.JKing AbdulazizUnivMedSci.2009;16(1):3–19.

35.WalzC,CrossNC,VanEttenRA,ReiterA.Comparisonof mutatedABL1andJAK2asoncogenesanddrugtargetsin myeloproliferativedisorders.Leukemia.2008;22(7):1320–34.

36.FiskusW,GangulyS,KambhampatiS,BhallaKN.Roleof additionalnoveltherapiesinmyeloproliferativeneoplasms. HematolOncolClinNAm.2012;26(5):959–80.

37.HaricharanS,LiY.STATsignalinginmammarygland differentiation,cellsurvivalandtumorigenesis.MolCell Endocrinol.2014;382(1):560–9.

38.KhwajaA.TheroleofJanuskinasesinhaemopoiesisand haematologicalmalignancy.BrJHaematol.

2006;134(4):366–84.

39.HookhamMB,ElliottJ,SuessmuthY,StaerkJ,WardAC, VainchenkerW,etal.Themyeloproliferative

disorder-associatedJAK2V617Fmutantescapesnegative regulationbysuppressorofcytokinesignaling3.Blood. 2007;109(11):4924–9.

40.NaramuraM,NadeauS,MohapatraB,AhmadG, MukhopadhyayC,SattlerM,etal.MutantCblproteinsas oncogenicdriversinmyeloproliferativedisorders.Oncotarget. 2011;2(3):245–50.

41.JiangQ,SongC,NangreaveJ,LiuX,LinL,QiuD,etal.DNA origamiasacarrierforcircumventionofdrugresistance.J AmChemSoc.2012;134(32):13396–403.

42.RawlingsJS,RoslerKM,HarrisonDA.TheJAK/STATsignaling pathway.JCellSci.2004;117Pt8:1281–3.

43.PerrottaS,CucciollaV,FerraroM,RonzoniL,TramontanoA, RossiF,etal.EPOreceptorgain-of-functioncauseshereditary polycythemia,altersCD34+celldifferentiationandincreases

circulatingendothelialprecursors.PLoSONE. 2010;5(8):e12015.

44.KralovicsR.Geneticcomplexityofmyeloproliferative neoplasms.Leukemia.2008;22(10):1841–8.

45.PloI,NakatakeM,MalivertL,deVillartayJP,GiraudierS, VillevalJL,etal.JAK2stimulateshomologousrecombination andgeneticinstability:potentialimplicationinthe

heterogeneityofmyeloproliferativedisorders.Blood. 2008;112(4):1402–12.

46.CrossNC.Geneticandepigeneticcomplexityin

myeloproliferativeneoplasms.HematolAmSocHematol EducProgr.2011;2011:208–14.

47.Pagliarini-e-SilvaS,SantosBC,PereiraEM,FerreiraME, BaraldiEC,SellAM,etal.Evaluationoftheassociation betweentheJAK246/1haplotypeandchronic

myeloproliferativeneoplasmsinaBrazilianpopulation. Clinics(SaoPaulo).2013;68(1):5–9.

48.ScottLM,RebelVI.JAK2andgenomicinstabilityinthe myeloproliferativeneoplasms:acaseofthechickenorthe egg?AmJHematol.2012;87(11):1028–36.

49.KilpivaaraO,LevineRL.JAK2andMPLmutationsin myeloproliferativeneoplasms:discoveryandscience. Leukemia.2008;22(10):1813–7.

50.PassamontiF,RumiE.ClinicalrelevanceofJAK2(V617F) mutantalleleburden.Haematologica.2009;94(1):7–10.

51.ShihAH,Abdel-WahabO,PatelJP,LevineRL.Theroleof mutationsinepigeneticregulatorsinmyeloidmalignancies. NatRevCancer.2012;12(9):599–612.

Imagem

Table 1 presents the MPN types, the incidences and clinical aspects of each.
Figure 1 – Signaling pathways activated by cytokine receptor binding. PI3K, Akt and STAT are activated after the

Referências

Documentos relacionados

Severe iron deficiency Anemia of chronic disease Sideroblastic anemia Lead poisoning Juvenile myelomonocytic leukemia Acquired Hb H disease Acute myeloid leukemia (some

donors with absent reactivity in the screening test, and if the results are weakly positive, the donors must be classified as RhD-positive in order to prevent anti-D alloimmunization

Previously, 167 first-degree relatives pertaining to sporadic (non-familial) chronic lym- phocytic leukemia families were studied and the presence of seven monoclonal

Incidence of alpha thalassemia, Factor V Lieden, Prothrombin gene mutation and determination of haplotypes of beta globin gene in children with sickle cell disease diagnosed by

The results of this study showed that 70 samples (1.43%) previously typed as RhD negative by the tube test presented weak reactivity in gel cards using anti-D IgG (clone ESD1) and

This study evaluated the risk factors for low hematocrit and iron depletion among prospective blood donors in a large Brazilian blood center.. Method: A case–control study of

To predict the clinical significance of anti-Wr a , the mono- cyte monolayer assay (MMA) was performed as previously described 9 in two samples with anti-Wr a classified as IgG1 and

Os recursos humanos são considerados como um dos elementos essenciais na organização no processo produtivo da empresa. Assim, o desenvolvimento dos recursos humanos terá como