• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número4

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número4"

Copied!
7
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Effect

of

exogenous

phytohormones

treatment

on

glycyrrhizic

acid

accumulation

and

preliminary

exploration

of

the

chemical

control

network

based

on

glycyrrhizic

acid

in

root

of

Glycyrrhiza

uralensis

Yan-peng

Li

a

,

Chun-xia

Yu

b

,

Jing

Qiao

a

,

Yi-mei

Zang

a

,

Yu

Xiang

a

,

Guang-xi

Ren

a

,

Li

Wang

a

,

Xin-yue

Zhang

a

,

Chun-sheng

Liu

a,∗

aSchoolofChinesePharmacy,BeijingUniversityofChineseMedicine,Beijing,China

bHenanProvinceforDrugEvaluationCertificationCenter,Zhengzhou,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19August2015 Accepted23February2016 Availableonline19May2016

Keywords:

Auxin

Chemicalnetwork Gibberellin Glycyrrhizicacid Methyljasmonate

a

b

s

t

r

a

c

t

One-year-oldGlycyrrhizauralensisFisch.exDC,Fabaceae,wastreatedwiththreeexogenous

phytohor-monesinJuneandJuly,namelygibberellin,auxin(indole-3-aceticacid),methyljasmonateatdifferent

concentrations.Controlplantsweretreatedwithwater.Rootsofcontrolsandhormones-treatedG.

uralen-sisplantswereharvestedatdifferenttimes,andthecontentsofsevenmainchemicalcomponentswere

determined.RootglycyrrhizicacidcontentofplantstreatedinJuneincreasedsignificantlycompared

withcontrols,andthedifferencewassignificant.AsforplantstreatedinJuly,rootglycyrrhizicacid

contentincreasedinwhichsprayedwithappropriateconcentrationsofhormones,buttheeffectsof

hormonesweremoreevidentinplantstreatedinJunecoincidedwiththevigorousgrowthperiodthan

thosetreatedinJuly.Gibberellinat40mg/landauxinat40mg/lappliedinthetwotreatmentperiods

significantlypromotedtheaccumulationofglycyrrhizicacidinG.uralensisroot.Treatmentwithmethyl

jasmonateat100and25mg/linJuneandJuly,respectively,alsoincreasedglycyrrhizicacidcontent

signif-icantly.Thedeterminationofmajoractivecompositionsindicatedthatliquiritin,isoliquiritin,isoliquiritin

apiosideandliquiritinapiosidecontentswerepositivelyrelatedtoglycyrrhizicacidcontent.Thestudy

preliminarilyfoundphytohormonesandthemainchemicalcomponentsassociatedwithglycyrrhizic

acidcontent,andthesediscoveriescouldprovideabasisforestablishingachemicalcontrolnetwork

withglycyrrhizicacidasthecore,confirmingthesecondaryproductmetabolicpathwaysinthenetwork

andcompletelyuncoveringsynthesismechanismunderlyingglycyrrhizicacid-combinedfunctionalgene

polymorphism.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen

accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

GlycyrrhizauralensisFisch.exDC,Fabaceae,isknowntobethe

‘king’oftraditionalChinesemedicine.Thisplantisthemost com-monlyusedmedicinalmaterialand is animportant additivein cosmetic,health product and tobaccoindustry. A highdemand

forG.uralensisisreportedeveryyear.CultivationofG.uralensis

hasbecomethemainstreambecauseofthelackingwildresources. However,awidespreadproblemhasbeenreportedregardingG.

∗ Correspondingauthor.

E-mail:maxliucs@263.net(C.-s.Liu).

uralensisqualityintermsofthesubstandardcontentofglycyrrhizic

acid. Therefore, improvingthe quality ofcultivated G. uralensis hasbecomeafocusofresearchinthefieldofChinesemedicine resources.

Glycyrrhizicacid(1),atriterpenoidsaponinscomponents,isthe mainbioactivecomponentwithanti-viral,anti-inflammatory, anti-tumorandothermajorpharmacologicalactivitiesinG.uralensis root(ZhangandYe,2009).Asanothermajoreffectivecomponents

inG.uralensisroot,flavonoidshavesignificantanti-tumour(Zhang

andYe,2009;Lietal.,2012), anti-oxidantactivities(Zhangand Ye,2009;Caietal.,2004),andthemostrepresentedflavonoidsare liquiritin(2),isoliquiritin(3),liquiritigenin(4),isoliquiritigenin(5), liquiritinapioside(6),andisoliquiritinapioside(7)(Zhangetal., 2013).

http://dx.doi.org/10.1016/j.bjp.2016.02.009

(2)

O

H O

H

H

CO2H

O HO2C HO

HO

O O HO2C HO

HO

OH

1

O HO

O

O

2

R=Glu

3

R=H

4

R=Glu-Apiose

HO

O

O

5

R=Glu

6

R=H

7

R=Glu-Apiose

O CO2HOH

OH

O O

O

OH OH HO

R R

S

Currently, various chemical and physical factors affect the medicinalplantgrowthandsecondarymetaboliteproductionhad beenresearchedwidely.Moisture(Lietal.,2011),light(Houetal., 2010; Afreenet al.,2005), salt (Wanet al.,2011), mineral ele-ments(Yinetal.,2014;Wangetal.,2010;LiuandWang,2009)and otherinducedfactorshavebeenstudiedinrelationtoG.uralensis growthandaccumulationofglycyrrhizicacidthroughfield culti-vation,invitrocultureandhairyrootculture.However,studieson theregulatoryeffectsofphytohormonesonG.uralensisonlyfocus intheaspectofplantgrowth,andin-depthresearchintheaspect ofthesecondarymetabolismislacking.

Alargenumberofstudieshavesuggestedthatphytohormones serve acrucial functionin alteringplantgrowthand secondary metabolism.Gibberellin(GA)isawidespreadandwidelystudied phytohormonethat couldeffectively regulate plantgrowthand formationofsecondarymetabolites.Zhangetal.(2005)reported that GA3 can induce the transformation of artemisinic acidto

artemisininandstimulateartemisininbiosynthesis.

Auxin(indole-3-acetic acid,IAA)is aphytohormonethathas closerelationshipandsimilareffectstoGA.Studieshaveshownthat IAAtreatmentcanstimulategrowthinhairyrootculture,and pro-ducedifferenteffectsonsecondarymetabolitesindifferentplants (Rhodesetal.,1994;Arrooetal.,1995).However,relativelyfew studieshave focused onIAA’sregulation onthemetabolism of medicinalplants.

As growth regulator that widely exists in plants, methyl jasmonate(MeJa)caninducechemicaldefencesthatsimulate bio-logical stress, which is an exogenous inducer on induction of secondarymetabolismintheplants,plantcellsandcalli(Qianetal., 2004;Yuetal.,2002;Zhaoetal.,2001;Bulgakovetal.,2002). Exoge-nousMeJaincreasedthecontentofginsenosidesinPanaxginseng cell(Luetal.,2001)andadventitiousrootscultivation(Yuetal., 2002),andenhancedphenolic acidcontentinSalviamiltiorrhiza hairyroot(Xiaoetal.,2009).

Productionandmetabolismofeachproductintheplantarenot isolated,andtheseprocessesshouldformaninterrelated interac-tionnetworkinwhichmultiplemetabolicpathwaysinterconnect bynodes.Researchershavefoundaninterplaybetweenthe end-productofdifferentmetabolicpathwaysinmanyplants.A theoret-icalmetabolicnetworkdiagramthatcorrelateswiththecontentof glycyrrhizicacid(1)inG.uralensisroothasbeendepictedbasedon acombinationofresearchandliterature(Fig.1).Theoriginalview, whichfocusesonterpenoidmetabolicpathway,hasbeenamplified tocoverallkindsofsecondarymetabolitebiosynthesispathways.

Thecurrent article aimstostudy rootglycyrrhizic acid

con-tentofG.uralensisaftertreatmentswiththreekindsofexogenous

hormones,thecorrelationbetweenmajorendogenous chemical componentsandglycyrrhizicacidcontent,thenpreliminarilyfind phytohormonesandmainchemicalcomponentsassociatedwith glycyrrhizicacidcontent,whichcouldlayasolidfoundationfor definingconstitutionofchemicalcomponentsandmetabolic path-waysinthecontrolnetwork basedonglycyrrhizicacid,thereby completelyexplainingtheunderlyingsynthesismechanismof gly-cyrrhizicacidcombiningfunctionalgenepolymorphism.

Materialsandmethods

Plantmaterials

One-year-old liquorice plant collected from Jingtai, Gansu Province,Chinawereculturedinplastic potsinMay2014filled with sandy loam soil (with identical composition and weight in each pot) in BeijingUniversity of ChineseMedicine medical plantgarden.EverypotcontainedeightG.uralensisplants,which weresubsequentlytreatedwithexogenoushormones.Theseplants weremanagedinparallelaccordingtotheconventional cultiva-tionmethod.Thevoucherspecimen(No.GU-0010)ofthesample, whichwasidentifiedasGlycyrrhizauralensisFisch.exDC,Fabaceae, byprofessorChun-shengLiuintheBeijingUniversityofChinese Medicine,waspreservedinBeijingUniversityofChinesemedicine specimenroom.

Exogenoushormonetreatmenttothesamplecollection

GA3(BioDee),IAA(Bioway)andMeJa(Sigma)atl5,25,40and

100mg/lsolutions,respectively,wereusedasexogenoushormone treatments.G.uralensisplantswereseparatedintotwo batches. Leaveswere sprayedwithprepared hormonesolutions in mid-to-late June and July.Control plants were sprayed withwater. Exogenoushormonesweresprayedeveryotherday(threetimes intotal)andmarkedwhenallwereleavesmoistandliquidwas hangingontheleaftips.Eachconcentrationofthreehormoneswas

usedon16potsofG.uralensisinrandomisedblockarrangement.

Thepotsweremanagedinparallelaccordingtotheconventional cultivationapproach.

ThefirstbatchofG.uralensis(treatedinJune)washarvestedfive timeson10July,20July,20August,20Septemberand20 Octo-ber.ThesecondbatchofG.uralensisplants(treatedinJuly)was harvestedthriceon15August,15Septemberand15October.At eachsamplingperiod,twopots(aboutsixteenplants)ofG.uralensis plantsbelongingtodifferenttreatmentgroups(different concen-trationofhormonetreatmentsandcontrolplants)wereharvested asonesample.Taproots(10cmbelowtherhizome)ofthemwere cutforcontentanalysis.

DeterminationofthesevenmaincomponentscontentofG.

ularensisroot

Chemicalsandmaterials

(3)

Primary metabolite

Glyceraldehyde-3-phosphate

DXP

MEP

DMAP IPP

GGPP

Phytoene

Wiolaksantyna/ Neoxanthin

Xanthoxin Kaurenic acid

Kaurene

2,3-oxidosqualene

Abscisic acid (ABA) Gibberellin (GA) Brassinolide (BR) Glycyrrhizic acid Cycloallopurinol β-amyrin

Cytokinin

(CTK) Liquiritin Ethylene

Salicylic acid (SA)

Indole acetic acid (IAA)

Jasmonic acid (JA) IAId

IPA Tryptophan

12-oxo-phytodienoic acid

Phenylalanine

ACC Methionine

Liquiritigenin Isoliquiritigenin

Aspartic acid

Coumaroyl-CoA Oxaloacetic acid

FPP

IPP DMAPP MVA

HMG-CoA Acetyl-CoA Pyroracemic acid

Malonyl-CoA

ATP/ADP

Erythrose-4-phosphate

Triose phosphate

Shikimic acid

Linolenic acid Phosphoenolpyruvic

acid

ATP/ADP

Trans-Cinnamic acid

Copalyl diphosphate

Fig.1. TheoreticallychemicalcontrolnetworkbasedonglycyrrhizicacidinGlycyrrhizauralensisroot.

gradientpump,onlinedegasser,andDAD detector.Glycyrrhizic acid(1) reference substance was purchased from the National InstitutefortheControlof PharmaceuticalandBiological Prod-ucts(BatchNo. 110731-201317). Referencesubstances, namely liquiritin(2),isoliquiritin(3),liquiritigenin(4),isoliquiritigenin(5) (DingGuoChangSheng),liquiritinapioside(6),isoliquiritinapioside (7)(Yuanmu),HPLC-gradeacetonitrile(Fisher),analyticallypure phosphoricacid,andultrapurewater.

Apparatusandconditions

GradientelutionwasachievedusingaAgilentTC-C18column (250mm×4.6mm, 5␮m), as follows: 0min, acetonitrile–0.05% phosphoric acid (20:80); 8min, acetonitrile–0.05% phosphoric acid(20:80);30min,acetonitrile–0.05%phosphoricacid(38:62); 42min,acetonitrile–0.05%phosphoricacid(50:50).Thedetected wavelengthswereasfollows: 237nm(0–15min,liquiritin apio-side,liquiritin),365nm(15–23min,isoliquiritinapioside, isoliquir-itin), 237nm (23–30min, liquiritigenin), 370nm (30–37min, isoliquiritigenin),237nm(37–42min,glycyrrhizicacid).The col-umntemperatureandflowrateweresetat30◦Cand1ml/min,

respectively.Intheabovementionedchromatographyconditions, theoreticalplatenumberwasmorethan5000forglycyrrhizicacid andthedegreeofseparationbetweenadjacentchromatographic peakwasgreaterthan1.5.

The appropriate seven reference substances were measured accuratelyasstandardstocksolution,themethodconsistsofadding methanolto0.2440mg/mlliquiritinapioside,0.7500mg/ml liquir-itin,0.2280mg/mlisoliquiritinapioside,0.3300mg/mlisoliquiritin, 0.2820mg/ml liquiritigenin, 0.3240mg/ml isoliquiritigenin and 1.0280mg/ml glycyrrhizic acid. The seven above mentioned standardstocksolutionsweremeasuredaccuratelyas1.00,1.00, 0.40,0.60,0.20,0.08,0.80ml,respectively,andweresubsequently transferredin10mlvolumetricflask.Methanolwasaddedtoscale toproduce a mixedreference solution permillilitre containing

24.40␮gliquiritinapioside,75.00␮gliquiritin,9.12␮g isoliquir-itinapioside,19.80␮gisoliquiritin,5.64␮gliquiritigenin,2.59␮g isoliquiritigeninand246.72␮gglycyrrhizicacid.

Approximately0.2gofG.uralensisrootsamplepowder (pass-ing60mesh)wasmeasuredaccuratelyandplacedinsideacovered conicalflask.About50ml70%ethanolwasadded.Theplugwas subsequentlyclosed,andthesampleswereweighed.After30min ofultrasonic treatmentandcooling,thesampleswereweighed again.Complementweightloss,filteringandcollectingsubsequent filtratepassingthrougha0.45␮mmilliporefilter,namelytest sam-plesinthepresentstudy.

Each hormone-treatedG. uralensis root sample wasused as test sample based on the abovementioned method. Moreover, 10␮lsampleswereinjectedatthesetHPLCconditions.Thus,the contentsofthesevenmaincomponentswerecalculatedbyusing theexternalstandardmethod.

Methodinspectionofcontentdetermination

Differentconcentrationsofthemixedreferencesolutionwere accuratelymeasuredat10␮lrespectivelyandinjectedintoHPLC. Injectionvolumewastheabscissa,andthepeakareawasthe ordi-nate,plottingstandardcurveandcalculatingregressionequation (Table1).

G.uralensisrootsamplepowdersat0.2gwereusedtomakethe

testsolutionbasedontheabovemethodoftestsamplepreparation. Moreover,thetestsamplewascontinuouslyinjectedsixtimesat thesetHPLCconditions.ThepeakareaRSD(n=6)ofliquiritin apio-side, liquiritin, isoliquiritin apioside, isoliquiritin, liquiritigenin, isoliquiritigeninandglycyrrhizicacidwere1.2%,1.8%,1.6%,1.1%, 1.0%,1.1%,0.8%,respectively.Thesevaluesindicateagoodprecision oftheapparatus.

(4)

Table1

Regressionequation,correlationcoefficientandlinearityrangeofthesevenmaincomponentsinGlycyrrhizauralensisroot.

Component Regressionequation r Linearityrange(␮g/ml)

Liquiritinapioside(6) Y=13.905X+0.8565 0.9997 2.44–24.4

Liquiritin(2) Y=16.152X+1.9249 0.9998 7.5–75

Isoliquiritinapioside(7) Y=30.667X−0.3979 0.9998 0.912–9.12

Isoliquiritin(3) Y=35.502X−0.8873 0.9997 1.98–19.8

Liquiritigenin(4) Y=34.028X−0.3297 0.9997 0.564–5.64

Isoliquiritigenin(5) Y=69.708X−0.2655 0.9997 0.2592–2.592

Glycyrrhizicacid(1) Y=5.9346X−4.7191 0.9999 24.672–246.72

atthesetHPLCconditions.ThepeakareaRSDofliquiritin apio-side, liquiritin, isoliquiritin apioside, isoliquiritin, liquiritigenin, isoliquiritigeninandglycyrrhizicacidwere1.9%,1.5%,1.8%,1.1%, 0.6%,0.9%,1.2%,respectively,whichalsoindicatesrepeatabilityof themethod.

Thesametestsolutionwasinjectedafterthesamplewasplaced atroomtemperaturefor0, 2,4,8,12, 24h. ThepeakareaRSD ofliquiritinapioside,liquiritin,isoliquiritinapioside,isoliquiritin, liquiritigenin, isoliquiritigenin and glycyrrhizic acid were 1.4%, 1.5%,1.2%,0.8%,0.4%,0.4%and0.4%.Thesevaluesindicatethatthe sevenmaincomponentsinthetestsolutionwerestablefor24h.

Sixcopiesofcontent-knownsamplepowderswereindividually andaccuratelymeasuredtobeabout0.2g.Subsequently,standard stocksolutionsofliquiritinapioside,liquiritin,isoliquiritin apio-side,isoliquiritin,liquiritigenin,isoliquiritigeninandglycyrrhizic acidwereprecisely addedatthefollowing respectivevolumes: 0.51,0.78,0.25,0.30,0.14,0.07and1.44ml.Thetestsolutionwas madebasedontheabovemethodoftestsamplepreparationand wasinjectedundersetHPLCconditions.Afterwards,therecovery ratewascalculated.Theaveragerecoveryrate(n=6)oftheseven abovementionedcomponentswere103.3%,98.2%,101.5%,98.1%, 99.6%,103.2%,98.8%andtheRSDwere1.9%,1.0%,2.9%,1.5%,0.6%, 0.5%,and0.6%.

Thechromatogramofreferencesubstanceandsample(Fig.2) indicatedthatthepeakshapeandseparationweregood.

Statisticalanalyses

StatisticalanalyseswereperformedusingtheSPSS17.0 statisti-calpackage.Thedifferencebetweenmeanvaluesofeachtreatment wasdeterminedbyDuncan’smultiplerangetestandwas consid-eredsignificantat p<0.05. Correlation among componentswas analysed usingPearson bivariatecorrelation.Figures were con-structedusingExcel2007.

Results

InfluenceonglycyrrhizicacidaccumulationinG.uralensisrootof

exogenoushormonetreatment.

EffectofexogenousGA3treatmentonglycyrrhizicacidcontent

Rootglycyrrhizicacid(1)contentofG.uralensisplantstreated withdifferentconcentrationsofGA3inJuneshowedobvious

differ-ences(Fig.3).GlycyrrhizicacidcontentsofmostG.uralensistreated withGA3werehighercomparedwithcontrolplantsineach

samp-lingperiod.GlycyrrhizicacidcontentsofG.uralensistreatedinJuly alsohaddifferences,butwerenotasobviousasthosetreatedin June.TwobatchesofG.uralensisthatweresubjectedtodifferent GA3treatmentswerecomparedforglycyrrhizicacidcontents.GA3

at40mg/lgreatlyimprovedglycyrrhizicacidcontentinalleight samplingperiods,andthedifferencebetweentreatedplantsand controlswassignificant.Thecontentsincreasedby22.73%,12.42%, 34.73%,69.02%,22.34%,14.66%,36.43%and12.09%,respectively. Therefore,40mg/lexogenousGA3couldsignificantlypromote

gly-cyrrhizicacidaccumulationin one-year-oldG. uralensisroot.In

addition, GA3 treatmentin June which was a vigorous growth

periodofplantwasappropriate.

EffectofexogenousIAAtreatmentonglycyrrhizicacidcontent

SimilartoGA3,rootglycyrrhizicacidcontentsofG.uralensis

root treated with differentconcentrations of IAA in June were obviously different (Fig. 4). Glycyrrhizic acid contents of most IAA-treatedplantswerehigherthancontrolplantsineach samp-lingperiod.Rootglycyrrhizic acidcontentsofG.uralensisplants treatedinJulyalsoshoweddifferencescomparedwiththecontrol, butthedifferenceswerenotasobviousasthoseofplantstreated in June. Root glycyrrhizic acidcontents of plants treated with IAA at 40mg/l improved and showed a significant difference compared with controls in the eight sampling periods of two batches.Theincrease in contentfortheeight samplingperiods were18.40%,6.20%, 18.93%,33.86%, 24.20%,13.03%, 30.03%and 4.23%,buttheincreasewaslessthanthatobservedinGA3-treated

plants. Hence,40mg/l exogenous IAA couldobviously promote glycyrrhizic acidaccumulationin one-year-oldG. uralensisroot, andglycyrrhizicacidaccumulationwashigherwhenexogenous hormonetreatmentswereconductedinJunethaninJuly.

EffectofexogenousMeJatreatmentonglycyrrhizicacidcontent

Ingeneral,rootglycyrrhizicacidcontentofG.uralensistreated withdifferentconcentrationsofMeJainJuneobviouslyincreased comparedtocontrolsineachperiod,buttreatedinJulywasnot thatobvious(Fig.5).MeJaat100mg/lappliedinJuneobviously increasedglycyrrhizicacidcontentinthefivesamplingperiods,and thedifferencesweresignificant.Thepercentagesofincreasewere 21.36%,32.79%,11.65%,46.40%and37.84%.InplantstreatedinJuly, MeJaat25mg/lobviouslyinfluencedglycyrrhizicacidcontent,and thepercentagesofincreaseincontentwere23.11%,63.00%and 1.46%inthethreesamplingperiods.Therefore,exogenousMeJaat 100mg/land25mg/ltreatmentsinmid-to-lateofJuneandJuly, respectivelycouldsignificantlypromoteglycyrrhizicacid accumu-lationinone-year-oldG.uralensisroot.Inaddition,similartoGA3

andIAAtreatments,MeJaapplicationinJunewasmoreappropriate.

Correlationbetweenthemaincomponentsandglycyrrhizicacid

contentinG.uralensisroot

Correlationanalyses(Table2)indicatedthatliquiritin(2) con-tent had significant positive correlation with glycyrrhizic acid (1)contentat 0.01 level (r=0.799), which wasstatistically sig-nificantbecauseofp=0.000<0.01. Isoliquiritin(3), r=0.725and p=0.000<0.01, was significantly and positively correlated with glycyrrhizicacidat0.01level.Isoliquiritinapioside(7)hada pos-itiveandstatisticallysignificantcorrelationwithglycyrrhizicacid contentat0.01level,r=0.418,p=0.000<0.01.Inaddition, liquir-itinapioside(6)andglycyrrhizicacidcontentswerealsopositively andstatisticallysignificantlycorrelatedat0.05level,r=0.222and p=0.023<0.05.Therefore,themaincomponentsthatwere

quanti-fiedinG.uralensisrootwerepositivelycorrelatedwithglycyrrhizic

(5)

mAU

35 30 25

20 15

10

5 0

0 5

2

3 4

5 6

7

1 1

2

3 4

5

6 7

10 15 20 25 30 35 40 min

0 5 10 15 20 25 30 35 40 min

mAU

30

25

20

15

10

5

0

A

B

9710

9726

10 693

20 247

21 593

23 969

36 184

38 340

10 669

20 224

21 585

23 995 36 208

38 291

Fig.2.HPLCchromatogramofthemixedreferencesubstance(A)andsample(B).(1)Liquiritinapioside,(2)liquiritin,(3)isoliquiritinapioside,(4)isoliquiritin,(5)liquiritigenin, (6)isoliquiritigeninand(7)glycyrrhizicacid.

20

15

10

5

0

20

15

10

5

0

Glycyrrhizic acid (mg

·g

1dr

y wt)

c a

July 10 July 20

Sample collected period (treatment in June) Sample collected period (treatment in July)

August 20 September 20 October 20 August 15 September 15 October 15 b

d d d

d c a

a b

b

c e

b c a

d e

b d c

a

e

a

e

a b

b

c c b d ba

c d d c

c

GA-A GA-B GA-C GA-D CK

Fig.3.TheeffectofGA3treatmentonglycyrrhizicacidcontentinG.uralensisroot(GA-A,GA-B,GA-CandGA-Dstandfor15,25,40and100mg/lGA3treatment,respectively. Differentlettersfollowedbymean±standarderrorofthreereplicatesindicatedsignificantdifferencesatp<0.05).

Discussion

Currently, wide-ranging studies on MeJa’s influence on G.

uralensishavebeenconducted.Shabaniet al.(2009)foundthat

MeJa treatment increased glycyrrhizic acid content in

65-day-old in vitro plantlet roots of G. uralensis, but restrained root

growth. These results were consistent with our study results. Besides the influence of MeJa on glycyrrhizic acid (1), Yang

etal.(2008)indicatedMeJatreatmentimprovedtotalflavonoids production insuspension culturecells of Glycyrrhizainflata but restrainedcellsgrowth.Hayashietal.(2003)reportedthatMeJa promotedsoyasaponinaccumulationbecauseitisconnectedwith a keyenzyme activitythat couldimprovebiosynthesis or gene expressionquantity.Intheendogenouschemicalcomponents

net-work of G. uralensis, many studies confirmed that liquiritin, a

majorflavonoidcomponent,wassignificantlypositivelycorrelated

a b

d b b

a c

c c

a

d b a

d e

d

d

a b b

b a

a

a b

c c c c

e d c e

e d e

a

e d

d

July 10 July 20

Sample collected period (treatment in June) Sample collected period (treatment in July)

August 20 September 20 October 20 August 15 September 15 October 15

ME-A ME-B ME-C ME-D CK

18

15

0 3 6 9 12

18

15

0 3 6 9 12

Glycyrrhizic acid (mg

·g

1dr

y wt)

(6)

July 10 July 20

Sample collected period (treatment in June) Sample collected period (treatment in July)

August 20 September 20 October 20 August 15 September 15 October 15

IAA-A IAA-B IAA-C IAA-D CK

20 a b

dc

c d

b b

b b b d d d

a

a a a

c

c c c

c c

a a a

a

b b

b

e e

e e

d

d d

e e 15

10

5

0

20

15

10

5

0

Glycyrrhizic acid (mg

·g

1dr

y wt)

Fig.5. TheeffectofMeJatreatmentonglycyrrhizicacidcontentinG.uralensisroot(MeJa-A,MeJa-B,MeJa-CandMeJa-Dstandfor15,25,40and100mg/lMeJatreatments, respectively.Differentlettersfollowedbymean±standarderrorofthreereplicatesindicatedsignificantdifferencesatp<0.05).

with glycyrrhizic acid (Guo et al., 2014), which was consis-tentwiththeresultsobtainedinthepresent study.Otherthan secondarymetaboliteslikephytohormonesandmedicinal compo-nents,primarymetabolitesofmedicinalplantswerealsoessential ‘sources’inthechemicalnetwork.Many researchershave stud-iedphysicochemicalproperties andfunctional characteristicsof polysaccharideinG.uralensis(WanandCheng,2009),andreported that starch contenthad a positive correlation withglycyrrhizic acid(Liu etal.,2009).Allthesedatalaida solid foundationfor establishingachemicalregulationnetworkbasedonglycyrrhizic acid.

Chemicalregulation,one ofthemaincontroltechnologiesof cropsandmedicinalplantsintherecentyears,couldadjustplant growthand metabolism by changingthe endogenous hormone system.Thisstudyinvestigatedtheeffectsofdifferenthormone treatments(GA3,IAAandMeJa),timesofapplication,

concentra-tionandsamplecollectionperiodonrootglycyrrhizicacidcontent. Phytohormones,appropriate concentration and treatmenttime, whichcouldsignificantlyaffectglycyrrhizicacidcontentwere pri-marily defined,providing a significant guidefor producing and cultivatingmedicinalplants.Changesofglycyrrhizicacidcontent showedsomeregularitiesunderdifferenthormonetreatmentsand sampling times. Parallel conventional cultivation and hormone treatmentsaswellascontent determinationofgroupsampling weremaximumreducederror,therebyensuringtheaccuracyand reliability of experimental results. Results from different time nodesshowedthewholetrendwasthat mostglycyrrhizic acid contentinG.uralensisrootatfirstsamplingtimeafterhormone treatmentobviouslyincreasedthenevidentlydeclined,afterwhich content increased again and tended to steady. Finally, a slight dropincontentwasobserved.Thepossiblereasonforthis phe-nomenonwasthatthehormonetreatmentstimulatedtheplant, therebyinducingstressresponseandmetabolisingmoresecondary products.Afterwards,alargeamountofhormoneswasabsorbed, therebyacceleratingmetabolismorthemobilisationofreservesin plantsandleadingtothedecreaseinhormonecontent.Then,a rela-tivelybalancedstateisreachedthroughautogenousregulation,and agreatincreaseofglycyrrhizicacidcontentatthisperiodconfirmed thatphytohormonescouldpromoteaccumulationofglycyrrhizic

acid. As growth period progressed, during which metabolism shiftedtodormancyperiod,synthesisrateofsecondarymetabolites inplantalsograduallydecreased.Resultsfromdifferent concen-trationsofexogenoushormonesindicatedtoo-lowconcentrations weakly affected glycyrrhizic acid content and showed shorter maintenancetimethantheoptimumconcentration.Too-high con-centrations of hormoneslikely inhibited growth.The optimum concentrationandtreatmenttimevariedaccordingtoplantspecies. Thechemicalcontrolnetworkbasedonglycyrrhizicacidinrootof

G.uralensisshouldincludeGA3,IAA,MeJaandliquiritin,

isoliquir-itin,isoliquiritinapiosideandliquiritinapioside.Besidesthethree kindsofhormonesstudied,ABA,cytokinin(CTK),brassinolide(BR) havealsobeeninvestigatedinpreliminaryexperiments,andresults indicatedappropriateconcentrationofABAandCTKcould signif-icantlyimprovedglycyrrhizicacidcontent.However,theeffects ofdifferenthormonetreatmentsappliedatdifferenttimesonG.

uralensis,endogenoushormoneslevelsafterexogenoushormones

absorbedbyleavesandtransitedtorootandontheglycyrrhizicacid anabolismmechanismneedtobestudiedfurtherfromthe perspec-tivesofplantphysiology,phytohormonessyntheticpathwayand actionmechanismandbiosyntheticpathways.

Plantisanorganicunity,andmetabolicpathwaysarenot iso-lated.Becauseofthecloserelationshipamongvariousmetabolic pathways,thechangeinactivityofonemetabolicpathwaycould obviouslyaffecttheothermetabolicpathways,therebyresultingin thefinalcontent.Researchershavereportedthatimprovementin thefunctionalgeneexpressionquantityofonemetabolicpathway couldenhancetheothers’,therebyincreasingthecontentofthe endproduct.Moreinterestingly,improvedfunctionalgene expres-sionquantityofonemetabolicpathwaycouldalsoreducethatof otherpathways, therebyleading tothedecreasein thecontent oftheend product.Regulatory mechanismsofglycyrrhizic acid theoreticalcorenetworkcouldbecategorisedintotwokinds,as follows:eachbranchpathwayinthenetworkenjoysacommon substrate,andchangeofdifferentbranchmetabolicfluxescould controlglycyrrhizicacidcontent.Endogenouschemicalcomponent contenttransformationinG.uralensis,especiallywhenthe concen-trationofaphytohormoneismaintainedatahighlevelforalong timebecauseofgenepolymorphism,thusinfluencingbiosynthesis

Table2

CorrelationamongthemaincomponentsandglycyrrhizicacidcontentinGlycyrrhizauralensisroot.

Glycyrrhizicacid(1) Liquiritin(2) Isoliquiritin(3) Isoliquiritinapioside(7) Liquiritinapioside(6) Liquiritigenin(4) Isoliquiritigenin(5)

Pearsoncorrelation significance(bilateral)

0.799a 0.725a 0.418a 0.222b 0.095 −0.045

0.000 0.000 0.000 0.023 0.338 0.654

n 104 104 104 104 104 104

(7)

enzymeactivityofglycyrrhizicacidandregulatingglycyrrhizicacid content.Studyingfunctionalgenepolymorphisminthecore con-trolnetworkofactivecomponentscontentcouldentirelyuncover geneticmechanismsunderlyingthechangesintheactive compo-nentconcentrationinmedicinalplants.

Authors’contribution

YLandCY,asjointfirstauthors,designedthestudyandwrote the manuscript under the guidance of CL. YL, JQ and YZ per-formedtheexperiments.LWandXZwasinchargeofculturingG.

uralensisplants.YXandGRwereresponsibleforstatistical

analy-sis.Allauthorscontributedextensivelytotheworkpresentedand approvedthismanuscript.

Conflictsofinterest

Theauthordeclaresnoconflictsofinterest.

Acknowledgments

ThisworkwassupportedbytheNationalNaturalScience Foun-dationofChina(81373909).WewishtothankSijiaWang(HuQiao Pharmaceuticalco.EngineeringResearchCenter,Anhui,China)for thehelpinmethodestablishment.Wealsowouldliketosincerely thankalltheothermembersinthelabandHenanProvinceforDrug EvaluationCertificationCenterfortheirgeneroushelpwithplant cultivationandcriticalreviewofthismanuscript.

References

Afreen,F.,Zobayed,S.M.A.,Kozai,T.,2005.SpectralqualityandUV-Bstressstimulate glycyrrhizinconcentrationofGlycyrrhizauralensisinhydroponicandpotsystem. PlantPhysiol.Biochem.43,1074–1081.

Arroo,R.,Develi,A.,Meijers,H.,Westerlo,E.,Kemp,A.,Croes,A.,Wullems,G.,1995. Effectsofexogenousauxinonrootmorphologyandsecondarymetabolismin Tagetespatulahairyrootscultures.Physiol.Plant93,233–240.

Bulgakov,Tchernoded,V.P.,Mischenko,G.K.,Glazunov,N.P.,2002.Effectofsalicylic acid,methyljasmonate,ethephonandcantharidinonanthraquinoneproduction byRubiacordifoliacallusculturestransformedwiththerolBandrolCgenes.J. Biotechnol.97,213–221.

Cai,Y.Z.,Luo,Q.,Sun,M.,Corke,H.,2004.Antioxidantactivityandphenolic com-poundsof112traditionalChinesemedicinalplantsassociatedwithanticancer. LifeSci.74,2157–2184.

Guo,Z.Z.,Wu,Y.L.,Wang,R.F.,Wang,W.Q.,Liu,Y.,Zhang,X.Q.,Gao,S.R.,Zhang, Y.,Wei,S.L.,2014.Distributionpatternsofthecontentsoffiveactive com-ponentsintaprootandstolonofGlycyrrhizauralensis.Biol.Pharm.Bull.37, 1253–1258.

Hayashi,H.,Huang,P.Y.,Inoue,K.,2003.Up-regulationofsoyasaponinbiosynthesis bymethyljasmonateinculturedcellsofglycyrrhizaglabra.PlantCellPhysiol. 44,404–411.

Hou,J.L.,Li,W.D.,Zheng,Q.Y.,Wang,W.Q.,Xiao,B.,Xing,D.,2010.Effectoflow lightintensityongrowthandaccumulationofsecondarymetabolitesinroots ofGlycyrrhizauralensisFisch.Biochem.Syst.Ecol.38,160–168.

Liu,C.L.,Wang,W.Q.,2009.Theinfluenceoftheexogenouscalciumonthe accu-mulationofglycyrrhizininthecultivatedGlycyrrhizauralensisFisch.Chin.Arch. Trad.Chin.Med.27,2281–2283.

Liu,C.S.,Wang,X.Y.,Liu,R.Q.,Nan,B.,Zhang,Y.J.,2009.Researchoncorrelationof starchandglycyrrhizicacidcontentinGlycyrrhizauralensisFisch.Chin.J.Chin. Mater.Med.34,2831–2832.

Li,W.D.,Hou,J.L.,Wang,W.Q.,Tang,X.M.,Liu,C.L.,Xing,D.,2011.Effectofwater deficitonbiomassproductionandaccumulationofsecondarymetabolitesin rootsofGlycyrrhizauralensis.Russ.J.PlantPhysiol.58,538–542.

Li,W.,Song,X.B.,Zhang,L.J.,Li,W.,Yu,H.S.,An,J.,2012.Advancesinresearch onchemicalconstituentsofRadixGlycyrrhizae.J. LiaoningUniv.TCM14, 40–43.

LShabani,L.,Ehsanpour,A.A.,Asghari,G.,Emami,J.,2009.Glycyrrhizinproduction byinvitroculturedGlycyrrhizaglabraelicitedbymethyljasmonateandsalicylic acid.Russ.J.PlantPhysiol.56,621–626.

Lu,M.,Wong,H.,Teng,W.,2001.Effectsofelicitationontheproductionofsaponin incellcultureofPanaxginseng.PlantCellRep.20,674–677.

Qian,Z.G.,Zhao,Z.J.,Xu,Y.F.,Qian,X.H.,Zhong,J.J.,2004.Novelchemically synthe-sizedhydroxyl-containingjasmonatesaspowerfulinducingsignalsforplant secondarymetabolism.Biotechnol.Bioeng.86,809–816.

Rhodes,M.J.C.,Parr,A.J.,Giuletti,A.,Aird,E.L.H.,1994.Influenceofexogenous hor-monesonthegrowthandsecondarymetaboliteformationintransformedroot cultures.PlantCellTiss.Organ.Cult.38,143–151.

Wan,C.Y.,Wang,D.,Hou,J.L.,Wang,W.Q.,Chen,H.J.,Liu,F.B.,2011.Effectofsalt stressondifferentcomponentsofGlycyrrhizauralensis.Chin.Trad.Herb.Drugs 42,2312–2316.

Wan,F.C.,Cheng,A.W.,2009.PolysaccharideisolatedfromGlycyrrhizauralensisFisch inducesintracellularenzymeactivityofmacrophages.Mediterr.J.Nutr.Metab. 1,165–169.

Wang,D.,Wan,C.Y.,Hou,J.L.,Wang,W.Q.,Li,W.D.,Wei,S.L.,2010.Effectof differ-entconcentrationsofMoonyieldandaccumulationofactiveconstituentsof GlycyrrhizauralensisFisch.Agric.Sci.Technol.11,17–20,+49.

Xiao,Y.,Gao,S.H.,Di,P.,Chen,J.F.,Chen,W.H.,Zhang,L.,2009.Methyljasmonate dramaticallyenhancestheaccumulationofphenolicacidsinSalviamiltiorrhiza hairyrootcultures.Physiol.Plant137,1–9.

Yang,Y.,Zheng,H.,He,F.,Ji,J.X.,Yu,L.J.,2008.Theeffectsofmethyljasmonateon theflavonoidssynthesisincellsuspensioncultureofGlycyrrhizainflate (Legu-minosae).ActaBot.Yunnanica30,586–592.

Yin,S.S.,Zhang,Y.,Gao,W.Y.,Wang,J.,Man,S.L.,Liu,H.,2014.Effectsofnitrogen sourceandphosphateconcentrationonbiomassandmetabolitesaccumulation inadventitiousrootcultureofGlycyrrhizauralensisFisch.ActaPhysiol.Plant36, 915–921.

Zhang,Y.S.,Ye,H.C.,Liu,B.Y.,Wang,H.,Li,G.F.,2005.ExogenousGA3and flower-inginducetheconversionofartemisinicacidtoartemisinininArtemisiaannua plants.Russ.J.PlantPhysiol.52,58–62.

Yu,K.W.,Gao,W.,Hahn,E.J.,Paek,K.Y.,2002.Jasmonicacidimprovesginsenoside accumulationinadventitiousrootcultureofPanaxginsengCAMeyer.Biochem. Eng.J.11,211–215.

Zhang,Q.,Ye,M.,2009.ChemicalanalysisoftheChineseherbalmedicineGan-Cao (licorice).J.Chromatogr.A1216,1954–1969.

Zhang,Y.B.,Xu,W.,Yang,X.W.,Yang,X.B.,Wang,W.Q.,Liu,Y.M.,2013.Simultaneous determinationofnineconstituentsintherootsandrhizomesofGlycyrrhiza uralensisfromdifferentproducingareasbyRP-HPLC.Chin.J.Pharm.Anal.33, 214–229.

Imagem

Fig. 1. Theoretically chemical control network based on glycyrrhizic acid in Glycyrrhiza uralensis root.
Fig. 2. HPLC chromatogram of the mixed reference substance (A) and sample (B). (1) Liquiritin apioside, (2) liquiritin, (3) isoliquiritin apioside, (4) isoliquiritin, (5) liquiritigenin, (6) isoliquiritigenin and (7) glycyrrhizic acid.
Fig. 5. The effect of MeJa treatment on glycyrrhizic acid content in G. uralensis root (MeJa-A, MeJa-B, MeJa-C and MeJa-D stand for 15, 25, 40 and 100 mg/l MeJa treatments, respectively

Referências

Documentos relacionados

The cholinesterase (both AChE and BuChE) inhibitory activities of the crude extract, fractions, precipitate, supernatant and isolated compounds were carried out using a 96

Although clinical biochemistry analysis showed liver and kidney damage, none of these organs from the BA extract treated rats showed any significant alteration in cell structure or

This was observed in the present study; however, when the group that received cisplatin was compared with the group that received cisplatin/bixin, it is evident that bixin

HPLC chromatograms of flavonoids standards (upper chromatogram; nor- malized view) and aqueous extracts of the leaves of Passiflora species.. For details of the chromatographic

Cross sections and scanning electron microscopy of leaves blade and petiole showed a simple organization with simple unicellular trichomes and cells containing tannins, and crystals

In order to understand the molecular basis for its traditional use in the treatment of chronic inflammatory diseases and considering the pivotal role of T-cells on the maintenance

a Institut für Organische Chemie, Fakultät für Chemie und Mineralogie, Universität Leipzig, Leipzig, Germany b Herbarium Truxillense (HUT), National University of Trujillo,

Various other workers gave a comparative account of antioxi- dant activity of flavonoids in different in vitro antioxidant assays and attributed the difference in their activity to