• Nenhum resultado encontrado

J. Aerosp. Technol. Manag. vol.4 número2

N/A
N/A
Protected

Academic year: 2018

Share "J. Aerosp. Technol. Manag. vol.4 número2"

Copied!
12
0
0

Texto

(1)

LIST OF SYMBOLS Ae: Exit area At: Throat area

Aw: Wall area (surface area) c: Effective exhaust velocity CF 7KUXVWFRHI¿FLHQW D: Rocket diameter İ ([SDQVLRQUDWLR F: Thrust

f 9HORFLW\IUDFWLRQRIHDFKVWDJH finert ,QHUWPDVVIUDFWLRQ

Isp 6SHFL¿FLPSXOVH L 5RFNHWOHQJWK

L/D /HQJWKWRGLDPHWHUUDWLR mcs: Motor case mass Me ([LW0DFKQXPEHU

mi ,QLWLDOPDVV minert ,QHUWPDVV minsul ,QVXODWLRQPDVV mpay: Payload mass mprop 3URSHOODQWPDVV mpv: Pressure vessel mass msk: Skirt mass

mҕ 0DVVÀRZUDWH

NDF1R]]OHGLDPHWHUIUDFWLRQDQR]]OH/Dmotor) Pa $PELHQWSUHVVXUH

Pc &KDPEHUSUHVVXUH Pe: Exit Pressure tb %XUQLQJWLPH T/W 7KUXVWWRZHLJKWUDWLR v: Velocity

Vcs: Motor case volume Ȗ 6SHFL¿FKHDW İ ([SDQVLRQUDWLR șcn +DOIFRQHQR]]OHDQJOH ȡ 'HQVLW\

Į $QJOHRIDWWDFN

Design Optimization of Micro Air Launch Vehicle Using

Differential Evolution

Mohammed Abdulmalek Aldheeb1,*, Raed Kafafy1, Moumen Idres1, Hanafy M. Omar2, Mohammad A. Abido3

1,QWHUQDWLRQDO,VODPLF8QLYHUVLW\0DOD\VLD.XDOD/XPSXU±0DOD\VLD 24DVVLP8QLYHUVLW\%XUDLGDK±6DXGL$UDELD

3.LQJ)DKG8QLYHUVLW\RI3HWUROHXPDQG0LQHUDOV'KDUKDQ±6DXGL$UDELD

Abstract: In this paper, we have used the differential evolution to optimize the design of a Micro Air Launch Vehicle and its launch trajectory. Since trajectory design of a launch vehicle requires prior knowledge of the masses and propulsion performance parameters of the Micro Air Launch Vehicle, whereas the vehicle design requires prior knowledge of the required velocity ¨V to insert the required payload into the target orbit, a twostep optimization cycle was adopted. A Micro Air Launch Vehicle was designed to launch a 20kg payload into a 00km circular polar orbit. The preliminary design of the Micro Air Launch Vehicle was conducted given the required ¨V, which was obtained from trajectory optimization, and then applied in mission analysis to obtain the initial masses. These initial masses were used in the vehicle design to get the performance and geometry parameters. The objective function of the Micro Air Launch Vehicle design optimization is to minimize the initial mass under speci¿ed constraints on the insertion orbit. The objective of trajectory optimization is to maximize the payload mass under constraints on orbit speci¿cations and design variables. For the 20kg payload mass, the optimal initial mass is 1267.8 kg and optimal payload is 20.6 kg, which slightly exceeds the mission requirements.

Keywords: Micro Air Launch, Vehicle design, Optimization, Differential evolution.

Received: 15/01/12 Accepted: 16/03/12 DXWKRUIRUFRUUHVSRQGHQFHDOGKHHE#\DKRRFRP 32%R[.XDOD/XPSXU0DOD\VLD

(2)

INTRODUCTION

$LU ODXQFK KDV UHFHLYHG LQFUHDVLQJ DWWHQWLRQ RYHU WKH ODVWGHFDGHVGXHWRWKHPDQ\DGYDQWDJHVLWKDVRYHUJURXQG ODXQFK$QDLUODXQFKYHKLFOHLVUHOHDVHGIURPDÀ\LQJFDUULHU DLUFUDIWZKLFKVLJQL¿FDQWO\DOOHYLDWHVPDQ\ODXQFKUHVWULF WLRQVDQGYLUWXDOO\DOORZVODXQFKLQJDWDQ\GHVLUHGORFDWLRQ DQGLQDQ\ODXQFKD]LPXWK$LUODXQFKWDNHVDGYDQWDJHVRIWKH FDUULHUDOWLWXGHDQGYHORFLW\WKDWLPSURYHVWKHODXQFKHI¿FLHQ F\DQGUHGXFHVWKHLQLWLDOPDVVRIWKHODXQFKYHKLFOH:LWKWKH DGYDQFHRI0LFURHOHFWURQLFVDQG0LFUR(OHFWUR0HFKDQLFDO 6\VWHPV0(06LWEHFDPHSRVVLEOHIRUPLFUROHVVWKDQ NJRUQDQRVDWHOOLWHVOHVVWKDQRUNJWRSHUIRUP WKH W\SLFDO IXQFWLRQV RI ODUJHU VDWHOOLWHV LQ WKH ODVW GHFDGH )RUWHVFXHet al., 2003, Matsuda et al., 2008).

7R UHGXFH ODXQFKLQJ FRVWV VXFK VPDOO VDWHOOLWHV DUH XVXDOO\ODXQFKHGIURPWKHJURXQGZLWKPDQ\RWKHUVPDOO VDWHOOLWHVRUDVDVHFRQGDU\SD\ORDGWRDPDLQODUJHURQH 7KXVWKHVPDOOVDWHOOLWHPLVVLRQEHFRPHVFRQVWUDLQHGE\ WKH PLVVLRQ UHTXLUHPHQWV RI WKH PDLQ SD\ORDG 8VLQJ DLU ODXQFKVPDOOVDWHOOLWHVFDQEHLQGHSHQGHQWO\ODXQFKHGDQG EHQRWFRQVWUDLQHGE\WKHPLVVLRQVSHFL¿FDWLRQVRIDQRWKHU SD\ORDG5HVSRQVLYLW\LVDQRWKHUPDLQDGYDQWDJHRIWKHDLU ODXQFKHVSHFLDOO\GXULQJWLPHRIFULVLVEHFDXVHLWVSUHSD UDWLRQ LV PXFK OHVV WLPHGHPDQGLQJ WKDQ JURXQG ODXQFK %ROW],QRUGHUWRWDNHIXOODGYDQWDJHRIDLUODXQFK LWVYHKLFOHVKRXOGEHGHVLJQHGZLWKWKHULJKWVL]HIRUWKH SD\ORDG1RZDGD\VRSHUDWLRQDODLUODXQFKYHKLFOHVVXFKDV 3HJDVXVVHULHV%UDXQet al,VDNRZLW]et al., 2004), DUHGHVLJQHGIRUSD\ORDGVWKDWDUHIDUDERYHQDQRVDWHOOLWHV PDNLQJWKHPLQHI¿FLHQWIRUODXQFKLQJDVLQJOHRUDIHZQDQR VDWHOOLWHV7KHGHVLJQRIYHU\VPDOODLUODXQFKYHKLFOHVZDV LQYHVWLJDWHGE\%ROW]&KRLet alDQG2PDU

et al0LQLDWXUL]DWLRQRIDLUODXQFKYHKLFOHVLVVHHQLQ

DPDMRUSUREOHPZKLFKLVWKHLQFUHDVHRILQHUWPDVVIUDFWLRQ or the decrease of vehicle mass ratio (payload mass to total mass ratio) as the payload mass is decreased.

(DUOLHUUHVHDUFKLQURFNHWGHVLJQXVHGVHYHUDORSWLPL]D WLRQWHFKQLTXHV/HHet alVWXGLHGWKHWUDMHFWRU\ RSWLPL]DWLRQRIDLUODXQFKURFNHWXVLQJWKH0XOWLGLVFLSOLQDU\ 'HVLJQ 2SWLPL]DWLRQ 0'2 WHFKQLTXH ,Q WKHLU PHWKRG URFNHWVL]LQJWUDMHFWRU\DQGSURSXOVLRQDQDO\VHVDUHFRXSOHG DOWRJHWKHU,QWKHWZRVWHSPHWKRGPLVVLRQUHTXLUHPHQWVDUH RSWLPL]HGLQRQHDQGWKHQWKHWUDMHFWRU\DQGSURSXOVLRQDQDO\ VHVDUHRSWLPL]HGLQWKHVHFRQGVWHS7KHRSWLPL]DWLRQXVHG LVFDOOHGPXOWLGLVFLSOLQDU\IHDVLEOHRSWLPL]DWLRQ&KRLet al. XVHGVHTXHQWLDOTXDGUDWLFSURJUDPPLQJ643

,QWKLVSDSHUZHKDYHRSWLPL]HGWKHGHVLJQRIDPLFURDLU ODXQFK YHKLFOH 0$/9 WR DFKLHYH PLQLPXP LQLWLDO PDVV 7KHRSWLPL]DWLRQRIWKH0$/9LVFDUULHGRXWLQWZRVWHSV WKH¿UVWLVWRRSWLPL]HWKHYHKLFOHIRUPLQLPXPLQLWLDOPDVV DQGWKHVHFRQGLVWRRSWLPL]HWKHWUDMHFWRU\IRUPD[LPXP SD\ORDG PDVV 'XH WR WKH FRPSOH[LW\ RI WKH RSWLPL]DWLRQ SUREOHPZHXVHGLIIHUHQWLDOHYROXWLRQ'(,WLVDSRSXODWLRQ VWRFKDVWLFRSWLPL]DWLRQWHFKQLTXHWKDWEHORQJVWRWKHFODVVRI HYROXWLRQDU\DOJRULWKPVLWLVDOVRDSURPLVLQJRSWLPL]DWLRQ IRUVLQJOHDQGPXOWLREMHFWLYHRSWLPL]DWLRQDQGLWKDVDJRRG FRQYHUJHQFHSURSHUWLHV7KHPDLQDGYDQWDJHVRI'(DUHLWV VLPSOLFLW\DFFXUDF\DQGUHVRQDEO\IDVWDQGUREXVWRSWLPL]D WLRQPHWKRG:RQJDQG'RQJ

7R LQLWLDWH WKH WZRVWHS RSWLPL]DWLRQ F\FOH ZH XVH D VHW RIVFDOLQJODZVWRHVWLPDWHWKHLQLWLDOJXHVVRIWKHPDVVHVDQG SHUIRUPDQFHSDUDPHWHUVRI0$/9ZKLFKLVFDSDEOHRIODXQFKLQJ WKHUHTXLUHGSD\ORDGLQWRWKHWDUJHWRUELW7KHFXELFVFDOLQJODZ LVXVHGWRGRZQVL]HWKHURFNHWPDVVWRPLQLDWXUL]HWKHURFNHWIRU VPDOOSD\ORDGVDQGWRVWXG\DQDOWHUQDWLYHORZFRVWV\VWHPLQ 5HVSRQVLYH$FFHVV6PDOO&DUJR$IIRUGDEOH/DXQFK5$6&$/ 6XWWRQDQG%LEODU]+XPEOHet al., 1995). Boltz (2002) has VKRZQWKDWWKHDFWXDOSD\ORDGPDVVRIDPLQLDWXUL]HGDLUODXQFK YHKLFOHZLOOEHPXFKVPDOOHUWKDQSUHGLFWHGE\FXELFODZVGXH WRWKHQRQVFDODELOLW\RIDYLRQLFVDQGQDYLJDWLRQDQGJXLGDQFH V\VWHPV+RZHYHU2PDUet alKDYHVKRZQWKDWWKHJUHDW UHGXFWLRQ RI WKH PDVV DQG VL]H RI HOHFWURQLF GHYLFHV GXH WR DGYDQFHPHQWVLQPLFURHOHFWURQLFVPDNHVLWSRVVLEOHWRDVVXPH FXELFODZVFDOLQJZLWKVRPHFRQVHUYDWLRQ

DIFFERENTIAL EVOLUTION ALGORITHM

'(ZDV¿UVWSURSRVHGE\6WRUQDQG3ULFHDW%HUNH OH\DVDQHZHYROXWLRQDU\DOJRULWKP,WXVHVDIXQFWLRQFDOOHG FURVVRYHUWRLQFUHDVHWKHGLYHUVLW\RIWKHSHUWXUEHGSDUDPHWHU YHFWRUVDQGLWHQVXUHVWKDWWKHODVWYHFWRUJHWVDWOHDVWRQH SDUDPHWHUIURPWKHSUHYLRXVRQH6WRUQDQG3ULFH6WRUQ $VDSRSXODWLRQEDVHGDOJRULWKPWKH'(VWDUWVZLWKD VHWRIFDQGLGDWHVROXWLRQV7KHLQLWLDOVROXWLRQVDUHUDQGRPO\ JHQHUDWHGRYHUWKHSUREOHPVSDFH7KHVWHSVRI'(DOJRULWKP FDQEHGHVFULEHGDVIROORZV6WRUQDQG3ULFH $ERX(O(ODet al$ELGRDQG$O$OL

‡ ,QLWLDOL]HVWRFKDVWLFVROXWLRQVDVLQ(T

(3)

ZKHUHrLVDUDQGRPQXPEHUr[0,1].

‡ (YDOXDWHHDFKLQLWLDOVROXWLRQDJDLQVWWKHREMHFWLYHIXQFWLRQ ‡ &KHFNWKHVWRSSLQJFULWHULD6WRSLIWKH\DUHVDWLV¿HG ‡ )RUHDFKVROXWLRQx

iFUHDWHDPXWDQWVROXWLRQx'iDVIROORZV E\UDQGRPO\VHOHFWLQJWKUHHGLIIHUHQWVROXWLRQV55 5DVLQ(T

x

i'=xRI+F(xR3xR2) (2)

ZKHUH)LVDPXWDWLRQIDFWRUEHWZHHQ>@

‡ )RUHDFKPXWDQWVROXWLRQJHQHUDWHDWULDOVROXWLRQx'' iE\ FRS\LQJSDUDPHWHUVHLWKHUIURPWKHSDUHQWVROXWLRQxi or the PXWDQWRQHx'

iDV(T

( , )

x x

x

if rand CR

else 0 1 <

,

" ,

'

,

i j i j i j

=) 3 (3)

ZKHUHCRLVDVSHFL¿HGFURVVRYHUIDFWRUEHWZHHQ>@ DQGWKHVXEVFULSWMUHIHUVWRWKHMWKGLPHQVLRQRIWKH VROXWLRQYHFWRU

‡ (YDOXDWHHDFKWULDOVROXWLRQDJDLQVWWKHREMHFWLYHIXQFWLRQ ‡ &RPSDUHWKHREMHFWLYHIXQFWLRQRIWKHWULDOVROXWLRQZLWK

WKDWRIWKHSDUHQWVROXWLRQ6HOHFWWKHEHWWHUVROXWLRQWR VXUYLYHLQWKHQH[WJHQHUDWLRQ

‡ 5HSHDWVWHSVIRXUWRVHYHQXQWLOWKHSRSXODWLRQLV¿OOHG ‡ 8SGDWHWKHEHVWVROXWLRQDQGJRWRVWHSWKUHH

,QWKLVSDSHUZHKDYHWDNHQWKHPXWDWLRQFRQVWDQW) WKH FURVVRYHU FRQVWDQW &5 WKH VL]H RI SRSXODWLRQ 13 7KH VHDUFK ZLOO EH WHUPLQDWHG LI WKH QXPEHU RI LWHUDWLRQVVLQFHWKHODVWFKDQJHRIWKHEHVWVROXWLRQLVJUHDWHU WKDQRUVXFKQXPEHUUHDFKHVDQGIRUGHVLJQDQG WUDMHFWRU\RSWLPL]DWLRQVUHVSHFWLYHO\

DESIGN PROCESS

7KH ZKROH GHVLJQ SURFHVV LV LOOXVWUDWHG LQ D ÀRZFKDUW VKRZQLQ)LJ7KHGHVLJQÀRZFKDUWLVIXUWKHUHODERUDWHG

Mission requirement:

¾ǻV total = ('Vorbit+ 'Vloss) ¾Payload mass

Initial mission analysis output:

¾Initial mass ¾Propellant mass

Preliminary design decision ¾Nozzle cone angle ¾Propellant grain type. ¾Material selection.

Mission analysis and design process

START

NO

Preliminary component design ¾Motor case ¾Thrust skirts ¾Igniter ¾Insulator ¾nozzle

Total masses of the designed components Calculation of NEW inert

mass fraction

NEW finert - Old finert=Error

YES

New finert

Thermo chemistry calculation of Nozzle

?

NO

NEW Isp- Old Isp= Error

New Isp

YES END

?

Initial Mass

PSO

?

Yes NO

END L/D, T/W , f 1,2,3 , Pc , NDF

Design Variables

Vehicle Design Optimization

Guess Values

¾finert ¾Isp

Error=0.0005

Output Objective function Converged

F, Mi, Mprop, Tb, Isp, finert, expansion ratio, Dimensions

Vehicle Trajectory Optimization

Design Variables ¾D’s , coasting time

PSO

Output

Payload mass 'V loss

DE

DE

)LJXUH&KDUWRIYHKLFOHGHVLJQDQGWUDMHFWRU\RSWLPL]DWLRQRIDLUODXQFKYHKLFOHXVLQJGLIIHUHQWLDOHYROXWLRQ

187

(4)

Design requirements

Mission requirements

0LVVLRQ UHTXLUHPHQWV DUH WKH WDUJHW SDUDPHWHUV WR EH DFKLHYHGLQWKHGHVLJQSURFHVV6RPHUHTXLUHPHQWVPD\EH FRQVLGHUHGDVFRQVWUDLQWVRQWKHGHVLJQZKLFKDUH

Orbit and altitude

0$/9VKRXOGEHDEOHWRLQVHUWLWVSD\ORDGLQWRDNP FLUFXODUSRODURUELW

Payload mass

0$/9VKRXOGEHDEOHWRODXQFKDWOHDVWNJLQWRWKH WDUJHWRUELW

Launch conditions

0$/9ZLOOEHODXQFKHGIURPDFDUULHUDLUFUDIWDWDQDOWL WXGHRINPDQGVSHHGRIPV

Decisions

&HUWDLQSDUDPHWHUVVKRXOGEHGH¿QHGWRVWDUWWKHGHVLJQ SURFHVV7KH\DUHVHOHFWHGEDVHGRQSXEOLVKHGGDWDRIH[LVW LQJODXQFKYHKLFOHVHJ3HJDVXV+RZHYHUVRPHRIWKHP ZLOOEHVHWDVGHVLJQYDULDEOHVLQWKHRSWLPL]DWLRQVWDJHLQ RUGHUWR¿QGWKHRSWLPDOYDOXHV7KHVHSDUDPHWHUVDUHWKH QXPEHURIVWDJHVZHKDYHGHFLGHGWRXVHWKUHH¿[HGWKH W\SHRIURFNHWLQHDFKVWDJHZHFKRRVHVROLGPRWRUURFNHW ZLWKHQGEXUQLQJJUDLQSURSHOODQW¿[HGFKDPEHUSUHVVXUH

(PcWKUXVWWRZHLJKWUDWLRT/WOHQJWKWRGLDPHWHUUDWLR

(L/D); T/WDQGL/DZLOOEHVHWDVGHVLJQYDULDEOHVLQWKH

RSWLPL]DWLRQSURFHVV

Initial values

7R VWDUW WKH GHVLJQ SURFHVV LQLWLDO YDOXHV IRU VSHFL¿F

impulse (Isp DQG LQHUW PDVV IUDFWLRQ finert DUH UHTXLUHG

+RZHYHUWKHVHYDOXHVZLOOFKDQJHGXULQJWKHGHVLJQORRS SURFHVVHVXQWLOWKHLUYDOXHVDUHFRQYHUJHG$QLQLWLDOYDOXHRI

total ¨VLVDOVRUHTXLUHGWRVWDUWWKHGHVLJQSURFHVV

Design of micro air launch vehicle subcomponents

7KHUHTXLUHG¨VLVXVHGLQPLVVLRQDQDO\VLVZLWKLQLWLDO

VSHFL¿FLPSXOVHDQGLQHUWPDVVIUDFWLRQ7KHRXWSXWRIPLVVLRQ DQDO\VLVLVWKHLQLWLDOYDOXHVRISURSHOODQWDQGLQHUWPDVVHV XVLQJ(TDQG(T

m

f

e

m

e

V

f

1

1

1

prop

inert I V

pay I inert

g g0

sp sp

0

D

=

--

-D

c

m

^

h

(4)

mi=mprop+mpayload+minert (5)

Note that the selected ¨VDWWKH¿UVWVWHSRIWKHGHVLJQLV

WDNHQEDVHGRQVRPHSUHYLRXVDYDLODEOHGDWDRI3HJDVXVWR

VWDUWWKHGHVLJQSURFHVV+RZHYHUWKLV¨VZLOOEHUHSODFHGE\

WKHUHDOYDOXHZKHQWKHWUDMHFWRU\DQDO\VLVLVSHUIRUPHG

7KHSURSHOODQWPDVVHVDORQJZLWKT/W, L/DDQGFKDP

EHUSUHVVXUHDUHXVHGWRGHVLJQWKHJHRPHWU\RIWKHYHKLFOH DQGWRREWDLQWKHLQLWLDOPDVVHVDJDLQDQGDOVRWRREWDLQWKH LQHUWPDVVIUDFWLRQ7KHYDFXXPWKUXVWRIWKHYHKLFOHFDQEH FDOFXODWHGXVLQJ(T

F = mҕv + Ae Pe (6)

)LJXUHLOOXVWUDWHVWKHPDLQFRPSRQHQWVRI0$/96ROLG PRWRUKDVDFODVVLFDODUFKLWHFWXUHDQGLVDWWDFKHGWRWKHRWKHU VWDJHVE\WKUXVWVNLUWV7KHYROXPHLVFDOFXODWHGXVLQJWKH SURSHOODQWPDVVDQGLWVGHQVLW\DF\OLQGULFDOPRWRUFDVHZLWK KDOIGRPHHQGVLVVHOHFWHGIRUWKHGHVLJQDVVKRZQLQ)LJ WKHFDOFXODWLRQVDUHGRQHXVLQJ(TVWR

V n

m CS

v prop prop

=

t

VCS D 16 41 DL 1

3

r

= 8 + ` - jB (8)

3UHVVXUHYHVVHODQGVNLUWPDVVHVDUHFDOFXODWHGXVLQJ(TV WR+XPEOH

m t D

D L

b

1

pv cs cs

cy

2

t r

= c + m (9)

(5)

Thus, the motor case mass is:

mcs=1.1(msk+mpv) (11)

,QVXODWLRQPDVVRIPRWRUFDVHLV

1.788 10

m m t

D L

L A

. . . . .

insul prop b sub w

9 1 33 0 965 0 144 0 058 2 69

#

= - -

-` j (12)

7KHQR]]OHSDUDPHWHUVDUHVKRZQLQ)LJDQGFDOFXODWHG XVLQJ(TVWR1R]]OHV\VWHPPDVVPD\EHFDOFXODWHG IURP(T+XPEOH

1.5 . *

m

P t tan

m c

0 256 10 _

4 . .

. .

noz sys

c b cn

prop

0 8 0 6 1 2 0 3 #

i f

= ' -;^ h E1

(13)

7KHWKURDWGLDPHWHUDQGQR]]OHOHQJWKDUHFDOFXODWHGXVLQJ (TVDQG

*

D

t P c m

4 t

b c prop

r

= (14)

2tan

Lnoz D D

cn

e t

i

= - (15)

,QWKLVZRUNWKHLQHUWPDVVRIHDFKVWDJHZDVFDOFXODWHG IURPWKHVXPRIWKHPRWRUFDVHWKHLQVXODWLRQDQGWKHQR]]OH V\VWHPPDVVHV7KHLQHUWPDVVLQFOXGHVDOVRDYLRQLFVVHSDUD WLRQV\VWHPVDWWLWXGHFRQWUROV\VWHPVDQGVRRQ7KLVPD\

FRPSULVHDQLPSRUWDQWIUDFWLRQRIWKHSD\ORDGPDVVHVSHFLDOO\ LQWKHXSSHUVWDJHVZKLFKEHFRPHPRUHSURIRXQGLQWKHFDVH

of small payloads. Thus,

mLQHUW Pcs+ mLQVXO+ mQR]BV\V (16)

7KHLQHUWPDVVIUDFWLRQLVFDOFXODWHGDJDLQXVLQJWKHQHZ LQHUWPDVVDVLQ(T

f

m m m

m inert

inert prop pay

inert

=

+ -

,IWKLVQHZLQHUWPDVVIUDFWLRQLVQRWWKHVDPHDVWKHLQLWLDO YDOXHVWKHQWKHQHZ¿QHUWZLOOEHXVHGLQPLVVLRQDQDO\VLVDQG WKHVDPHVWHSVZLOOEHUHSHDWHGXQWLO¿QHUWFRQYHUJHV:KHQ ¿QHUWLVFRQYHUJHGWKHQWKHYDOXHRI,VSVKRXOGEHHYDOXDWHG DQGFRPSDUHGZLWKLQLWLDOYDOXHVLILWLVQRWWKHVDPHWKHZKROH SUHYLRXVSURFHGXUHZLOOEHUHSHDWHGXQWLOWKHVROXWLRQRI,VSDQG ¿QHUWFRQYHUJHV7KHFDOFXODWLRQRIWKHQR]]OHVSHFL¿FLPSXOVH LVGRQHXVLQJ(TVDQG6XWWRQDQG%LEODU]

M y

y M 1

1

2 1

2 1 e

e y y

2 1

1

f=

+ +

-

-+

c mc m

; E (18)

1

P P y M

2 1

e c e

y y

2 1

= ; + - E- (19)

( )

C

y y

y P

P

Pc

P P

1 2

1 2

1 F

y y

c

e y

y

e a

2

1

1 1

f =

- + - +

-+

-c mc m = c m G (20)

* I

g C c sp

F 0 m

= (21)

2XWSXWRIWKHYHKLFOHGHVLJQLVWRWDOPDVVSURSHOODQWPDVV LQHUWPDVVVSHFL¿FLPSXOVHLQHUWPDVVIUDFWLRQGLPHQVLRQV QR]]OHH[SDQVLRQUDWLRWKUXVWPDVVÀRZUDWHDQGEXUQLQJWLPH ,Q WKH FDVH RI D YHKLFOH UHTXLULQJ UHDO GHYHORSPHQWV WKH WDUJHWHG SD\ORDG PDVV VKRXOG KDYH D PDUJLQ WR FRYHU

)LJXUH0DLQFRPSRQHQWVRIWKHVROLGURFNHWPRWRU

Lcs Dcs

)LJXUH6NHWFKOHQJWKDQGGLDPHWHURIWKHPRWRUFDVH

LNOZ o cn2Cone

)LJXUH6NHWFKRIQR]]OHGHVLJQ

(6)

LQHYLWDEOHORVVHVGXULQJWKHGHYHORSPHQWZKLFKPD\FDXVHD VXEVWDQWLDOORVVLQWKHWDUJHWHG¿QDOPDVV

Trajectory analysis

6LQFHWKH¨VORVVZDVVHOHFWHGEDVHGRQSXEOLVKHGGDWDRI

H[LVWLQJODXQFKYHKLFOHVDWUDMHFWRU\DQDO\VLVZDVQHHGHGWR

REWDLQDPRUHUHDOLVWLF¨V loss of the MALV.

Aerodynamic model

0LVVLOH'DWFRPLVWKHVRIWZDUHXVHGWRREWDLQDHURG\QDPLF FRHI¿FLHQWVRIOLIWDQGGUDJXVLQJWKHGLPHQVLRQVREWDLQHG IURPWKHGHVLJQRI0$/9VXEFRPSRQHQW7KHVHFRHI¿FLHQWV DUHREWDLQHGIRUWKH¿UVWVWDJHVDVVXPLQJWKDWDWWKHVHFRQG RQHWKHHIIHFWVRIDHURG\QDPLFIRUFHVDUHQHJOLJLEOH)LJ VKRZVWKHDFWLQJIRUFHVRI0$/9ERG\LQ'

6LQFHWKHDHURG\QDPLFIRUFHVFRHI¿FLHQWVDUHREWDLQHG WKHWUDMHFWRU\PRGHOLVGRQHXVLQJWKHHTXDWLRQVRIPRWLRQ

QXPEHUVDQG)RUWHVFXHet al., 2003):

( )

cos sin

mdVdt =F d+a -mg c-D (22)

( )

sin cos cos

mv dt dv

L F mg

r

mV2

d a c c

= + + - + (23)

The total ¨VZKLFKLVUHTXLUHGIURPWKHODXQFKYHKLFOHLV

FDOFXODWHGIURP(T

ǻVtotal = Vorbit Vaircraft+ǻVloss (24)

ZKHUHǻ9lossLVWKHVXPPDWLRQRIGUDJJUDYLW\VWHHULQJDQG

SHUIRUPDQFHORVVHVZKLFKFDQEHH[SUHVVHGDV(T

ǻVloss=ǻVdrag+ǻVgravity+ǻVsteering+ǻVperformance (25)

,QWKH(TǻVgravityLVWKHYHORFLW\QHHGHGWRRYHUFRPH

WKHHIIHFWRIWKHJUDYLW\DQGJDLQDOWLWXGHDQGǻVdrag is the loss

GXHWRGUDJWKDWLVSURIRXQGDWORZDOWLWXGHVEXWEHFRPHQHJOL

JLEOHDWKLJKRQHVǻVsteeringLVWKHYHORFLW\QHHGHGWRVWHHUDQG

WXUQWKHYHKLFOHDORQJWKHWUDMHFWRU\ǻVperformance is the veloc

LW\ORVVGXHWRLGHDOSHUIRUPDQFHDVVXPSWLRQVVLQFHYDFXXP SHUIRUPDQFHLVDVVXPHGGXULQJWKHGHVLJQZKHUHDVWKHDFWXDO URFNHWSHUIRUPDQFHLVUHGXFHGE\DWPRVSKHULFSUHVVXUH

STEP 1: MICRO AIR LAUNCH VEHICLE DESIGN OPTIMIZATION

7KHRSWLPL]DWLRQRI0$/9DLPVDW¿QGLQJWKHEHVWYDOXHV RIGHVLJQYDULDEOHVLQRUGHUWRPLQLPL]HWKHLQLWLDOPDVVRIWKH YHKLFOH7KHRSWLPL]DWLRQRIWKH0$/9DOJRULWKPLVWKHDOPRVW WKHVDPHDVLWVGHVLJQSURFHGXUHWKHGLIIHUHQFHLVWKHUDQJHRI GHVLJQYDULDEOHV)RXUSDUDPHWHUVZHUHVHOHFWHGDVWKHGHVLJQ

YDULDEOHVDWHDFKVWDJHT/W, L/D, Dnozzle/Dmotor DQGf. The total

QXPEHURIGHVLJQYDULDEOHVLV(DFKRQHKDVDUHDVRQDEOH UDQJHVRWKH\DUHQRWRYHURUXQGHUHVWLPDWHG7KHUDQJHYDOXHV RIWKHVHGHVLJQYDULDEOHVDUHOLVWHGLQGHWDLOVIRUVWDJHVWRLQ WKHIROORZLQJVHFWLRQRIRSWLPL]DWLRQFRQVWUDLQWV

Optimization constraints

,QWKHRSWLPL]DWLRQWKHQXPEHURIJHQHUDWLRQVZDVWDNHQ DVZLWKDQXPEHURISDUWLFOHVRI7KHPLVVLRQGH¿QHG LVWRODXQFKDNJSD\ORDGWRDNPFLUFXODUSRODURUELW IURPDQDOWLWXGHRINPZLWKLQLWLDOYHORFLW\RIPV 7KHLQLWLDOYHORFLW\ORVVZDVJXHVVHGDWPVZKLFK ZDVFRQVLGHUHGSHVVLPLVWLFDIWHUWKH¿UVWWZRVWHSRSWLPL]D WLRQF\FOH$PRUHUHDOLVWLFYDOXHRIPVZDVXVHGLQ WKH¿QDOWZRVWHSRSWLPL]DWLRQF\FOHDIDFWWKDWLVFRPSDUHG IDLUO\ZHOOWRWKHYDOXHFDOFXODWHGE\WUDMHFWRU\VLPXODWLRQ IRUWKHRSWLPL]HGYHKLFOHDQGWUDMHFWRU\7KHUDQJHRIGHVLJQ YDULDEOHVIRUHDFKVWDJHLVIXUWKHUJLYHQ

Stage 1

3 ” T»W ” 3.5

” L»D ” 9 0.8 ” NDF ” 1 0.3 ” f1 ” 0.5

(7)

Stage 2

”T»W ” ”L»D ” ”NDF ” ”f2 ”

Stage 3

”T»W ” ”L»D ” ”NDF ” f3 f1f2

Micro air launch vehicle design optimization results

Optimal design variables

7KHGHVLJQYDULDEOHVVKRZQLQ)LJWRUHSUHVHQWWKH RSWLPDOYDOXHVWKDWSURYLGHWKHRSWLPDOLQLWLDOPDVVRI0$/9 +LJKDnozzle/DmotorSURYLGHVEHWWHUUHVXOWVVLQFHLWLQFUHDVHV WKHH[SDQVLRQUDWLRDQGUHVXOWVLQEHWWHUSHUIRUPDQFHDQGOHVV LQLWLDOPDVV7KHPLQLPXPLQLWLDOPDVVREMHFWLYHIXQFWLRQ REWDLQHGLVNJIRUSD\ORDGRINJWRNPFLUFXODU SRODURUELW7KHREMHFWLYHIXQFWLRQHYROXWLRQDORQJWKHRSWL PL]DWLRQLVVKRZQLQ)LJDQGWKHRSWLPDOYDOXHVRIWKH GHVLJQYDULDEOHVDUHVKRZQLQ7DEOH

7DEOH VKRZV WKH GHVLJQ SDUDPHWHUV REWDLQHG DW WKH RSWLPDO GHVLJQ YDULDEOHV ,W UHSUHVHQWV WKH RXWSXW RI WKH GHVLJQRSWLPL]DWLRQSURFHVVIRUWKHPDVVJHRPHWU\DQG SHUIRUPDQFHSDUDPHWHUVRI0$/97KHWKUXVWPDVVHVDQG GLPHQVLRQVDUHKLJKLQWKH¿UVWVWDJHDQGORZLQWKHWKLUG VWDJH EXW WKH YDOXHV RI EXUQLQJ WLPH H[SDQVLRQ UDWLRQ VSHFL¿FLPSXOVHPDVVIUDFWLRQDQGYHORFLW\IUDFWLRQDUH QRW7KHH[SDQVLRQUDWLRKDVDKLJKYDOXHLQWKHWKLUGVWDJH DQGORZLQWKH¿UVWRQH

generationNo

T

/

W

3

rd

St

a

g

e

T

/

W

50 100 150

2.5 2.6 2.7 2.8 2.9 3

3.94 3.95 3.96 3.97 3.98 3.99 4

1st

Stage

2nd

Stage

3rd

Stage

)LJXUH 7KUXVWWRZHLJKWRSWLPDOYDOXHV

generationNo

L

/

D

1

st

St

a

g

e

L

/

D

50 100 150

2 2.5 3 3.5

7.4 7.6 7.8 8

1stStage

2nd

Stage

3rd

Stage

)LJXUH /HQJWKWRGLDPHWHURSWLPDOYDOXHV 7DEOH2SWLPDOGHVLJQYDULDEOHVRI0$/9

'HVLJQYDULDEOH 6WDJH 6WDJH 6WDJH

MiNJ 105.408

T/W 3 3 4

L/D 2.5

Dnozzle/Dmotor 1 0.68 0.6

f 0.3 0.3041 0.3959

7DEOH2SWLPDO0$/9SDUDPHWHUV

Parameter 6WDJH 6WDJH 6WDJH

Thrust (N) 11050.59

/HQJWKP 4.080286 1.629353 0.938153

,QHUWPDVVNJ 39.49656 10.56858 Throat area (m2) 0.002691 0.000839

Exit area (m2) 0.03366

([SDQVLRQUDWLR 58.40634 123.8406

%XUQLQJWLPHV 58.30218 61.06214 50.51115 Diameter (m) 0.448496 0.345035

,QLWLDOPDVVNJ

3URSHOODQWPDVVNJ 68.14603

,QHUWPDVVIUDFWLRQ 0.134265

7KUXVWIUDFWLRQ 1.849018 1.882084

6SHFL¿FLPSXOVHV 289.8908

9HORFLW\IUDFWLRQ 0.3 0.320485

191

(8)

7KH H[LW GLDPHWHU RI WKH QR]]OH LV ¿[HG E\ D FHUWDLQ UDQJHRIYDOXHVUHODWHGWRWKHGLDPHWHURIPRWRUFDVHZKLFK

LVFRQWUROOHGE\/'UDWLR7KHWKURDWGLDPHWHULVREWDLQHG XVLQJ(T

*

Dt 4c t Pm

b c prop r

= (26)

7KHYDOXHVRIFDQG3FDUHWKHVDPHIRUDOOVWDJHVDQGWKHUH LVQRWDYHU\PXFKGLIIHUHQFHLQEXUQLQJWLPH7KXVSURSHOODQW PDVVLVWKHSDUDPHWHUWKDWVLJQL¿FDQWO\DIIHFWVWKHWKURDWDUHDDQG ZHFDQVHHIURP7DEOHWKDWWKHSURSHOODQWPDVVLVYHU\VPDOOIRU WKHWKLUGVWDJHFRPSDUHGWRWKH¿UVWUHVXOWLQJLQDVPDOOYDOXHRI WKHWKURDWDUHD7KHUHIRUHWKHH[SDQVLRQLVKLJKIRUWKHWKLUGVWDJH DQGKLJKH[SDQVLRQUDWLRLVJRRGDQGUHTXLUHGDWKLJKDOWLWXGH

Step 2: Trajectory Optimization

,QWKLVVWHSWKHWUDMHFWRU\LVRSWLPL]HGWRJHWWKHPD[L PXP SD\ORDG PDVV 7KH WUDMHFWRU\ PRGHO LV GRQH XVLQJ HTXDWLRQVRIPRWLRQ(TVDQG

7KHLQSXWVRIWUDMHFWRU\RSWLPL]DWLRQDUHLQLWLDOPDVVSURSHO ODQWPDVVEXUQLQJWLPHVSHFL¿FLPSXOVHDQGWKUXVW7DEOH 7UDMHFWRU\RSWLPL]DWLRQKDVWKUHHLPSRUWDQWIDFWRUVWKHREMHFWLYH IXQFWLRQWKHGHVLJQYDULDEOHVDQGWKHFRQVWUDLQWV7KHREMHFWLYH IXQFWLRQ LV WKH SD\ORDG PDVV WKH GHVLJQ YDULDEOHV DUH DQJOHV of attack (ĮWKLUGVWDJHFRDVWLQJWLPHDQGSD\ORDGPDVV7KH SD\ORDGPDVVDQGWKHGHVLJQYDULDEOHVDUHWKHREMHFWLYHIXQFWLRQV VLQFHSD\ORDGLVXVHGLQWKHFDOFXODWLRQV7KHFRQVWUDLQWVDUHYHU\ LPSRUWDQWWRDFKLHYHWKHGHVLUHGRUELWDQGYHORFLW\DQGWKH\DUH FDOOHGSHQDOW\IXQFWLRQ7KLVSHQDOW\IXQFWLRQFDOFXODWHVWKHHUURULQ DOWLWXGHLQVHUWLRQYHORFLW\DQGÀLJKWSDWKDQJOHEHWZHHQWKHUHDODQG FDOFXODWHGYDOXHVIURPWKHWUDMHFWRU\RSWLPL]DWLRQ7KXVWKHRSWL PL]DWLRQVKRXOGDFKLHYHWKHRSWLPDOREMHFWLYHIXQFWLRQDQGVKRXOG DOVRPDWFKWKHFRQVWUDLQWV7KHGHVLJQYDULDEOHVRIWKHWUDMHFWRU\ RSWLPL]DWLRQDUHVKRZQLQ7DEOH7KHQXPEHURIJHQHUDWLRQVZDV WDNHQDVZLWKLQGLYLGXDOVLQHDFKJHQHUDWLRQ

7KHFRQYHUJHQFHRIWKHREMHFWLYHIXQFWLRQRIWUDMHFWRU\ RSWLPL]DWLRQLVVKRZQLV)LJVDQG7DEOHVKRZVWKH

7DEOH,QSXWSDUDPHWHUVIRUWUDMHFWRU\RSWLPL]DWLRQ

6WDJH 6WDJH 6WDJH

F (N) 11050.59

Ae (m2) 0.03366

tb (s) 58.30218 61.06214 50.51115

miNJ

mpropNJ 68.14603

Isp (s) 289.8908

generationNo Dn

o

zzl

e

/

Dmo

to

r

50 100 150

0.5 0.6 0.7 0.8 0.9 1

1stStage

2nd

Stage

3rd

Stage

)LJXUH 2SWLPDO YDOXH RI H[LW QR]]OH GLDPHWHU WR PRWRU FDVH

diameter ratio.

generationNo

V

e

lo

ci

ty

F

ra

ct

io

n

50 100 150

0.3 0.31 0.32 0.33

0.34 DE Stage1

DE Stage2

)LJXUH 9HORFLW\IUDFWLRQHYROXWLRQ

generationNo

O

b

je

c

ti

v

e

F

u

n

c

ti

o

n

50 100 150

1250 1300 1350 1400 1450 1500 1550 1600

(9)

EHVWYDOXHVRIGHVLJQYDULDEOHRIĮDQGWKLUGVWDJHFRDVWLQJ WLPHZKLFKSURYLGHWKHEHVWWUDMHFWRU\VKRZQLQ)LJ 7KLVWUDMHFWRU\LVWKHRSWLPDORQHWKDWPD[LPXPSD\ORDG FDQEHFDUULHGWKURXJKWRWKHUHTXLUHGDOWLWXGH7KHSD\ORDG REWDLQHGIURPWUDMHFWRU\RSWLPL]DWLRQLVNJZKLOHLWLV NJLQ0$/9GHVLJQ

7KHSHUIRUPDQFHRIĮ¶VWKURXJKWKHRSWLPL]DWLRQSURFHVVLV VKRZQLQ)LJVDQG7KHHYROXWLRQRIWKHUGVWDJHEXUQ LQJWLPHLVVKRZQLV)LJ)LJXUHVKRZVWKHLQFUHDVLQJ LQWKHSD\ORDGPDVVDORQJWKHRSWLPL]DWLRQWKHSD\ORDGPDVV LQFUHDVHVXQWLOLWUHDFKVWHDG\VWDWHZKLFKLVWKHRSWLPDOYDOXH of the payload mass.

7KHHIIHFWRIDQJOHVRIDWWDFNLVPDLQO\DWWKH¿UVWVWDJH ZKHUHHIIHFWRIOLIWDQGG\QDPLFSUHVVXUHDUHKLJK7KHWLPH

Generation No.

O

b

je

c

ti

v

e

fu

n

c

ti

o

n

100 200 300 400 500 -0.206

-0.205 -0.204 -0.203 -0.202

)LJXUH=RRPHGREMHFWLYHIXQFWLRQWRVKRZWKHFRQYHUJHQFH

Generation No.

O

b

je

c

ti

v

e

fu

n

c

ti

o

n

100 200 300 400 500 0

0.5 1 1.5 2

)LJXUH2EMHFWLYHIXQFWLRQHYROXWLRQRIWUDMHFWRU\

Time (s)

O

p

ti

m

a

l

T

ra

je

c

to

ry

(k

m

)

0 100 200 300 400 500

0 50 100 150 200 250 300 350 400

)LJXUH2SWLPDOWUDMHFWRU\ 7DEOH'HVLJQYDULDEOHUDQJHRIWUDMHFWRU\RSWLPL]DWLRQ

'HVLJQYDULDEOHV 5DQJH

Į1GHJ

Į2GHJ

Į3GHJ

Į4GHJ

Į5GHJ

Į6GHJ

ĮGHJ

Į8GHJ

Į9GHJ

Į10GHJ

&RDVWLQJWLPHV

3D\ORDGPDVVNJ

7DEOH2SWLPDOYDOXHVRIGHVLJQYDULDEOHV

'HVLJQYDULDEOH Optimal values Time of ĮFKDQJH

Į1GHJ 0

Į2 5

Į3 5.525553

Į4 10.8302

Į5 8.628338

Į6 31.6511

Į 66.8022

Į8 1.414886

Į9 414.1451

Į10 1.936009

3rdVWDJHFRVWLQJWLPHV 286.3128

SD\ORDGPDVVNJ

¨V

loss (m/s)

(10)

RIFKDQJLQJDOSKDLVVKRZQLQ7DEOHLQZKLFKWKHUHDUHVL[

values of ĮXVHGLQWKH¿UVWVWDJH)LJXUHVKRZVWKHRSWLPDO

YDOXHRIDQJOHRIDWWDFNDORQJWKHWUDMHFWRU\IURPWKHLJQLWLRQ SRLQWXQWLOWKHLQVHUWLRQRQHLQWKHRUELW

The ¨V

lossGXHWRVWHHULQJJUDYLW\DQGGUDJLVVKRZQLQ

)LJ7KHYDOXHRIWRWDO¨VlossREWDLQHGIURPWKHWUDMHF

WRU\LVPVZKLOHWKHRQHXVHGLQ¨VlossLQWKHGHVLJQ

RSWLPL]DWLRQLVPV7KHGLIIHUHQFH¨VlossLVDERXW

PVDQGLWLVFDOOHG¨VperformanceWKLVYDOXHLVDFRUUHFWLRQRIWKH

SHUIRUPDQFHEHFDXVHLQGHVLJQZHDVVXPHGDYDFXXPWKUXVW EXWWKH¿UVWVWDJHGRHVQRWSHUIRUPLQDYDFXXP7KXVWKLV

¨VlossLVWKHFRUUHFWLRQYDOXHRIWKHYHKLFOHSHUIRUPDQFH

SUMMARY AND CONCLUSIONS

,QWKLVSDSHUZHKDYHGHYHORSHGDWZRVWHS'(RSWL PL]DWLRQDOJRULWKPIRUWKHGHVLJQRSWLPL]DWLRQRI0$/9 ,QWKH¿UVWVWHSWKHYHKLFOHGHVLJQSDUDPHWHUVZHUHRSWL PL]HGIRUPLQLPXPLQLWLDOPDVVJLYHQWKHWRWDOWUDMHFWRU\ YHORFLW\ORVV,QWKHVHFRQGVWHSWKHYHKLFOHWUDMHFWRU\ZDV RSWLPL]HGIRUPD[LPXPSD\ORDGDQGWRWDOYHORFLW\ORVV ZDVFDOFXODWHG7KHWZRVWHSRSWLPL]DWLRQF\FOHLVUHSHDWHG XQWLOWKHUHLVDQDFFHSWDEOHFRQYHUJHQFHRIWKHWRWDOYHORFLW\ ORVV2QO\DIHZWZRVWHSRSWLPL]DWLRQF\FOHVDUHQHHGHGWR UHDFKDUHDVRQDEO\FRQYHUJHQWYDOXHRIWRWDOYHORFLW\ORVV ZKLFKZDVWDNHQDVPV 7KHRSWLPL]DWLRQSURFHVVZDVUHSHDWHGVHYHUDOWLPHVZLWK GLIIHUHQWVWDUWVWRDVVXUHWKDWWKHREWDLQHGRSWLPDOGHVLJQLVDV FORVHDVSRVVLEOHWRWKHDFWXDORSWLPDOGHVLJQ7KHRSWLPL]D WLRQZDVVWDUWHGIURPWKUHHWR¿YHWLPHVIRULWHUDWLRQV LQHDFKVWDUWZLWKRXWFKDQJLQJLQSXWSDUDPHWHUVWRHQVXUHWKDW WKHRSWLPL]DWLRQDFKLHYHVDUHOLDEOHRSWLPDOVROXWLRQ ,QYHKLFOHGHVLJQRSWLPL]DWLRQZHKDYHFRQFOXGHGWKDWKLJKHU QR]]OHGLDPHWHUIUDFWLRQYDOXHVSURYLGHEHWWHUSHUIRUPDQFHDQG OHVVLQLWLDOPDVVRI0$/97:DQG/'DIIHFWRWKHUSDUDPHWHUV VXFKDVWKUXVWH[SDQVLRQUDWLRDQGVSHFL¿FLPSXOVH)RUWKH VHOHFWHGPLVVLRQUHTXLUHPHQWWKHLQLWLDOPDVVREWDLQHGLQ0$/9 GHVLJQRSWLPL]DWLRQLVNJIRUDNJSD\ORDGPDVV Generation No. 3 rd S ta g e c o a s ti n g ti me (s )

0 100 200 300 400 500

278 280 282 284 286 )LJXUH'HVLJQYDULDEOHWKLUGVWDJHFRDVWLQJWLPH Generation No. P a y lo a d ma s s (k g )

0 100 200 300 400 500

19.6 19.8 20 20.2 20.4 20.6 20.8 )LJXUH3D\ORDGPDVVHYROXWLRQ Generation No. D e s ig n V a ri a b le s (d e g ) D e s ig n v a ri a b le 1 (A lp h a 1 )

0 100 200 300 400 500

4.5 5 5.5 6 1.6 1.65 1.7 1.75 1.8 1.85 Alpha 1 Alpha 2 Alpha 3 Alpha 4 )LJXUH'HVLJQYDULDEOHVDOSKDWR X X X X X X X X X X

X X X X X X X X X X X X + + + + + + + + ++ + + + + + + + + + + Generation No. D e s ig n V a ri a b le s (d e g ) D e s ig n v a ri a b le 5 (A lp h a 5 )

0 100 200 300 400 500

(11)

,QWUDMHFWRU\RSWLPL]DWLRQWHQDQJOHVRIDWWDFNZHUHXVHG DVGHVLJQYDULDEOHV7KHRSWLPDOSD\ORDGWKDWFDQEHODXQFKHG LQWR NP SRODU FLUFXODU RUELW LV NJ ZLWK D VPDOO LQFUHDVHLQSD\ORDGPDVVRYHUWKHWDUJHWSD\ORDGPDVV

ACKNOWLEDGMENTS

7KLVZRUNZDVSDUWLDOO\VXSSRUWHGE\HQGRZPHQWUHVHDUFK IXQGIURPWKH,QWHUQDWLRQDO,VODPLF8QLYHUVLW\RI0DOD\VLD

REFERENCES

$ERX(/(OD$$et al³'LIIHUHQWLDO(YROXWLRQ$OJR ULWKPIRU2SWLPDO5HDFWLYH3RZHU'LVSDWFK´(OHFWULF3RZHU 6\VWHPV5HVHDUFK9RO1RSS

$ELGR 0 $ DQG $O$OL 1 $ 0XOWLREMHFWLYH GLIIHUHQWLDOHYROXWLRQIRURSWLPDOSRZHUÀRZ,QWHUQDWLRQDO &RQIHUHQFH RQ 3RZHU (QJLQHHULQJ (QHUJ\ DQG (OHFWULFDO 'ULYHV32:(5(1*/LVERQ3RUWXJDOSS

%ROW])³0LQLDWXUH/DXQFK9HKLFOHVIRU9HU\6PDOO 3D\ORDGV´$PHULFDQ,QVWLWXWHRI$HURQDXWLFVDQG$VWURQDXWLFV -RXUQDORI6SDFHFUDIWDQG5RFNHWV9RO1RSS

%ROW])³/RZ&RVW6PDOO6DWHOOLWH'HOLYHU\6\VWHP´ $PHULFDQ,QVWLWXWHRI$HURQDXWLFVDQG$VWURQDXWLFV-RXUQDO RI6SDFHFUDIWDQG5RFNHWV9RO1RSS

%UDXQ5'et al³&ROODERUDWLYH$SSURDFKWR/DXQFK 9HKLFOH'HVLJQ´-RXUQDORI6SDFHFUDIWDQG5RFNHWV9RO 1RSS

%ODNH:%³0LVVLOH'$7&20XVHUVPDQXDO´

Choi, Y. C. et al³2SWLPDODLUODXQFKLQJURFNHWGHVLJQXVLQJ

V\VWHPWUDGHVDQGDPXOWLGLVFLSOLQDU\RSWLPL]DWLRQDSSURDFK´$HUR VSDFH6FLHQFHDQG7HFKQRORJ\GRL:10.1016/J.ast..004,pp.19.

)RUWHVFXH3et al³6SDFHFUDIW6\VWHPV(QJLQHHULQJ´ UG(GLWLRQ:LOH\

+XPEOH5:et al³6SDFH3URSXOVLRQ$QDO\VLVDQG 'HVLJQ´VWHG0$+ROODQGHU1HZ<RUN0F*UDZ+LOO

,VDNRZLW]6-et al³,QWHUQDWLRQDOUHIHUHQFHJXLGHWR VSDFHODXQFKV\VWHPV´WK(G$,$$,QF

.DIDI\5et al³2Q7KH6FDOLQJ/DZVIRU$LU/DXQFK 9HKLFOHV´,QWHUQDWLRQDO&RQIHUHQFHRQ0HFKDQLFDO$HURVSDFH DQG$XWRPRWLYH(QJLQHHULQJ,&0$$(¶.XDOD/XPSXU

Lee, J.W. et al³0LVVLRQDQGWUDMHFWRU\2SWLPL]DWLRQRI

WKH$LUODXQFKLQJ5RFNHW6\VWHP8VLQJ0'27HFKQLTXHV´ $PHULFDQ,QVWLWXWHRI$HURQDXWLFVDQG$VWURQDXWLFV$,$$ SS WK $,$$,6602 6\PSRVLXP RQ 0XOWLGLVFLSOLQDU\$QDO\VLVDQG2SWLPL]DWLRQ$WODQWD

Lee, J.W. et al ³3UHOLPLQDU\ 'HVLJQ RI WKH +\EULG

$LU/DXQFKLQJ5RFNHWIRU1DQRVDW´,QVWLWXWHRI(OHFWULFDODQG (OHFWURQLFV(QJLQHHUVGRLLFFVDSS

Matsuda, S. et al ³$Q $IIRUGDEOH 0LFUR 6DWHO

OLWH /DXQFK &RQFHSW LQ -DSDQ´ $,$$ HGXFDWLRQ VHULHV 56SS

Ve

lo

ci

ty

L

o

sse

s

(m/

s

)

0 100 200 300 400 500 0

200 400 600 800 1000 1200 1400

)LJXUH$FFXPXODWHGYHORFLW\ORVVHV

Time (s)

O

p

ti

m

a

l

A

n

g

le

o

f

A

tt

a

c

h

(d

e

g

)

0 100 200 300 400 500

2 3 4 5 6 7 8

)LJXUH2SWLPDODQJOHRIDWWDFNDORQJWKHWUDMHFWRU\

195

(12)

Omar, H. et al³3DUWLFOH6ZDUP2SWLPL]DWLRQRI$LU /DXQFK9HKLFOH7UDMHFWRU\´&DQDGLDQ$HURQDXWLFVDQG6SDFH -RXUQDO9RO1RSS

3HJDVXV 8VHU¶V JXLGH DSSURYHG IRU SXEOLF UHOHDVH GLVWULEXWLRQ8QOLPLWHG5HOHDVH

6DULJXO.OLMQ1et al³$LUODXQFKLQJ(DUWKWR2UELW (IIHFWRIODXQFKFRQGLWLRQVDQG9HKLFOH$HURG\QDPLFV´-RXU QDORI6SDFHDQG5RFNHWV9RO1RSS

6WRUQ53ULFH.³'LIIHUHQWLDOHYROXWLRQ±DVLPSOH DQGHI¿FLHQWDGDSWLYHVFKHPHIRUJOREDORSWLPL]DWLRQRYHU FRQWLQXRXVVSDFHV´7HFKQLFDO5HSRUW75

6WRUQ53ULFH.³0LQLPL]LQJWKHUHDOIXQFWLRQV RIWKHLFHFFRQWHVWE\GLIIHUHQWLDOHYROXWLRQ´3URFHHG LQJV RI ,((( ,QWHUQDWLRQDO &RQIHUHQFH RQ (YROXWLRQDU\ &RPSXWDWLRQSS

6WRUQ 5 ³2Q WKH XVDJH RI GLIIHUHQWLDO HYROXWLRQ IRU IXQFWLRQ RSWLPL]DWLRQ´ )X]]\ ,QIRUPDWLRQ 3URFHVVLQJ 6RFLHW\ 1$),36 %LHQQLDO &RQIHUHQFH RI WKH 1RUWK $PHULFDQSS

6WRUQ 5et al 'LIIHUHQWLDO (YROXWLRQ ZHE VLWH IURP KWWSZZZLFVLEHUNHOH\HGXaVWRUQFRGHKWPO

6WRUQ5DQG3ULFH.³'LIIHUHQWLDO(YROXWLRQ±$ 6LPSOH DQG (I¿FLHQW +HXULVWLF IRU *OREDO 2SWLPL]DWLRQ RYHU&RQWLQXRXV6SDFHV´-RXUQDORI*OREDO2SWLPL]DWLRQ 1RSS

6XWWRQ * 3 DQG %LEODU] 2 ³5RFNHW SURSXOVLRQ HOHPHQWV´WKHG1HZ<RUN-RKQ:LOH\ 6RQV

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Da Poetização do Verso Traduzido: Entre a Tradução do Poema de Ondjaki «Para Vivenciar Nadas» e a Eclosão de Sonhos.. Fernanda Cardoso Mestranda em Espaço Lusófono:

In addition, bone is a highly complex organo-mineral compound, and the presence of organic matrix not only affects the ablation rate ( Praamsma and Parsons, 2016 ) but may

A novel solid-phase based CL–MSFIA optical sensor based on the luminol oxidation by the heteropolyacid species immobilised in a N-vinylpyrrolidone/divinylbenzene copolymer packed

DFMA guides the manufacture processes and materials that rule the Fins Module interface to the Microsatellite Launch Vehicle (VLM-1) main structure.. The results of this process

benefício para a mulher, ele não tem efeitos colaterais, o corpo da mulher age na sua naturalidade e não se sente tão irritada, em certo momento do ciclo, como quando usava o

Assim, esta tese que se intitula “O conteúdo ambiental dos instrumentos locais de planeamento do território, uma visão comparativa no quadro europeu”, pretende ser um contributo para