• Nenhum resultado encontrado

Effects of induced osteoporosis on bone tissue of rats with experimental periodontitis

N/A
N/A
Protected

Academic year: 2018

Share "Effects of induced osteoporosis on bone tissue of rats with experimental periodontitis"

Copied!
7
0
0

Texto

(1)

Effects

of

glucocorticoid-induced

osteoporosis

on

bone

tissue

of

rats

with

experimental

periodontitis

Luzia

Hermínia

Teixeira

Sousa

a

,

Eveline

Valeriano

Moura

a

,

Ana

Larissa

Queiroz

b

,

Danielle

Val

c

,

Hellíada

Chaves

a,b

,

Mario

Lisboa

d

,

Flávia

Furlaneto

e

,

Gerly

Anne

Brito

d,f

,

Paula

Goes

a,g,

*

aPost-graduationProgramofHealthScience,MedicalSchool,FederalUniversityofCeará

–Sobral,AvenidaComandanteMaurocelioRochaPontes,100

-Derby,Sobral,CE,62.042-280,Brazil

bSchoolofDentistry,FederalUniversityofCeará

–Sobral,R.Cel.EstanislauFrota–Centro,Sobral,CE,62.010-560,Brazil

cPostGraduationProgramRENORBIO,FederalUniversityofPernambuco,Av.ProfessorMoraisRego,1235

–CidadeUniversitária,Recife,PE,50670-901,Brazil

dPost-graduationProgramofMorphologicalScience,DepartmentofMorphology,MedicalSchool,FederalUniversityofCeará

–Fortaleza,RuaDelmirode

Farias,s/n–RodolfoTeófilo,Fortaleza,CE,60.430-170,Brazil

eDepartmentofOral&MaxillofacialSurgeryandPeriodontology,RibeirãoPretoSchoolofDentistry,UniversityofSãoPaulo,Av.doCafé,s/n

–VilaAmelia,

RibeirãoPreto,SãoPaulo,14050-904,Brazil,Brazil

fDepartmentofMorphology,MedicalSchool,FederalUniversityofCeará

–Fortaleza,RuaDelmirodeFarias,s/n–RodolfoTeófilo,Fortaleza,CE,CEP

60.430-170,Brazil

gDepartmentofPathologyandLegalMedicine,MedicalSchool,FederalUniversityofCeará

–Fortaleza,RuaMonsenhorFurtado,S/N–RodolfoTeófilo,

Fortaleza,CE,60.441-750,Brazil

ARTICLE INFO

Articlehistory:

Received31March2016

Receivedinrevisedform4January2017 Accepted17January2017

Keywords:

Periodontitis Osteoporosis Glucocorticoids Alveolarboneloss

ABSTRACT

Objective:Toevaluatetheeffectsofosteoporosisinducedbyglucocorticoid(GIOP)onbonetissueofrats withexperimentalperiodontitis(EP).

Design:48maleWistarratsdividedintogroups:Naïve,EP,GIOPandGIOP+EP.RatsofGIOPandGIOP+EP groupsreceived7mg/kgofdexamethasoneintramuscularlyonceaweekfor5weeks.Following,EPand GIOP+EP groups were subjected to ligature-induced periodontitis. Naïve group experienced no manipulation.After11days,theanimalswereeuthanizedandleftmaxillaecollectedformacroscopic, radiographic,micro-tomographicandmicroscopicanalysisofalveolarboneloss(ABL).Bloodsamples werecollected fordetermination ofbone-specific alkalinephosphatase (BALP)levelsand theright femurswereremovedforradiographicandbiomechanicalanalysis.

Results:EPcausedABLandreducedBALPlevels(p< 0,05),butitdidnotchangethearchitectureor biomechanicsoffemur,comparedtoNaïve.GIOPdidnotcauseABL,butitsignificantlydecreasedalveolar bonemineraldensity(ABMD),bonepercentageandtrabecularthickness(Tb.Th)andincreasedalveolar boneporosity(p< 0.05)andsignicantlyreducedBALPserumlevels,aswellasradiographicdensityand Young’smoduleoffemur,comparedtoNaïve.TherewasagreaterABLingroupGIOP+EPwhencompared toEP(p< 0.05).GIOP+EPcausedagreaterdecreaseonABMD,Tb.Th,bonepercentageandincreased bone porosity (p< 0.05) and also presented a significant reduction in BALP levels (p< 0.05), in radiographicdensityandinYoung’smoduleoffemurcomparedtoEP(p< 0.05).

Conclusions:GIOPcanpotentiatethedestructiveeffectsofEPonalveolarboneandalterthesystemic boneloss,bypromotingboneresorptionandreducingosteoblastactivity.

©2017ElsevierLtd.Allrightsreserved.

1.Introduction

Periodontitisisaninfectious-inflammatoryandhighly

preva-lentdisease,characterizedbydestructionofconnectivetissueand

alveolar bone loss(ABL),and itis consideredthesecondmajor

cause of tooth loss (Tatakis and Kumar, 2005). This disease is

mainlyinitiatedbyoralbiofilm,howeverthedevelopmentofan

* Corresponding author at: Federal University of Ceará – Department of Pathologyand LegalMedicine, Medical School, Rua Monsenhor Furtado,s/n 60441–750,RodolfoTeófilo,Fortaleza/CE,Brazil.

E-mailaddress:paulagpinheiro@yahoo.com.br(P.Goes).

http://dx.doi.org/10.1016/j.archoralbio.2017.01.014

0003-9969/©2017ElsevierLtd.Allrightsreserved.

ContentslistsavailableatScienceDirect

Archives

of

Oral

Biology

(2)

alteredhostresponseplaysanimportantroleontissuebreakdown (Pihlstrom,Michalowicz,&Johnson,2005).

Osteoporosisis acommondiseasecharacterizedbysystemic

bone loss and impaired bone microarchitecture. It can be a

consequenceofhormonalimbalanceinpostmenopausalwoman

(Jilka,Hangoc,Girasole,Passeri,&Williams,1992),butitalsocan

presentasecondarycause,mainlyasaresultoftheuseofsome

drugs, such as Glucocorticoids (GCs). Glucocorticoid-induced

osteoporosis (GIOP) is the most common cause of secondary

osteoporosis,thefirstcausebefore50yearsofageand thefirst

iatrogenic cause of the disease (Kok & Sambrook, 2009). In

addition,consideringthecontinuousraiseontheprevalenceofGCs

useinthecommunitypopulation(Overman,Yeh,&Deal,2013),it

seems interesting to understand the biological mechanisms

underlyingGIOP.

Intherecentdecades,numerousstudieshavefocusedonthe

associationbetweenosteoporosisand periodontitisat thebone

level.The majorityof thestudieshasfocused ontheeffects of

postmenopausalosteoporosisonthelossof periodontal

attach-ment (Hernández-Vigueras et al., 2015; Juluri et al., 2015).

However,littleisknownabouttheeffectsofGIOPonperiodontal

tissues.OnestudyshowedthatGCscaninduceanalveolarbone

lossinlong-term(28days)treatedmice(Bouvard,Gallois,Legrand,

Audran,&Chappard,2013)andanotheronereportedareductionof

bonedensityintheregionofinteralveolarsepta,insignificantbone

tissuelossofthehorizontaltypeandpathologicalteethmobilityin

periodontal tissues of patients with systemic osteoporosis

(Dmitrieva, Atrushkevich, & Pikhlak, 2006). There is no study

evaluatingtheeffectofGIOPwhentheperiodontalinflammationis

present.Inthiscontext,weaimedtoevaluatetheeffectsofGIOPon

bonetissueofratswithexperimentalperiodontitis.

2.Materialandmethods

2.1.Animalsandstudydesign

Theexperimentswereperformedonforty-eightyoungadult

male(fromtwolitters)Wistarrats(Rattusnorvegicus)fromcentral

AnimalFacilityofFederalUniversityofCeará,weighing180–220g,

keptinappropriatecageswithsixanimalseach.Theanimalswere

housed in standard conditions (12h light-dark cycles and

temperature-controlledrooms)withfood andwater adlibitum.

Theprotocolsforexperimentalproceduresandanimaltreatment

wereapprovedbyAnimalEthicsCommittee(number78/2014)of

FederalUniversityofCeará,Brazil.

Apowercalculationwas performedtodeterminethesample

size.Theanimalwasconsideredthestudyunit.Thesamplesize

wasdeterminedtoprovide80%powertorecognizeasignificant

differenceof20%amonggroupsandthestandarddeviationof15%

witha95%confidenceinterval(p=0.05),consideringthechangein

alveolar bone loss (ABL) as the primary outcome variable.

Therefore,asamplesizeof6ratspergroupwasrequired.

Aftertwoweeksofacclimationtothelaboratoryenvironment,

theratsweredivided,inablindmanner,intofourgroups(n=6):

Naïve, Experimental Periodontitis (EP), Glucocorticoid-induced

osteoporosis(GIOP)and GIOP+EP.Initially, rats fromGIOPand

GIOP+EPgroupsreceivedinjectionsof7mg/kgofdexamethasone

(Decadron,Aché1

–Guarulhos,SP,Brazil)intramuscularly,oncea

weekfor5weeks(Lucindaetal.,2012),andtheonesfromEPgroup

received0.5ml of0.9%salinesolution.Following,theratswere

anesthetized with 100mg/ml ketamine (Cetamin – Syntec1

SantanadeParaíba,SP,Brazil)and 20mg/mlxylazine(Xilazin–

Syntec1

–SantanadeParaíba,SP,Brazil)onthedoseof1ml/kg

intramuscularly.In ordertoinduceperiodontitis ratsof EPand

GIOP+EP groups received a sterile nylon thread ligature (3-0;

polysutureNP45330–SãoPaulo, SP,Brazil)aroundthecervical

areaoftheirmaxillaryleftsecondmolars (Bezerraetal.,2000;

Samejima, Ebisu, & Okada, 1990). After 11 days, all rats were

euthanizedwith20mg/kgthiopental(0.5gThiopentax;Cristália,

SãoPaulo,SP,Brazil).RatsofNaïveandGIOPgroupsdidnotreceive

theligature.RatsfromNaïvegroupexperiencednomanipulation.

Itwasperformed2studieswithparallelexperimentalgroups,one

formacroscopicandbiochemicalanalysesandtheotheronefor

microscopicevaluation.

2.2.Macroscopic,radiographicandmicro-computedtomographic(CT) analysesofalveolarbone

Formacroscopicanalysis,theexcisedmaxillaewerefixedin10%

neutralformalinfor24h.Hemi-maxillaewerethendefleshedand

stainedwith1%aqueousmethyleneblueinordertodifferentiate

bonefromteeth.Thentheywereplacedonmicroscopeslidesand

photographed.Theareaofalveolarboneloss(ABL)wasmeasuredby

atrainedandblindedobserver(LHTS),usinganimagingsoftware

(ImageJ1NationalInstitutesofHealth,Washington,DC,USA),as

previouslydescribed(Goes,Lima,Melo,Rego,&Lima,2010).

Thesamespecimensusedformacroscopicstudywere

radio-graphedusingadigitalsystem(DigoraSoredexDigitalSystem1,

Portslade-EastSussex, UK).Thespecimens wereposedoverthe

sensorandtheradiographicimageswereacquiredusing63kVp,

8mA,exposuretimeof0.06sandfocaldistanceof30mm.Bone

mineral density of the maxillae were evaluated using Image J

software,aspreviouslydescribed(Goesetal.,2010).

Thesamenon-demineralizedspecimenswerethenscannedby

a cone beam micro-CTsystem (Skyscan 1172, Bruker, Kontich,

Belgium). The x-ray generator was operated at an accelerated

potentialof50kVwithabeamcurrentof200

m

Aandanexposure

timeof560msperprojection.Imageswereproducedwithavoxel

size of 666

m

m. Using an appropriated software (Data

Viewer1,version1.5.0,Bruker,Kontich,Belgium),thegenerated

3 dimensionalmodelswererotatedintoa standard positionas

describedpreviously(Lisboaetal.,2015).Linearmeasurementsof

ABL were performedat 3 differentsites: buccal,furcation and

interproximal. For the interproximal site, coronal dataset was

analyzed using appropriated software (CT-Analyser1, version

1.13.5.1+,Bruker,Kontich,Belgium)(Lisboaetal.,2015).Volumetric

analyseswereperformedusingthesamesoftwareappliedforthe

analysisoftheinterproximalsite,aspreviouslydescribed(Lisboa

etal.,2015).Bonemineraldensity(BMD),bonepercentage,bone

porosity, and trabecular thickness (Tb.Th) were assessed. All

micro-CTanalyseswereperformedbyoneblindedandcalibrated

examiner(MRPL).

2.3.Microscopicanalysisofalveolarbone

Anothersetofexperimentwasperformedforhistopathological

analysis. After the euthanasia of the rats, the maxillae were

removed and fixed in 10% neutral buffered formalin and

demineralized in 10% EDTA buffered solution. After complete

decalcification,thespecimensweredehydratedandembeddedin

paraffin. Serial sections,4

m

mthick,wereobtainedina

mesio-distaldirection.Thesectionswerestainedwithhematoxylinand

eosin.Sectionsrepresentingtheareabetweenthefirstandsecond

molarswereevaluatedbylightmicroscopy(40magnification).

TheparametersanalyzedwerebasedonthestudybyLeitãoetal.

(2005),using scoresvaryingfrom0 to3.The histopathological

analysiswasperformedbyacertifiedhistologist(GACB).

2.4.Serumlevelsofbone-specificalkalinephosphatase(BALP)

Bloodsampleswerecollectedfromtheorbitalplexus atthe

11thdayaftertheinductionofperiodontitis.Bone-specificalkaline

(3)

phosphatase (BALP), a thermosensible isoform of total alkaline

phosphatase, was evaluated using a thermoactivation method

(Whitby & Moss,1975). The samples wereheated to 56C for

10min. Serumlevelsof BALPwerecalculatedby thedifference

betweenheated alkalinephosphatase fromtotal alkaline

phos-phataseinserum(Labtest1

–LagoaSanta,MG,Brazil)(Goes,Melo,

Dutra,Lima,&Lima,2012;Goesetal.,2014).

2.5.Biomechanicaltestingandradiographicdensityoffemur

Therats’rightfemurswerecollectedaftereuthanasiaandfixed

in10%formaldehyde(ReagenProdutosparaLaboratóriosLtda1

Rio de Janeiro, RJ, Brazil) for 24h. The specimens were

radio-graphedusingDigoraSoredexSystem1(DentalImagingCompany

Ltd,Portslade-EastSussex,UK)withthesameparametersusedfor

themaxillae.TheseimageswereevaluatedbyImageJ1software.A

regionofinterest(ROI)wascreatedmeasuring0.50.5mm,inthe

formof a square, with473229pixels, and was posed in the

proximalfemurdiaphysis,and thesameevaluatordrewallROI

panels. Grey tone differences were considered the value of

radiographicdensity.

The same non-demineralized femurs were analyzed in a

materialstestingmachine(InstronE10000,InstronCorporation–

Norwood, MA, USA), using a three-point bending procedure.

Femurswerecompresseduntilfailureata displacementrateof

3mm/min (span=20mm)withthe anteriorside down,and all

forceanddisplacementdatawererecordeduntilthespecimenwas

broken.Young’smodulus(MPa) werecalculated,assumingthe

cross-sectional geometryof the femurs wereelipses (Xu etal.,

2014).

2.6.Statisticalanalysis

Thedataarepresentedasmeansstandarderrorsofthemeans

orasmedian(range),whenappropriate.Normalityand

homosce-dasticity of the data were verified. ANOVA followed by the

Bonferronitestwereusedtocomparethemeans,and Kruskal–

WallisandDunn testswereusedtocomparethemedians.The

significancelevelwassetat5%inalltests.Allcalculationswere

performedusingPrism5(GraphPadSoftwareInc.,SanDiego,CA,

USA).Allprotocolsandanalyseswereperformedbyblindedand

calibratedexaminers.

3.Results

3.1.Macroscopic,radiographicandmicro-computedtomographic(CT) analysesofalveolarbone

Onthemacroscopicanalysisofhemimaxillae(Fig.1A),Naïve

group(Fig.1C)presentedABLclosetozero,i.e.Ligaturesforeleven

days caused a significant (p<0.05) ABL in group EP, which

presentedfurcationlesionsandrootexposure,whencomparedto

groupNaïve(Fig.1E).TheresponseoftheratstoGIOP(Fig.1G)was

similar to that of the rats of the Naïve group. However, rats

subjectedtoGIOP+EP(Fig.1I)showedgreater(p<0.05)ABLwhen

comparedtogroupEP.

The results of the radiographic density (RD) analysis of

hemimaxillae are depicted on Fig. 1B. Radiographs of EP rats

showedreductionofRDby19%(Fig.1F)(p<0.05)whencompared

toNaïvegroup(Fig.1D).Therewerenosignificantdifferencesin

theRDofhemimaxillaebetweengroupsGIOP(Fig.1H)andNaïve.

However, hemimaxillae of the rats subjected to GIOP+EP had

lowerRD,by12%(Fig.1J)whencomparedtoEPgroup(p<0.05).

Micro-CTanalysisoflinearandvolumetricparameterscanbe

observedinFig.2.Consideringthelinearmeasurements,EPgroup

showedincreasedABLatbuccal(Fig.2A),furcation(Fig.2B)and

interproximal (Fig. 2C) sites, when compared to Naïve group

(p<0.05). GIOP did not affect the alveolar bone level when

comparedtoNaïve(p>0.05).Ontheotherhand,GIOP+EPgroup

presentedagreaterincreaseofABLwhencomparedtoEPinall

three sites analyzed (p<0.05). The assessment of volumetric

parameters revealed that EP reduced BMD (Fig. 2D), bone

percentage (Fig. 2E), trabecularthickness (Tb.Th) (Fig. 2F) and

increasedboneporosity(Fig.2G)inrelationtoNaïvegroup.No

differenceswereobservedbetweenGIOPandEPgroups(p>0.05).

However,groupGIOP+EPpresentedlowerBMD,bonepercentage

and trabecular thicknessand greaterincrease in bone porosity

whencomparedtogroupEP(p<0.05).

Fig.1.A)MacroscopicandB)Radiographicdensityanalysisofthealveolarboneofrats.BarsrepresentthemeansSEMof6animalspergroup.#Signicantdifference

comparedtoNaïvegroup.*SignificantdifferencecomparedtoEPgroup(p< 0.05;ANOVAfollowedbyBonferroniTest).Macroscopicandradiographicimagesofhemimaxillae oftheanimalsfromNaïvegroup(CandD),EPgroup(EandF),GIOPgroup(GandH),andGIOP+EPgroup(IandJ).

(4)

3.2.Microscopicanalysisofalveolarbone

Periodontalhistopathologicanalysisoftheregionbetweenfirst

andsecondmolars of naïveratsshows thenormalstructure of

gingiva,periodontalligament(PDL),alveolarboneandcementum

(Fig. 3A). The periodontium of rats subjected to experimental

periodontitis(EPgroup)demonstratedaccentuatedinflammatory

cell infiltration, breakdown of alveolar bone, collagen fiber

derangementwithintheperiodontalligament,andresorptionof

cementum,receiving a medianscoreof 3(range,2–3)(Fig.3B;

Table1).TheperiodontaltissueoftheratssubjectedtoGIOPdid

notdemonstrateanychangeonthearchitecturecomparedwith

thenaïverats(Fig.3C;Table1).However,theratssubjectedto

GIOP+EP showed worse bone loss and inflammatoryinfiltrate

thangroupEP(Fig.3D;Table1).

3.3.SerumbiochemicalanalysisofBALP

Serum dosage of BALP was analyzed (Fig. 4). EP caused a

significantdecrease,by27%,onBALPserumlevels(21.642.48U/

L)whencomparedtoNaïve(29.525.14U/L;p<0.05).GIOPalso

causedareductionby41%(17.42.65U/L)onBALPserumlevels

compared to Naive (p<0.05). GIOP+EP group presented a

reductionby55% (13.252.11U/L)onBALPserum levelswhen

comparedtoEP(p<0.05).

3.4.Biomechanicaltestingandradiographicdensityoffemur

AssessingRDoffemur(Fig.5E),thoseratsundergoingonlyEP

(Fig.5B)showednosignificantdifferencewhencomparedtothe

ratsofNaïvegroup(Fig.5A).GIOPcausedasignificantreductionof

RDoffemur(Fig.5C)whencomparedtoNaïveandEPgroups.In

thegroupofratssubmittedtoGIOP+EP,therewasareductionof

RDof femur(Fig.5D)when compared toNaïve and EPgroups

(p<0.05).

We further checked the effects of GIOP and experimental

periodontitisonfemurbiomechanical properties(Fig.5F).After

11daysofligature,groupEPdidnotshowdifferenceonYoung’s

moduluswhencomparedtothefemursofNaïvegroup(p>0.05).

TherewasasignificantdecreaseinYoung’smodulusinthegroup

subjectedtoGIOPwhencomparedtoNaïvegroup,aswellasinthe

groupGIOP+EPwhencomparedtoEPgroup(p<0.05).

4.Discussion

Therehas beenan increase in the useof animal modelsin

studies of initiation and progression of bone diseases, such as

osteoporosis and periodontal disease. The ligature-induced

periodontitis model has been used extensively as a highly

Fig.2. Micro-CTanalysisoflinearandvolumetricparametersofthealveolarboneofrats.A)Buccalsite,B)Furcationsite,C)Interproximalsite,D)BoneMineralDensity (BMD),E)BonePercentage,F)TrabecularThickness(Tb.Th),G)BonePorosity.BarsrepresentthemeansSEMof6animalspergroup.#Signicantdifferencecomparedto

Naïvegroup.*SignificantdifferencecomparedtoEPgroup(p < 0.05;ANOVAfollowedbyBonferroniTest).

Fig.3. Microscopicanalysisoftheperiodontaltissuesintheregionbetweenthefirstandsecondmolarsofrats.A)Naïve,B)EP,C)GIOP,D)GIOP+EPgroups.Dentin(d); Cementum(c);AlveolarBone(ab);Gingiva(g);PeriodontalLigament(pdl).Inflammatoryinfiltrate(*)andboneresorption(!).Bars–500mm.Hematoxylin&eosin(H&E). (40magnification).

Table1

Histopathologicalanalysisoftheperiodontaltissuesofhemimaxillaeofrats.

Naïve EP GIOP GIOP+EP Histopathological

Analysis (Scores)

0(0–0)a 3(2

–3) 0(0–0) 3(3–3)a

Dataarepresentedasmedians(extremevalue).

EP=experimentalperiodontitis;GIOP=glucocorticoid-inducedosteoporosis;

a SignicantcomparedtoEP(KruskalWallisfollowedbyDunn

(5)

reproduciblemodelthatevaluatestheprogressionofperiodontitis (Bezerraetal.,2000;Goesetal.,2014;Leitãoetal.,2005).Aswith

humanperiodontitis,experimentallyinducedperiodontitisinrats

involves inflammatorycell recruitment with overproduction of

proinflammatory cytokinesand osteolytic enzymes,with

osteo-clast activation, and ultimately leads toalveolarbone and soft

tissueattachmentloss(Bezerraetal.,2000;Bezerra,Brito,Ribeiro,

&Rocha,2002;Goesetal.,2010;Goesetal.,2012,2014;Leitão etal.,2005;Limaetal.,2004;Lisboaetal.,2015;Messoraetal., 2016;Ozdemiretal.,2012;deLimaetal.,2000).Ontheotherhand,

consistentwithourfindings,thereisnoevidencethat

periodonti-tisbyitselfcanprovokesystemicboneloss(Xuetal.,2014).

Systemicriskfactorsmaydetermineaccelerationoftheonsetof

periodontaldiseases(Borrell&Papapanou,2005;Kornman,2008),

as well as increase in the rate of progression and severity of

periodontitis(Genco&Borgnakke,2013).Amongtheseriskfactors,

osteoporosisis consideredone ofthesix mainsystemic factors

(Genco & Borgnakke, 2013). Therefore, using reproducible

experimentalmodels,thepresentstudyinvestigatedtheinfluence

of glucocorticoid-induced osteoporosis on bone tissue of rats

subjectedtoexperimentalperiodontitisassessingdifferentaspects

ofthealveolarboneandfemuraswellastheosteoblasticactivity.

Osteoporosis is mainly caused by postmenopausal estrogen

deficiencyanditsassociationwithperiodontitisitwelldescribed

inliterature(Hernández-Viguerasetal.,2015;Julurietal.,2015).

However,osteoporosismayalsopresentasecondarycause,related

to the long-term use of glucocorticoids (GCs). Considering the

periodontaltissues,tothebestofourknowledge,thisthefirsttime

thattheeffectsofGIOPareevaluatedonexperimental

periodonti-tisinrats.

OurresultsshowedthatGIOPworsenstheABLinratswithEP.

GCsadverselyaffectbonetissueinanumberofways(Compston,

2010).Notably,afterinitiationofGCstherapy,thereisanearlyand

transient increase in bone resorptionin patients withmultiple

sclerosis(Dovioetal.,2004;Teitelbaum,2015).GCsincreasethe

expressionofthemacrophagecolonystimulatingfactor(M-CSF)

and RANKL, and decrease the expression of its soluble decoy

receptor, osteoprotegerin, in stromal and osteoblastic cells

(Canalis, Mazziotti, Giustina, & Bilezikian, 2007; Compston,

2010). It leads toosteoclastogenesis and a prolongation of the

lifespanofosteoclasts(Compston,2010).Inaddition,ithasbeen

reportedthat,wheninflammatorydisorderssuchasperiodontitis

arepresent,GCsmaypotentiatetheresorptiveprocess.Patients

with rheumatoid arthritis showed increased bone degradation

Fig.4.SerumbiochemicalanalysisofBALP.BarsrepresentthemeansSEMof6animalspergroup.#SignicantdifferencecomparedtoNaïvegroup.*Signicantdifference

comparedtoEPgroup(p< 0.05;ANOVAfollowedbyBonferroniTest).

Fig.5.Biomechanicaltestingandradiographicdensityanalysesofthefemurofrats.RadiographicimagesofthefemurofanimalsfromA)Naïvegroup,B)EPgroup,C)GIOP group,D)GIOP+EPgroup.E)RadiographicdensityoffemurandF)Young’smodulus(MPa)offemur.BarsrepresentthemeansSEMof6animalspergroup.#Signicant

(6)

duringthefirstthreemonthsoftherapywithGCswhencompared

tohealthyindividuals(Hall,Spector,Griffin,Jawad,Hall,&Doyle,

1993). This initial rapid and greater bone loss can reflect

persistenceof theprior effects ofinflammatory cytokines, such

as TNF-

a

and IL-1, as wellas the osteoclastic cytokine RANKL

(Teitelbaum, 2015). Therefore, these findings can explain the

greaterABLandtheworsemicroarchitectureofthealveolarbone

observedinGIOP+EPratsinthepresentstudy.

GIOP is characterized by increased apoptosisof osteoblasts.

Thereis evidence that GCs decreaseosteoblastogenesis, impair

osteoblastic differentiation and maturation and decrease the

number and function of osteoblasts (Canalis et al., 2007).GCs

alsofavorthedifferentiationofbonemarrowstromalcellstoward

cellsoftheadipocytelineageinsteadoftheosteoblasticlinageby

blockingWnt/

b

-cateninsignalingpathway(Canalisetal.,2007;

Compston,2010).Inaddition,whenassociatedwithinflammatory

bonedisorders,suchasperiodontitis,theosteoblasticactivitymay

alsobesuppressedinagreaterway(Algate,Haynes,Bartold,Crotti,

&Cantley,2016).TNF-

a

,IL-1,6and17canperturbtheWntand

bonemorphogeneticprotein(BMP)signalingpathways,leadingto

lowerosteoblastdifferentiationandactivity(Walsh&Gravallese,

2010). TNF-

a

can also induce osteoblasts apoptosis (Jilka,

Weinstein,Bellido,Parfitt,&Manolagas,1998;Wei,Kitaura,Zhou, Ross,&Teitelbaum, 2005).Thus, thesefindings can justify the

decreasein BALP serum levelsobserved inGIOP and GIOP+EP

groups,sinceBALPisahomodimericglycoproteinthatisanchored

tothemembraneofosteoblastsandconsequentlyitisconsidereda

general indicator of the bone formation rate in skeletal tissue

(Sardiwal,Magnusson,Goldsmith,&Lamb,2013).

5.Conclusion

Insummary,withinthelimitsofthepresentstudy,weconclude

thatGIOPcanpotentiatethedestructiveeffects ofexperimental

periodontitisonalveolarboneofratsandaltertheirsystemicbone

loss, by promoting bone resorption and reducing osteoblast

activity. Nevertheless, more studies are necessary in order to

betterunderstandthebiochemical mechanismsof GCsin bone

cellsduringinflammatoryconditions.

Conflictofinterests

Theauthorshavenoconflictofinteresttodisclose.

Fundings

ThisstudywassupportedbygrantsfromCNPqandFUNCAPand

bytheauthorsthemselves.

Ethicalapproval

Theexperimentalproceduresdescribedherewereapprovedby

theInstitutionalAnimalCareandUseCommittee(#78/2014)and

performed in accordance with the Animal Care Standards of

FederalUniversityofCeará.

Acknowledgments

The authors gratefully thank Socorro França Monte of the

DepartmentofMorphology,FacultyofMedicine,Federal

Universi-tyofCeará,Ceará,Brazil,fortechnicalassistance.

References

Algate,K.,Haynes,D.R.,Bartold,P.M.,Crotti,T.N.,&Cantley,M.D.(2016).The

effectsoftumournecrosisfactor-aonbonecellsinvolvedinperiodontal

alveolarboneloss;osteoclasts,osteoblastsandosteocytes.JournalofPeriodontal

Research,51(5),549–566.

Bezerra,M.M.,deLima,V.,Alencar,V.B.,Vieira,I.B.,Brito,G.A.,Ribeiro,R.A.,etal.

(2000).Selectivecyclooxygenase-2inhibitionpreventsalveolarbonelossin

experimentalperiodontitisinrats.JournalofPeriodontology,71(6),1009–1014.

Bezerra,M.M.,Brito,G.A.,Ribeiro,R.A.,&Rocha,F.A.(2002).Low-dosedoxycycline

preventsinflammatoryboneresorptioninrats.BrazilianJournalofMedicaland

BiologicalResearch,35(5),613–616.

Borrell,L.N.,&Papapanou,P.N.(2005).Analyticalepidemiologyofperiodontitis.

JournalofClinicalPeriodontology,32(Suppl.6),132158.

Bouvard,B.,Gallois,Y.,Legrand,E.,Audran,M.,&Chappard,D.(2013).

Glucocorticoidsreducealveolarandtrabecularboneinmice.JointBoneSpine,80

(1),77–81.

Canalis,E.,Mazziotti,G.,Giustina,A.,&Bilezikian,J.P.(2007).

Glucocorticoid-inducedosteoporosis:Pathophysiologyandtherapy.OsteoporosisInternational,

18(10),1319–1328.

Compston,J.(2010).Managementofglucocorticoid-inducedosteoporosis.Nature

ReviewsRheumatology,6(2),82–88.

Dmitrieva,L.A.,Atrushkevich,V.G.,&Pikhlak,U.A.(2006).Periodontaltissuesstate

inpatientswithsystemicosteoporosis.Stomatologiia(Mosk),85(5),17–19.

Dovio,A.,Perazzolo,L.,Osella,G.,Ventura,M.,Termine,A.,Milano,E.,etal.(2004).

Immediatefallofboneformationandtransientincreaseofboneresorptionin

thecourseofhigh-dose,short-termglucocorticoidtherapyinyoungpatients

withmultiplesclerosis.JournalClinicalEndocrinologyandMetabolism,89,4923–

4928.

Genco,R.J.,&Borgnakke,W.S.(2013).Riskfactorsforperiodontaldisease.

Periodontology2000,62(1),5994.

Goes,P.,Lima,A.P.S.,Melo,I.M.,Rego,R.O.,&Lima,V.(2010).Effectofatorvastatin

onligature-inducedperiodontitisinWistarrats:Radiographicandmacroscopic

analysis.BrazilianDentalJournal,21(3),193–198.

Goes,P.,Melo,I.M.,Dutra,C.S.,Lima,A.P.S.,&Lima,V.(2012).Effectofalendronate

onbone-specificalkalinephosphataseonperiodontalbonelossinrats.Archives

ofOralBiology,57(11),537–544.

Goes,P.,Melo,I.M.,Silva,L.M.C.M.,Benevides,N.M.B.,Alencar,N.M.,Ribeiro,R.A.,

etal.(2014).Low-dosecombinationofalendronateandatorvastatinreduces

ligature-inducedalveolarbonelossinrats.JournalofPeriodontalResearch,49(1),

45–54.

Hall,G.M.,Spector,T.D.,Griffin,A.J.,Jawad,A.S.,Hall,M.L.,&Doyle,D.V.(1993).

Theeffectofrheumatoidarthritisandsteroidtherapyonbonedensityin

postmenopausalwomen.ArthritisandRheumatism,36(11),1510–1516.

Hernández-Vigueras,S.,Martínez-Garriga,B.,Sánchez,M.C.,Sanz,M.,

Estrugo-Devesa,A.,Vinuesa,T.T.,etal.(2015).Oralmicrobiota,periodontalstatusand

osteoporosisinpostmenopausalwomen.JournalofPeriodontology,15,1–15.

Jilka,R.L.,Hangoc,G.,Girasole,G.,Passeri,G.,Williams,D.C.,Abrams,J.S.,etal.

(1992).Increasedosteoclastdevelopmentafterestrogenloss:Mediationby

interleukin-6.Science,257(5066),88–91.

Jilka,R.L.,Weinstein,R.S.,Bellido,T.,Parfitt,A.M.,&Manolagas,S.C.(1998).

Osteoblastprogrammedcelldeath(apoptosis):Modulationbygrowthfactors

andcytokines.JournalofBoneandMineralResearch,13(5),793–802.

Juluri,R.,Prashanth,E.,Gopalakrishnan,D.,Kathariya,R.,Devanoorkar,A.,

Viswanathan,V.,etal.(2015).Associationofpostmenopausalosteoporosisand

periodontaldisease:Adouble-blindcase-controlstudy.JournalofInternational

OralHealth,7(9),119–123.

Kok,C.,&Sambrook,P.N.(2009).Secondaryosteoporosisinpatientswithan

osteoporoticfracture.BestPractice&ResearchClinicalRheumatology,23(6),769–

779.

Kornman,K.S.(2008).Mappingthepathogenesisofperiodontitis:Anewlook.

JournalofPeriodontology,79(Suppl.8),15601568.

Leitão,R.F.,Ribeiro,R.A.,Chaves,H.V.,Rocha,F.A.,Lima,V.,&Brito,G.A.(2005).

Nitricoxidesynthaseinhibitionpreventsalveolarboneresorptionin

experimentalperiodontitisinrats.JournalofPeriodontology,76(6),956–963.

Lima,V.,Vidal,F.D.,Rocha,F.A.,Brito,G.A.,&Ribeiro,R.A.(2004).Effectsoftumor

necrosisfactor-alphainhibitorspentoxifyllineandthalidomideonalveolar

bonelossinshort-termexperimentalperiodontaldiseaseinrats.Journalof

Periodontology,75(1),162–168.

Lisboa,R.P.,Gondim,D.V.,Ervolino,E.,Vale,M.L.,Frota,N.P.,Nunes,N.L.,etal.

(2015).Effectsofelectroacupunctureonexperimentalperiodontitisinrats.

JournalofPeriodontology,86(6),801–811.

Lucinda,L.M.F.,Aaresturup,B.J.V.,Peters,V.M.,Reis,J.E.P.,deOliveira,R.S.M.F.,&

Guerra,M.O.(2012).TheeffectoftheGinkgobilobaextractintheexpressionof

bax,bcl-2andbonemineralcontentofWistarratswithglucocorticoid-induced

osteoporosis.PhytotherapyResearch,27(4),515–520.

Messora,M.R.,Pereira,L.J.,Foureaux,R.,Oliveira,L.F.,Sordi,C.G.,Alves,A.J.,etal.

(2016).FavourableeffectsofBacillussubtilisandBacilluslicheniformison

experimentalperiodontitisinrats.ArchivesofOralBiology,66,108–119.

Overman,R.A.,Yeh,J.Y.,&Deal,C.L.(2013).Prevalenceoforalglucocortidoidusage

intheUnitedStates:Ageneralpopulationperspective.ArthritisCare&Research,

65(2),294–298.

Ozdemir,S.P.,Kurtiş,B.,Tüter,G.,Bozkurt,Ş.,Gültekin,S.E.,Sengüven,B.,etal.

(2012).Effectsoflow-dosedoxycyclineandbisphosphonateclodronateon

alveolarbonelossandgingivallevelsofmatrixmetalloproteinase-9and

interleukin-1binratswithdiabetes:Ahistomorphometricand

immunohistochemicalstudy.JournalofPeriodontology,83(9),1172–1182.

Pihlstrom,B.L.,Michalowicz,B.S.,&Johnson,N.W.(2005).Periodontaldiseases?

Lancet,366(9499),1809–1820.

(7)

Samejima,Y.,Ebisu,S.,&Okada,H.(1990).EffectofinfectionwithEikenella

corrodensontheprogressionofligature-inducedperiodontitisinrats.Journalof

PeriodontalResearch,25(5),308–315.

Sardiwal,S.,Magnusson,P.,Goldsmith,D.J.,&Lamb,E.J.(2013).Bonealkaline

phosphataseinCKD-mineralbonedisorder.AmericanJournalofKidneyDisease,

62(4),810–822.

Tatakis,D.N.,&Kumar,P.S.(2005).Etiologyandpathogenesisofperiodontal

diseases?DentalClinicsofNorthAmerica,49(3),491–516.

Teitelbaum,S.L.(2015).Glucocorticoidsandtheosteoclast.ClinicalandExperimental

Rheumatology,33(4(Suppl.92)),37–39.

Walsh,N.C.,&Gravallese,E.M.(2010).Boneremodelinginrheumaticdisease:A

questionofbalance.ImmunologicalReviews,233(1),301–312.

Wei,S.,Kitaura,H.,Zhou,P.,Ross,F.P.,&Teitelbaum,S.L.(2005).IL-1mediates

TNF-inducedosteoclastogenesis.JournalofClinicalInvestigation,115(2),282–290.

Whitby,L.G.,&Moss,D.W.(1975).Analysisofheatinactivationcurvesofalkaline

phosphataseisoenzymesinserum.ClinicaChimicaActa,59(3),361–367.

Xu,X.C.,Chen,H.,Zhang,X.,Zhai,Z.J.,Liu,X.Q.,Qin,A.,etal.(2014).Simvastatin

preventsalveolarbonelossinanexperimentalratmodelofperiodontitisafter

ovariectomy.JournalofTranslationalMedicine,12,284.

deLima,V.,Bezerra,M.M.,deMenezesAlencar,V.B.,Vidal,F.D.,daRocha,F.A.,de

CastroBrito,G.A.,etal.(2000).Effectsofchlorpromazineonalveolarboneloss

inexperimentalperiodontaldiseaseinrats.EuropeanJournalofOralScience,108

(2),123–129.

Imagem

Fig. 1. A) Macroscopic and B) Radiographic density analysis of the alveolar bone of rats
Table 1). The periodontal tissue of the rats subjected to GIOP did not demonstrate any change on the architecture compared with the naïve rats (Fig
Fig. 5. Biomechanical testing and radiographic density analyses of the femur of rats. Radiographic images of the femur of animals from A) Naïve group, B) EP group, C) GIOP group, D) GIOP + EP group

Referências

Documentos relacionados

bone mineral density, markers of bone turnover, age at first pregnancy, duration of lactation and other factors associated with osteoporosis in multiparous (five or more deliveries)

The bone structural analysis of rats in the test arm group showed a significant increase in the bone volume per tissue volume (BV/TV), trabecular thickness (Tb.Th) and trabecular

Photomicrographs from the buccal gingiva of rats subjected to periodontitis. The buccal gingivae from the region of the left upper molars were removed. A) Normal gingiva; B)

Results: Periodontitis induction caused reduction of BALP, intense alveolar bone loss (ABL), cementum and periodontal ligament destructions and intense leucocyte infiltration

granatum combined or not with low level laser irradiation has demonstrated anti-inflammatory and bone anti- resorptive effects on model of experimental bone loss in

The aim of this study was to evaluate the effects of nonsurgical periodontal treatment on alveolar bone density (ABD) and bone height (BH) using direct digital radiography..

Effects of zoledronate versus placebo on spine bone mineral density and microarchitecture assessed by the trabecular bone score in postmenopausal women with osteoporosis: a

[r]