• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número6

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número6"

Copied!
7
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Phytochemical

composition

and

chronic

hypoglycemic

effect

of

Rhizophora

mangle

cortex

on

STZ-NA-induced

diabetic

rats

Adolfo

Andrade-Cetto

a,∗

,

Sonia

M.

Escandón-Rivera

a

,

Gerado

Mata

Torres-Valle

a

,

Leovigildo

Quijano

b

aLaboratoriodeEtnofarmacología,FacultaddeCiencias,UniversidadNacionalAutónomadeMéxico,México,DF,Mexico

bInstitutodeQuímica,UniversidadNacionalAutónomadeMéxico,México,DF,Mexico

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received5May2017 Accepted25September2017 Availableonline2November2017

Keywords:

Type2diabetes Redmangrove Hypoglycemic Hypolipidemic

a

b

s

t

r

a

c

t

Type2diabetesisamajorhealthprobleminMexico,asitisinothercountries,isachroniccondition thatdevelopswhenthebodycannotproduceenoughinsulinorcannotuseitappropriately.Bothinsulin deficiencyandinsulinresistanceleadtohighbloodglucoselevels.InMexico,peoplewithdiabetesare knowntousethedecoctionofredmangrove(RhizophoramangleL.,Rhizophoraceae)barktocontrolblood glucoselevels.Therefore,inthisstudy,wesoughttoinvestigatethechronichypoglycemicand hypolipi-demiceffectsofR.mangle;wealsoelucidatesomeofthemajorphytochemicalcompoundsofR.mangle. Toanalyzethehypoglycemicandhypolipidemiceffects,weusedratswith streptozotocin–nicotinamide-inducedhyperglycemia;theratswereclassifiedintofourgroups(sixratseach),basedonthetreatment given,asfollows:group1,non-hyperglycemiccontrol;group2,hyperglycemiccontrol;group3, gliben-clamide(5mg/kgbodyweight);andgroup4,Rhizophoraethanol–waterextract(90mg/kg).Theextract orglibenclamidewasorallyadministered,dissolvedin1.5mlofphysiologicalNaCl-solution,twiceaday (inthemorningandintheevening)overaperiodof42days.Themethanolicextractwasusedtoelucidate themaincompoundspresentinR.mangleviaconventionalphytochemicalmethods,suchasTLC,HLPC, UPLC–DAD–MS,andNMR.Thefollowingcompoundsweredetected:cinchonainsIaandIb, catechin-3-O-rhamnopyranoside,epicatechin,lyoniside,andnudiposide.ThedailyadministrationofRhizophora

ethanol–waterextract,similartothetraditionalusagetocontroltype2diabetes,wasshowntoexert chronichypoglycemicandhypolipidemiceffects.Thiseffectmaybeassociatedwhittheconstituentsin theextract.ThesefindingssuggestthatR.mangleanditsconstituentscouldbepotentiallyusedtotreat type2diabetes.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Diabetesisachronicconditionthatoccurswhenthebody can-notproduceenoughinsulinorcannotuseitappropriately.Intype2 diabetes(T2D),thebodycanproduceinsulinbutbecomesresistant toit,causingineffectivenessofinsulin.Consequently,insulin lev-elsmaybecomeinsufficient,andthusinsulinresistanceandinsulin deficiencyresultinhighbloodglucoselevels(IDF,2015)and(ADA, 2015).IndividualswithT2Dsufferfrominsulinresistanceand usu-allyrelative,ratherthanabsolute,insulindeficiency.However,at leastinitially,andoftenthroughouttheirlifetime,theseindividuals maynotrequireinsulintreatmenttosurvive.

∗ Correspondingauthor.

E-mail:aac@ciencias.unam.mx(A.Andrade-Cetto).

In2015,theIDFestimatedthat415millionpeopleareliving withdiabetesworldwide;Mexicostandssixthamongthetopten countries,with11.5millionpeople(IDF,2015).Diabetes-associated complications,suchascardiovascular disease,blindness,kidney failure,andlower-limbamputation,areamajorcauseofdisability, lowqualityoflife,andprematuredeath.

AmongtheWorldHealthOrganizationlistofessentialdrugs usedforthetreatmentofdiabetes,metformin(abiguanide)and gli-clazide(asulfonylurea)arewell-establishedmedicationsandthey shouldbeavailableandeasilyaccessible(accordingtoneed),toall patientswithT2D(IDF,2015).Itisofsignificancethatmetformin wasoriginally isolated from theFrench lilac(Galega officinalis)

(Witters,2001).

PlantshavebeenusedformedicinalpurposesinMexicosince pre-Hispanictimes.ThehighprevalenceofT2DamongMexicans, associatedtovulnerableeconomicstability,andthefactthatpeople trusttheeffectivenessofmedicinalplantshaveledtotheincreased useofplantstotreatT2D.Thesefactorshavemadeitessentialto

https://doi.org/10.1016/j.bjp.2017.09.007

(2)

studythepharmacologicalandphytochemicalpropertiesofplants withhypoglycemicpropertiesinMexico.

RhizophoramangleL.,Rhizophoraceae(Andrade-Cettoand

Hein-rich,2005),traditionallyknownas“mangrove”or“redmangrove,”

iswidelyusedforthetreatmentofdiabetesinMexico.Itisa 25-m-talltreethatgrowsinmangrovesanddistributedalongthePacific andGulfCoastsofMexico.Ithasatall,straighttrunkwithabundant roots,aroundtreetopwithsympodialbranching,bitter-redwood, andcortex(PenningtonandSarukhán,1998).

The anti-hyperglycemic effect of the plant was previously reportedbyAlarcon-Aguilaraetal.(1998),theytesttheeffectof 28 plants in rabbits under a glucose tolerancetest, the results obtainedfromthevarianceanalysisshowedthatR.mangle signifi-cantlydecreasedthehyperglycemicpeakby16.1%.

Inapreviousstudyperformedbyourgroup,the ethnobotan-ical relevance and the acute hypoglycemic effect of R. mangle

werereported(Andrade-CettoandMares,2012),inthatstudywe confirmthat thedoseof 90mg/kg hasthebetterhypoglycemic effect, this dose is thetraditional used dose multiplied by 10. In the present study, we aimed to examine thechronic hypo-glycemiceffectoftheethanolicextractof thebarkofR.mangle

in streptozotocin–nicotinamide (STZ-NA)-induced diabetic rats; we also evaluated the lipid profile and glycated hemoglobin after chronicadministration. In addition, we sought to charac-terizethemajorphytochemicalcompoundspresentintheplant cortex.

Materialsandmethods

Plantextracts

Basedontheresultsofthepreviousstudyinwhichthewater and ethanol–water extracts (EW) were tested (Andrade-Cetto

andMares,2012),weselectedtheethanol–waterextractwhich

is similartothe traditional usedinfusion and presented better activity(Fig.1).New botanicalsamplesofRhizophoramangleL., Rhizophoraceae, werecollected withthe help of informants in Manialtepec,OaxacaMexico,theoriginalplantwasdepositedat theIMSS, Herbarium in MexicoCity withthe voucher number IMMSM15816.Theextracttobeusedinpharmacologicaltestswas preparedaspreviouslydescribed;inbrief;a 50gsampleofthe plantmaterialwasaddedto500mlofanethanol–watermixture (1:1),itwasthenheatedat40◦Cfor4hbeforebeingfilteredfor threetimes.Thiswasfollowedbyeliminationofthesolventunder reducedpressure ina Büchi rotaryevaporator.The yieldofthe extractethanol–water(1:1)was14.75g.

Forthephytochemicalidentificationofthemaincompoundsof thecortex;themethanolicextract(ME)waspreparedusing200g ofplantmaterialthroughSoxhletextraction.Defattingwith hex-ane(24h)followed bymethanol (MeOH)extraction(48h), and theresultingextractevaporatedunderreducedpressureuntilit reacheddrynessproducing15gofME.

Compoundsisolation

HPLC–DAD–MSanalysis was performed to confirm that the ethanol–water extract used in thepharmacological testing has a similarphytochemical profilethanthe water and methanolic extracts(Fig.1),butthelastonewasmoreaccessibleforthe isola-tionprocess.

AsampleofME(3g)wasdissolvedinMeOHandpartitioned withhexane toyield a hexane soluble fraction(HSF; 50mg), a MeOH-solublefraction(MSF, 2.90g), and a red precipitate(RP; 28mg).

The MSF was subjected tocolumn chromatography (CC) on 360gofsilicagel(70–230mesh,Merck)startingwithhexane100% (400ml),increasingthepolaritywithEtOAcusingamixtureof hex-ane/EtOAcaseluent,until100%(500ml),andsubsequentlywith MeOHuntil100%(500ml).Thisprocessledtofourteenprimary fractions(MSF1–MSF14).FractionMSF8(400mg)wassubjected tosilicagelCCelutedwithEtOAc/MeOH(10:0–0:10),thisprocess ledtofivesubfractions(MSF8.1–MSF8.5).Preparativethinlayer chromatography (TLC)(Macherey&Nagel,0.25mm)of fraction MSF8.2(20mg)usingEtOAc/MeOH/H2O,7:2:1,aseluentresulted intheisolationofamixtureof1and2(10mg).PreparativeTLC (EtOAc/MeOH/H2O,7:2:1)offractionMSF8.3(80mg)resultedin theisolationof3(23.7mg)and4(13mg).FSM8.4wasresolvedby HPLC(Nucleosil250×10mmi.d.,5␮m,C18,Macherey&Nagel); usingagradientofMeCN/H2Ostartingwith20/80to70/30during 17min(3ml/min;250and280nmUV-det.)toobtain10mgofa mixtureof5and6withanRt10.5min.

AnefficientmethodbasedonHPLC–DAD–MStechnique was usedforidentifyingtheisolatedcompoundsfromthe methano-licextractcorrespondingto(1–6)inthewaterandethanol–water extract.ThecomponentswereseparatedonaKinetexHPLC/UPLC XB-C18 column (50×2.1mm i.d., 2.6␮m) at 25◦C. The mobile phaseconsistedofawatergradient(containing0.1%FA)(A)and acetonitrile(B).Thefollowinggradientelutionprogramwasused: 1%Bduring0.5min,1–35%B0.5–15min,35–100%B15–18min, 100–1%B18–20minataflowrateof0.2mlmin−1,theinjection volumenwas3␮l.Majoritycompoundsofthetradicional decoc-tionandtheethanol–waterextractwereidentifiedandareshown inFig.1.

Generalexperimentalprocedures

NMR spectraincludingHSQC,HMBC,COSY,andTOCSYwere recordedinaVarianInovaspectrometerat500(1H)and125MHz (13C) or a JEOL-ECA at 300 (1H) and 75MHz (13C); chemi-cal shifts were recorded as ı values. HRESIMS were recorded on a Thermo Scientific LTQ Orbitrap XL hybrid FTMS (Fourier transform mass spectrometer). Data were collected in both positive and negative ionization modes via a liquid chromato-graphic/autosampler system that consisted of an Acquity UPLC system.ProfileHPLC–DAD–MSwereperformedusinganAgilent 1200InfinitysystemequippedwithaG1312-95006Binarypump, G1329-90012 Autosampler, controlled by Agilent ChemStation software,coupledtoaWatersdiodearraydetector(DAD)anda Squire6000BrukerESI-MSinnegativemodeionpolarity.

Analyticaland preparativeHPLCanalyseswereperformedin anAgilent1260InfinitysystemequippedwithaG1311B Quater-narypump,G1367EAutosampler,G1315CDADVL+andcontrolled byAgilentChemStationsoftware.Foranalyticaland semiprepara-tiveHPLC,Macherey-Nagel(NucleosilC18,250×4.6mmi.d.,5␮m), Macherey-Nagel(NucleosilC18,250×10mmi.d.,5␮m)columns, respectively,wereused.Columnchromatography(CC)wascarried outonsilicagel(70–230mesh,Merck).Thin-layer chromatogra-phyanalysiswascarriedoutonsilicagel60F254plates(Macherey &Nagel)usingcericsulfate(10%)solutioninH2SO4ascolorreagent.

Experimentalanimals

Eight-week-oldWistarratsweighing200–250gwereobtained fromtheBioteriumoftheScienceSchool,UNAM,andwere accli-matedwithfreeaccesstofoodandwaterforatleastoneweek inanair-conditionedroom(25◦Cwith55%humidity)ona12h light–dark cycle prior to performing theexperiments. The ani-malswerehandledaccordingtotheNationalInstituteofHealth,

USA(CommitteefortheUpdateoftheGuidefortheCareandUse

(3)

A

B

C

0.50

0.40

0.30

0.20

0.10

0.00

0.50

0.40

0.30

0.20

0.10

0.00

0.60

0.50

0.40

0.30

0.20

0.10

0.00

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

AU

AU

AU

Minutes

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

Minutes

Fig.1.HPLC–DADprofilecomparisonofthemethanolic,ethanol–waterandwaterextracts.(A)Methanolicextract,(B)waterextract,(C)ethanol–waterextract.

as described by Masiello et al. (1998). In brief, the rats were fastedovernight and injected intraperitoneallywith 150mg/kg nicotinamide(NA)(Sigma,N3376)15minbeforeanintravenous injectionof65mg/kgstreptozotocin(STZ)incitratebuffer(Sigma, S0130).Diabetes was identified by polydipsia, polyuria and by measuringnon-fastingplasmaglucoselevels48hafterinjection. Animalswhichdidnotdevelopmorethan250mg/dlglucoselevels wererejected.

The hyperglycemic animals wereclassified into four groups (1–4) each of them with six rats. Group 1 as normal control received1.5ml ofphysiologicalNaCl-solution(vehicle),group2

as hyperglycemic control received also 1.5ml of physiological NaCl-solution,group3wasgivena standard oralhypoglycemic agent, glibenclamide (5mg/kg bodyweight (bw)), in the same vehicle, while group 4 received Rm-EW (90mg/kg bw) dis-solved in 1.5ml of physiological NaCl-solution. The extract or the hypoglycemic agent was orally administered twice a day (in the morning and in the evening) over a period of 42 days. All groups were fed Purina Rodent Laboratory Chow 5001.

(4)

fortheUpdateoftheGuidefortheCareandUseofLaboratory

Ani-mals(2015).Allmethodsusedinthisstudywereapprovedbythe

InternalCouncilofthe“FacultaddeCiencias”oftheUniversidad NacionalAutónomadeMéxico.Glucosemonitoringwasperformed weeklyand analyzedwithglucose teststripsand a glucometer Accutrend® plus.Glycatedhemoglobin(HbA1c)wasanalyzedin aDCAVantage®Siemens,equipment.Thelipidprofile(HDLTGand cholesterol)weremeasuredwithCardioCheck®andstripsPanels® PTS.VLDLwascalculatedusingthefollowingVLDL=0.2×TG.Both HbA1candlipidprofilesweremeasuredondays0,14,28and42 aftertheinitiationofadministrationoftreatments.

Statisticalmethods

Thedatawerestatisticallyanalyzedbyunpairedt-testwiththe helpofthesoftwareGraphPadPrism.Theplasmaglucoselevels wereexpressedasthemean(S.E.M.).

Resultsanddiscussion

Ethnobotany

TraditionaluseofR.mangle cortexforthetreatmentoftype 2diabeteswasconfirmedbythetraditionalhealerswhoassisted duringtheplantcollectioninManialtepec,Oaxaca,Mexico.Forthis purpose,aroughapproximationof20gofplantcortexareboiled in500mlofwaterfor15min,oncethedecoctioniscold,itis con-sumedthroughoutthedayasthesocalled“aguadeuso”.

Compoundidentification

CinchonainsIaandIb(1and2)

Compounds 1 and 2 were identified by their 1H and 13C NMRspectraldata,included2Dexperiments(COSY,HSQC,HMBC, NOESY),andmassspectraldata,whichallowedtheidentification ofcompounds1and2asamixture.

Themassspectrum(ESI-MSnegativeionmode),showedonly onepseudomolecularionatm/z451.66[M−H]−indicatinga molec-ularformula C24H20O9 for both compounds 1and 2, whilethe 1Hand13CNMRspectrashowedduplicatedsignals.The1HNMR

spectrum (CD3OD, 300MHz) showed pairs of signals at ıH(1/2)

4.81/4.87(brs,H-2),ıH(1/2)4.25/4.19(m,H-3)andıH(1/2)2.90/2.86

(m,H-4)suggestingthepresenceofa flavan-3-olmoietyinthe molecule.ThetypicalABXspinsystemduetothearomatic pro-tonsoftheB-ring,werealsopresentaspairsofsignals,atıH(1/2)

6.97/6.84(d,J=1.7/1.9Hz,H-2′),ı

H(1/2)6.75/6.69(d,J=8.2/8.1Hz,

H-5′)andı

H(1/2)6.80(dd,J(1)=1.7,7.9)/6.62(dd,J(2)=2.1,8.1Hz) (H-6′). Two singlet signals at ıH(1/2) 6.20/6.21 suggested a tri-substituted A-ring. The presence of a phenylpropanoid moiety relatedwithcaffeicacidwasindicatedbyanextraaromaticABX systemwithsignalsatıH6.64(d,J=7.6Hz, 1H,H-5′′),6.44(dd, J=8.0,2.2Hz,1H,H-6′′),6.55(d,J=2.2Hz,1H,H-2′′),inaddition toan aliphaticABX systemdue to themethine CH-7′′ and the methyleneCH2-8′′,atıH4.55(dd,J=6.8,1.3Hz,1H,H-7′′),and3.0 (m,2H,H-8′′).

Theabovedataagreewiththosepublishedforthemixtureof cinchonainsIa(1)andIb(2),isolatedfromTrichiliacatigua, Meli-aceae (Pizzolatti et al.,2002). The13C NMR dataand 2D NMR experiments(COSY,HSQC,HMBC,NOESY;300MHz,acetone-D6) confirmedtheaboveassignments.HMBCcorrelationofH-8′′and H-7′′ withthetertiarycarbonC-8(ıC1/2 105.7/105.9),indicating thatthephenylpropanoidunit wasattachedtotheC-8position oftheepicatechinmoiety.TherelativeconfigurationattheC-7′′ stereogeniccenterofcompounds1and2wasestablishedbased onthecorrelationsobservedintheNOESYexperiment.Thus,for compound1acorrelationbetweenH-2andH-2′′/6′′wasobserved;

whilefor compound2NOESY correlationbetweenH-7′′ and H-2′/6wasobserved.ThesameNOESYinteractionswerepreviously reportedbyResendeetal.(2011)forcinchonainsIaandIb.

Catechin-3-O-rhamnopyranoside(3)

Compound 3 wasobtained as a yellowish amorphous solid, the molecular formula C21H24O10 was deduced from the ESI-MS[M+H]+ion atm/z437.314and 435.73[MH].The1Hand 13CNMRspectraand2DNMRexperiments(COSY,HSQC,HMBC,

NOESY,TOCSY;500MHz,CD3OD)indicatingthepresenceof cate-chinandrhamnosemoietiesinthemolecule.The1HNMRspectrum showedtheABXaromaticsystemwithsignalsatıH/C6.84/115.1

(d,J=2.0Hz,1H,H-2′/C-2),6.76/116.1(d,J=8.0Hz,1H,H-5/C-5), 6.71/119.8(dd,J=8.0,1.8Hz,1H,H-6′/C-6)duetotheB-ring pro-tons.AnAXsystemassociatedwithtwo-metacoupledaromatic protonswithsignalsatıH/C 5.94/96.4(d,J=2.5Hz,1H,H-6/C-6)

and5.86/95.5 (d,J=2.5Hz,1H, H-8/C-8)andanAMX2 spin sys-temwithresonancesatıH/C4.62/81.1(d,J=8.0Hz,1H,H-2/C-2),

3.93/75.9(m,1H, H-3/C-3),andat2.64/27.9 (dd,J=16.5, 8.5Hz, 1H,H-4␣/C-4),and2.88/27.9(dd,J=16.5,5.5Hz,1H,H-4␤/C-4), indicatedthepresenceofaflavan3-olskeleton.TheJ2,3coupling of8.0HztogetherwiththechemicalshiftofC-2atıH/C4.62/81.1

indicatea 2,3-transstereochemistry ofthecatechin. The HMBC spectrumshows correlationof H-3(ıH3.93)withtheanomeric carbon signalatıC 102.2(C-1′′)indicating a3-O-linkageof the

rhamnosetotheflavan.Alltheabovedataagreedwiththosefor catechin-3-O-rhamnopyranoside (Ishimaru et al., 1987). ESI-MS (positiveionmode):[M+H]+m/z437.314.

Epicatechin(4)

Compound4wasobtainedasaredamorphouspowder. ESI-MSpositiveionmode:[M+H]+291.152and289.58[M

−H]−.The

1HNMRrevealedanABX-typearomaticspinsystemwithproton

signalsatıH/C 7.01/115.3(d,J=2.0Hz,1H, H-2′/C-2′),6.78/115.9

(d,J=8.0Hz, 1H,H-5′/C-5),6.83/119.4(dd,J=8.0,1.8Hz,1H, H-6′/C-6),andanABmetacoupledaromaticsystemwithsignalsat ıH/C5.94/96.4(d,J=2.5Hz,1H,H-6/C-6)and5.91/95.8(d,J=2.5Hz,

1H,H-8/C-8).ThepresenceofanAMX2 systemwithresonances at lower frequencies ıH/C 4.90/79.8 (d, J=3.5Hz, 1H, H-2/C-2),

4.18/67.5(ddd,J=1.54,3.10,4.64,1H,H-3/C-3),and2.74/29.2(dd,

J=16.8,2.8Hz,1H, H-4␣)and 2.88/29.2(dd, J=16.6, 4.3Hz, 1H, H-4␤),indicatethepresenceofaflavan3-olskeleton.TheJ2,3 cou-plingof3.5HztogetherwiththechemicalshiftofthemethineC-2 atıH/C4.90/79.8,indicatinga2,3-cisstereochemistry.Thus,

(5)

Lyonisideandnudiposide(5and6)

Compounds5and6wereisolatedasabrownamorphoussolid. TheUVspectrumshowedabsorptionsat236,and276nm(MeOH). Themolecularformulafor5and6C27H36O12wasdeducedfromthe

pseudo-molecularionpeaksatm/z575.446[M+Na]+,and551.65 [M−H]−, obtained by ESI-MS in positive and negative modes, respectively.Theidentificationof5and6waspossiblebycareful analysisof1Hand13CNMRspectra,included1Dand2D exper-iments(COSY, HSQC,HMBC,TOCSY);at 500MHz,using D2Oas solvent.The13CNMRspectrumofthemixtureshowedsomedual signals,whilethe1HNMRspectrumshoweddifferencesonlyinthe chemicalshiftsoftheanomericprotonH-1′′,andsomealicylic pro-tonsofthexylosemoiety.The1Hand13CNMRspectradisplayed thetypicalsignalsofalignanskeleton,includinganaromatic pro-tonsingletatıH/C6.81/108.8(s,1H,H-2′/C-2′),andtwoequivalent

aromaticprotonssingletatıH/C6.53/106.9(s,2H,H-2,H-6/C-2,C-6)

for5;andatıH/C6.81/108.7(s,1H,H-2′/C-2′),and6.55/106.9(s,2H,

H-2,H-6/C-2,C-6)for6.The1Hand13CNMRspectraalsoshowed foursingletsignalsduetofivemethoxylgroups,twoofthem sym-metricallyequivalents[ıH/C3.91/57.1(s,3H,OMe-3′),3.81/57.3(s,

6H,OMe-3,OMe-5),3.43/60.7(s,3H,OMe-5′)for5;3.91/57.1(s, 3H,OMe-3′), 3.82/57.3(s,6H, OMe-3, OMe-5),3.42/60.7(s, 3H, OMe-5′)for6].TheNMRspectraof5and6revealedothersignals, consistentwiththepresenceofaxylosemoiety[ıH/C4.37/104.7(d, J=7.8Hz,H-1′′,anomericproton),3.34/73.9(dd,J=8.5Hz,16.5Hz, 1H,H-2′′/C-2′′),3.47/76.5(t,J=9.2Hz,1H,H-3′′/C-3′′),3.63/70.2(m, 1H,H-4′′/C-4′′),3.59/66.0(dd,J=11.3Hz,4.3Hz,1H,H-5′′/C-5′′), 3.95/66.0(m,1H,H-5␤′′/C-5′′)for5;and4.07/103.4(d,J=7.5Hz, H-1′′,anomericproton),3.28/73.7(m,1H,H-2′′/C-2′′),3.63/70.1(m, 1H,H-3′′/C-3′′),3.09/76.6(t,J=11.1Hz,1H,H-4′′/C-4′′),3.59/66.1 (dd,J=11.3Hz,4.3Hz,1H,H-5␣′′/C-5′′),3.95/66.1(m,1H,H-5′′ /C-5′′)for6].Thevalueofthecouplingconstant(J=7.5Hz)between theanomericprotonandC-2′′position,suggestedthe-orientation oftheglycosidiclinkagein5and6.TheHMBCcorrelationfrom H-1′′(ıH4.37for5;4.07for6)toC-9(ıC71.6for5and6)indicated thatthexyloseunitwaslinkedtotheoxygenatC-9.Theabovedata

wereinagreementwiththoseforlyonisideandnudiposide(5and

6)(Sadhuetal.,2007).

Themajor metabolitesisolated(3–6)of ME,wereidentified throughtheelaborationofanHPLC–ESI-MSchromatographic pro-fileofWaterextractofR.mangle.

Efficacyindiabeticrats

WeconfirmedthattheStz-Namodelissuitableforachronic experimentinwhichglucosevaluesareevaluated.Theglucose val-uesforthegroup1(normal)remainstablearound125mg/dlover the42daysofexperimentation,whereasthevaluesforthegroup 2(hyperglycemic)werearound170mg/dlinthesameperiod;the group2 presentedstatisticallysignificanthighervalues as com-pared to the group 1 (Table 1). The glycated hemoglobin and triacylglycerides(Table2)arealsohigherinthegroup2in con-trasttothegroup1andtheincreaseinHb1Acandtriacylglycerides levelsissignificantafter14daysoftheinjection.

Thestandardhypoglycemicagentglibenclamidecouldcontrol theglucoselevelsfromday7andtheHb1Acafter28days.The Rm-EWextractcontrolstheglucosevalues fromday7,andthe Hb1Acafter28days,theHb1Acresultsarestatisticallydifferent fromtheirowntime0butnotfromgroup2,theRm-EWextract alsocontrolsthetriacylglyceridesandtheVLDLlevelsafter28days

(Tables1and2).

R.mangletraditionalusagetotreattype2diabetesisthrough drinkingthedecoctionthroughouttheday,thiswayof administra-tionisnoticeableanditisnotassociatedwithmeals,thismeans theplantisnotusedinthepostabsorptivestate.Thisfactcouldbe relatedtotheactionmechanism.

Someof themaincomponentsofR. manglecortexwere iso-latedfromthemethanolsolublefraction(MSF)byrepeatedcolumn chromatographyinsilicagelandpurified byHPLC.Thisprocess allowed the isolation and identification of two flavalignans: 1 and2(cinchonainsIaandIb),twoflavanols:3(catechin-3-O-␣ -rhamnopyranoside)and4(epicatechin),andtwolignanglycosides: 5and6(lyonisideandnudiposide).Thesecompoundshadnotbeen previouslyreportedforR.mangle.Thechromatographicprofilefor

Table1

ChronichypoglycemiceffectofRhizophoramanglecortexonSTZ-NAinduceddiabeticrats.Thevaluesrepresentthemean±SEM.Superscriptedlettersinthesamerow indicatestatisticallysignificantdifferencescomparedwithtime0.Superscriptednumbersinthesamecolumnindicatestatisticallysignificantdifferencescomparedwith therespectivecontrolgroup(a,1)(p<0.05).

Groups Glucose

T0(mg/dl) T7(mg/dl) T14(mg/dl) T21(mg/dl) T28(mg/dl) T35(mg/dl) T42(mg/dl)

1Norm. 123±3 129±1 124±2 127±1 125±4 118±6 131±3

2Hyperg. 175±01 171

±21 171

±101 154

±41 168

±71 162

±41 168

±91 3Glib.5mg/kg 179±2 129±5a1 148

±9a 132

±6a1 150

±9a 134

±11a1 153

(6)

Table2

ChronichypoglycemiceffectsoftheRhizophoramanglecortexonSTZ-NAinduceddiabeticrats.Thevaluesrepresentthemean±SEM.Superscriptedlettersinthesamerow indicatestatisticallysignificantdifferencescomparedwithtime0.Superscriptednumbersinthesamecolumnindicatestatisticallysignificantdifferencescomparedwith therespectivecontrolgroup(a,1)(p<0.0).

Groups T0 T14 T28 T42

HbA1c(%) Tg (mg/dl)

vLDL (mg/dl)

HbA1c (%)

Tg (mg/dl)

vLDL (mg/dl)

HbA1c(%) Tg(mg/dl) vLDL (mg/dl)

HbA1c(%) Tg(mg/dl) vLDL (mg/dl)

1Norm. 3.6±0.1 71±4.0 14±1 3.6±0.1 79±16 16±3 3.54±0.1 63±4 12±1 3.62±0.1 61±10 12±2 2Hyperg. 3.7±0.1 52±11 10±11 4.1±0.21 77.6±14 15±3 4.2±0.11a 119±151a 24±31a 4.3±0.11a 113±26a 23±5a 3Glib.5mg/kg 3.8±0.2 69±11 14±2 4.2±0.2 89±13. 18±3 3.9±0.2 100±14 20±3 3.9±0.21 115

±19 23±4a 4Rm-EW90mg/kg 3.4±0.2 78±10 15±21 4.1

±0.2a 76

±13 15±3 3.9±0.1 65±41 13

±11 4.0

±0.2 72±10 14±2

allextracts(Fig.1)indicatesthat3–6arepartofthemain com-poundsfoundinR.mangle;however,itisstillnecessarytocontinue thechemicalanalysisoftheothersubfractionsforabetter under-standingofthechemicalprofileofthisplant.

Amongplantmetabolites,phenolsarefoundtopossessawide range of biological effects. In recent years, plant polyphenols includingphenolicacids,flavonoids,stilbenesandlignans,based oninvitrostudies,animal modelsand someclinicaltrials,have beenproposedaseffectivesupplementsfordiabetesmanagement andpreventionofitslong-termcomplications(Bahadoranetal.,

2013).

Based on several in vitro, animal models and some human studies,dietaryplantpolyphenolsandpolyphenol-richproducts, modulatecarbohydrateandlipidmetabolismaswellas attenu-atehyperglycemia,dyslipidemiaandinsulinresistance(Bahadoran

etal.,2013).

Sietal.(2011)showsthatepicatechintreatmentcausedchanges

indiabeticmice.Thesechangesareassociatedwithahealthierand longerlifespan,includingimprovedskeletalmusclestressoutput, reducedsystematicinflammationmarkersandserumLDL choles-terol,increasedhepaticantioxidantglutathioneconcentrationand totalsuperoxidedismutaseactivity,decreasedcirculating insulin-likegrowthfactor-1,andimprovedAMP-activatedproteinkinase activityin theliverandskeletalmuscle.Recentstudies(Litterio etal.,2015)showedthatepicatechinpreventedhypertensionina

invivomodeldietwith10%(w/v)fructoseinthedrinkingwater (high fructose, HF) for eight weeks on rats, decreasing super-oxideanion production and elevatingNOSactivity,favoring an increase in NO bioavailability. Epicatechin and epicatechin-rich foodsimprovesinsulinsensitivityinhighfatdiet-fedinamouse modelofobesityandT2Dtriggeredbyhighfatconsumptioninmice

(Cremoninietal.,2016).

Cinchonain Ib, from Eriobotrya japonica (Thunb.) Lindl., Rosaceae,leavesenhancedinsulinsecretionfromINS-1cells(rat insulinomacell), aswellasreduced plasmainsulinlevelinrats after108mg/kgoraladministration,however,itdidnotinduceany changesinbloodlevels(Qa’danetal.,2009).

Indiabeticratstheethanol–waterextractexertsahypoglycemic effectaftersevendaysofadministration,theeffectwassustained untilday42,thedecreaseinglucoselevelswerereflectedinthe Hb1Aclevelsafter28days,despitebeingsignificantnotbefore42 daysafterthebeginningoftheexperiment.Thereasonforthisis; Hb1Acisformedinanon-enzymaticglycationwhenhemoglobin isexposedtoplasmaglucose,whentheaverageamountofplasma glucoseincreases,thefractionofglycatedhemoglobinincreases. Thisservesasamarkerforaveragebloodglucoselevelsoverthe previousthreemonths.

Insulindeficiencyandinsulinresistancecauseinconsequence anincreasein lipolysisconductedby adipocytes.Theactivation ofthis pathwaycontributes todyslipidaemia, conditionpresent in type 2 diabetics (De Fronzo et al., 2015). In the present study,decreaseoftriacylglyceridesandplasmaglucoselevelswas observed,suggestingthecontrolofinsulinresistanceasapossible mechanismofaction.Suchdecreasemaybeduetotheactivation

oftheAKTkinasepathwaywhichisresponsibleforinhibitingthe enzymesinvolvedin lipolysiswherebytheconcentrationof tri-glyceridesintheblooddecreases.Anotherimportantfactoristhat AKTalsoisresponsibleforinhibitingtheactivityofGSK3 increas-ingglycogensynthesiswhichdecreasesthereleaseofglucoseby theliver(Suniletal.,2012),forthis reasonwesuggestthatthe hypoglycemiceffectoftheplantmaybelinkedtotheliverglucose output.

Insummary, thedecoctionofR.mangle exertsachronic(42 daysof treatment)hypoglycemicandhypolipidemiceffect.This effects couldbeassociated withthe compoundspresent in the waterextract:catechin-3-O-rhamnopyranoside,lyoniside, nudipo-sideandespecially byepicatechin.However,furtherstudiesare neededtotacklethemechanismofactionresponsibleofitseffects.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thattheproceduresfollowedwereinaccordancewiththe regula-tionsoftherelevantclinicalresearchethicscommitteeandwith thoseoftheCodeofEthicsoftheWorldMedicalAssociation (Dec-larationofHelsinki).

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent.Theauthorsdeclarethat nopatientdataappearinthisarticle.

Authors’contributions

AA-Cidealizedthestudy,writethemanuscriptandgetthe finan-cialsupport;GMT-Vperformthepharmacologicalexperiments; SME-Rperformsthephytochemicalexperiments;LQreviewedthe phytochemicalexperimentaldata.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

This project was partially sponsored by the DGAPA, PAPIIT IN28216andCONACyTCB-0151264.

References

ADA,2015.Classificationanddiagnosisofdiabetes.DiabetesCare38,S8–S16.

Alarcon-Aguilara,F.J.,Roman-Ramos,R.,Perez-Gutierrez,S.,Aguilar-Contreras,A., Contreras-Weber,C.C.,Flores-Saenz,J.L.,1998.Studyoftheanti-hyperglycemic effectofplantsusedasantidiabetics.J.Ethnopharmacol.61,101–110.

Andrade-Cetto,A.,Heinrich,M.,2005.Mexicanplantswithhypoglycaemiceffect usedinthetreatmentofdiabetes.J.Ethnopharmacol.99,325–348.

Andrade-Cetto,A.,Mares,M.,2012.HypoglycemiceffectoftheRhizophoramangle

(7)

Bahadoran, Z., Mirmiran, P., Azizi, F.,2013. Dietary polyphenols as potential nutraceuticalsinmanagementofdiabetes:areview.J.DiabetesMetab.Disord. 12,43.

CommitteefortheUpdateoftheGuidefortheCare,UseofLaboratoryAnimals, Insti-tuteforLaboratoryAnimalResearch,CommitteefortheUpdateoftheGuide fortheCareandUseofLaboratoryAnimals,InstituteforLaboratoryAnimal Research,2011.GuidefortheCareandUseofLaboratoryAnimals,Divisionon EarthandLifeStudies,NationalResearchCouncil,8thed, doi:10.1163/1573-3912islamDUM3825.

Cremonini,E.,Bettaieb,A.,Haj,F.G.,Fraga,C.G.,Oteiza,P.I.,2016.(−)-Epicatechin improvesinsulinsensitivityinhighfatdiet-fedmice.Arch.Biochem.Biophys. 599,13–21.

De Fronzo, R.A., Ferrannini, E., Groop, L., Henry, R.R., Herman, W.H., Holst, J.J., Weiss, R., 2015. Type 2 Diabetes Mellitus. Nat. Rev. Dis. Primers.,

http://dx.doi.org/10.1038/nrdp.2015.19.

IDF,2015.DiabetesAtlas,7thed.InternationalDiabetesFederation,Brussels.

Ishimaru,K.,Nonaka,G.I.,Nishioka,I.,1987.Flavan-3-olandprocyanidineglycosides fromQuercusmiyagii.Phytochemistry26,1167–1170.

Litterio,M.C.,VazquezPrieto,M.A.,Adamo,A.M.,Elesgaray,R.,Oteiza,P.I.,Galleano, M.,Fraga,C.G.,2015.(−)-Epicatechinreducesbloodpressureincreasein high-fructose-fedrats:Effectsonthedeterminantsofnitricoxidebioavailability.J. Nutr.Biochem.26,745–751.

Masiello,P.,Broca,C.,Gross,R.,Roye,M.,Manteghetti,M.,Hillarire-Buys,D.,Novelli, M.,Ribes,G.,1998.Developmentofanewmodelinadultratsadministered streptozotocinandnicotinamide.Diabetes47,224–229.

Pennington,T.D.,Sarukhán,J.,1998.TropicalTreesofMexico,1sted.UNAM-FCE, México.

Pizzolatti,M.G.,Venson,A.F.,SmâniaJúnior,A.,Smânia,E.D.F.A.,Braz-Filho,R.,2002.

TwoepimericflavalignansfromTrichiliacatigua(Meliaceae)withantimicrobial activity.ZeitschriftfurNaturforsch.-Sect.CJ.Biosci.57,483–488.

Qa’dan,F.,Verspohl,E.J.,Nahrstedt,A.,Petereit,F.,Matalka,K.Z.,2009.Cinchonain IbisolatedfromEriobotryajaponicainducesinsulinsecretioninvitroandinvivo. J.Ethnopharmacol.124,224–227.

Resende,F.O.,Rodrigues-Filho,E.,Luftmann,H.,Petereit,F.,PalazzodeMello,J.C., 2011.Phenylpropanoidsubstitutedflavan-3-olsfromTrichiliacatiguaandtheir

invitroantioxidativeactivity.J.Braz.Chem.Soc.22,2087–2093.

Sadhu,S.K.,Khatun,A.,Panadda,P.,Ohtsuki,T.,Ishibashi,M.,2007.Lignan glyco-sidesandflavonoidsfromSaracaasocawithantioxidantactivity.J.Nat.Med.61, 480–482.

Schroeter,H.,Heiss,C.,Balzer,J.,Kleinbongard,P.,Keen,C.L.,Hollenberg,N.K.,Sies, H.,Kwik-Uribe,C.,Schmitz,H.H.,Kelm,M.,2006.(−)-Epicatechinmediates ben-eficialeffectsofflavanol-richcocoaonvascularfunctioninhumans.Proc.Natl. Acad.Sci.U.S.A.103,1024–1029.

Si, H., Fu, Z., Velayutham, P., Babu, A., Zhen, W., Leroith, T., Meaney, M.P., Voelker,K.a.,Jia,Z., Grange, R.W.,Liu, D.,2011. DietaryEpicatechin Pro-motes Survival ofObese DiabeticMice and Drosophilamelanogaster 1–3.,

http://dx.doi.org/10.3945/jn.110.134270.health-promoting(online0–5). Sunil,C.,Agastian,P.,Kumarappan, C.,Ignacimuthu,S.,2012. Invitro

antiox-idant,antidiabetic andantilipidemicactivitiesofSymplocos cochinchinensis

(Lour.) S. Moore bark. Food Chem. Toxicol. 50, 1547–1553, http://dx. doi.org/10.1016/j.fct.2012.01.029.

Imagem

Fig. 1. HPLC–DAD profile comparison of the methanolic, ethanol–water and water extracts

Referências

Documentos relacionados

Thirty-six male rats were randomized into four groups of nine rats each, as follows: Test group A (low) - rats were fed an ethanol-containing liquid diet (ethanol representing 22%

Methods : We utilized 72 Wistar rats, divided into four groups according to the culture media or injected cells: control group into which only culture media was injected (22

In addition, similar measurements are repeated in xz-plane when the suitcase is shadowed by another one tightly placed side-by-side, hiding the tag antenna: only 2 cm increase

Even though STZ-diabetic rats presented bradycardia and hypoten- sion early in the course of diabetes, their autonomic function was reduced only 30-45 days after STZ injection and

To evaluate the effects of bromopride on MMP and cytokine gene expression in left colonic anastomoses in rats with or without induced abdominal sepsis, 80 rats were divided into

Fasting blood glucose (FBG), Triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL- C), very low density lipoprotein cholesterol (VLDL-C) and

Rats were randomly divided into four groups to determine the effects of curcumin and capsaicin against cyclophosphamide side effects on the uterus (n=10 in each

Results: The expression of AdipoR2, p38MAPK, LPL gene and protein in the liver of VitD in- tervention group was significantly higher than that in T2DM group (P &lt;0.05), while the TG