• Nenhum resultado encontrado

J. Pediatr. (Rio J.) vol.91 número6

N/A
N/A
Protected

Academic year: 2018

Share "J. Pediatr. (Rio J.) vol.91 número6"

Copied!
7
0
0

Texto

(1)

www.jped.com.br

ORIGINAL

ARTICLE

Whole-exome

sequencing

as

a

diagnostic

tool

for

distal

renal

tubular

acidosis

Paula

Cristina

Barros

Pereira

a

,

Flávia

Medeiros

Melo

a

,

Luiz

Armando

Cunha

De

Marco

a,b

,

Eduardo

Araújo

Oliveira

a,c

,

Débora

Marques

Miranda

a,c

,

Ana

Cristina

Simões

e

Silva

a,c,∗

aInstitutoNacionaldeCiênciaeTecnologia---MedicinaMolecular(INCT-MM),UniversidadeFederaldeMinasGerais(UFMG),Belo

Horizonte,MG,Brazil

bDepartmentofSurgery,FacultyofMedicine,UniversidadeFederaldeMinasGerais(UFMG),BeloHorizonte,MG,Brazil cDepartmentofPediatrics,UnitofPediatricNephrology,InterdisciplinaryLaboratoryofMedicalInvestigation,Facultyof

Medicine,UniversidadeFederaldeMinasGerais(UFMG),BeloHorizonte,MG,Brazil

Received11November2014;accepted25February2015 Availableonline22July2015

KEYWORDS ATP6V0A4; ATP6V1B1; Children;

Distalrenaltubular acidosis;

Genetics; Whole-exome sequencing

Abstract

Objective: Distalrenaltubularacidosis (dRTA)ischaracterized bymetabolicacidosis dueto impairedrenalacidexcretion.Theaimofthisstudywastodemonstratethegeneticdiagnosis offourchildrenwithdRTAthroughuseofwhole-exomesequencing.

Methods: Twounrelatedfamilieswereselected;atotaloffourchildrenwithdRTAandtheir parents,inordertoperformwhole-exomesequencing.Hearingwaspreservedinbothchildren fromthefirstfamily,butnotinthesecond,whereinatwinpairhadseveredeafness. Whole-exomesequencing was performedintwo pooled samples andfindings were confirmedwith Sangersequencingmethod.

Results: TwomutationswereidentifiedintheATP6V0A4andATP6V1B1genes.Inthefirst fam-ily,anovelmutationintheexon13 oftheATP6V0A4genewith asinglenucleotidechange GAC→TAC (c.1232G>T)was found,which causedasubstitutionofaspartic acidtotyrosine inposition 411.In thesecond family,ahomozygousrecurrent mutationwithone base-pair insertion(c.11491155insC)inexon12oftheATP6V1B1genewasdetected.

Conclusion: Theseresultsconfirmthevalueofwhole-exomesequencingforthestudyofrare andcomplexgeneticnephropathies,allowingtheidentificationofnovelandrecurrent muta-tions.Furthermore,forthefirsttimetheapplicationofthismolecularmethodinrenaltubular diseaseshasbeenclearlydemonstrated.

©2015SociedadeBrasileiradePediatria.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Pleasecitethisarticleas:PereiraPC,MeloFM,DeMarcoLA,OliveiraEA,MirandaDM,SimõeseSilvaAC.Whole-exomesequencingasa diagnostictoolfordistalrenaltubularacidosis.JPediatr(RioJ).2015;91:583---9.

Correspondingauthor.

E-mail:acssilva@hotmail.com(A.C.SimõeseSilva). http://dx.doi.org/10.1016/j.jped.2015.02.002

(2)

PALAVRAS-CHAVE ATP6V0A4;

ATP6V1B1; Crianc¸as;

Acidosetubularrenal distal;

Genética;

Sequenciamentototal doexoma

Sequenciamentototaldoexomacomoferramentadediagnósticodeacidosetubular renaldistal

Resumo

Objetivo: Aacidosetubularrenaldistal(ATRd)écaracterizadaporacidosemetabólicadevido aexcrec¸ãorenal de ácido prejudicada.O objetivo desteartigo é apresentar o diagnóstico genéticodequatrocrianc¸ascomATRdutilizandoosequenciamentototaldoexoma.

Métodos: Selecionamosduasfamíliasnãorelacionadas,totalizandoquatrocrianc¸ascomATRd eseuspais,pararealizarosequenciamentototaldoexoma.Aaudic¸ãofoipreservadaemambas ascrianc¸asdafamíliaum,porémemnenhumacrianc¸adafamíliadois,naqualumpardegêmeas teveperdaauditivasevera.Realizamososequenciamentototaldoexomaemdoisconjuntosde amostraseconfirmamososachadoscomométododeSequenciamentodeSanger.

Resultados: Duasmutac¸õesforamidentificadasnosgenes ATP6V0A4eATP6V1B1.Nafamília um,detectamosumanovamutac¸ãonoéxon13dogeneATP6V0A4comumaalterac¸ãoemum nucleotídeo únicoGAC→ TAC (c.1232G>T)que causousubstituic¸ãode ácido aspártico por tirosinanaposic¸ão411.Nafamíliadois,detectamosumamutac¸ãorecorrentedohomozigoto cominserc¸ãodeumpardebases(c.11491155insC)noéxon12dogeneATP6V1B1.

Conclusão: Nossosresultados confirmamo valor dosequenciamento total doexoma para o estudodenefropatiasgenéticascomplexas,permitindoaidentificac¸ãodemutac¸õesnovase recorrentes.Adicionalmente,demonstramosclaramentepela primeiravezaaplicac¸ãodesse métodomolecularemdoenc¸astubularesrenais.

©2015SociedadeBrasileiradePediatria.PublicadoporElsevierEditoraLtda.Todososdireitos reservados.

Introduction

Distal renal tubular acidosis (dRTA) is a rare and com-plex renal disease due to a defect in the excretion of acid load (H+ and ammonium ions) in alpha-intercalated cells of the collecting duct. The acid load accumulation in the distal nephron results in consumption and reduc-tion of the bicarbonate/CO2 buffer in blood.1 The main

clinical features of dRTA are vomiting, diarrhea, and/or

constipation, loss of appetite, polydipsia, and polyuria.

Chronicacidosisandsecondaryalterationssuchasvomiting,

polyuria, and dehydration affect growth, leading to

fail-uretothrive.Ultrasoundstudiescanshownephrocalcinosis

and/ornephrolithiasis.2Ingeneral,dRTAhasgoodprognosis

ifitisdiagnosedatan earlyageandalkaline treatmentis

continued.Untreated,dRTAcausesgrowthretardationand

ricketsinchildrenandosteomalaciainadults.Deterioration

ofrenalfunctioncanoccurovertheyears.3

Distal RTA can be transmitted as either an autosomal

dominantoran autosomalrecessivetrait.4 Theautosomal

dominantphenotypetypicallycoursesmildlyinadolescence

oradulthood;4oneparentsuffersfromandisthecarrierof

thedisease,oritisduetodenovomutation.Mutationsinthe

SLC4A1geneinfamilieswithautosomaldominantdRTAhave

beenidentified.2,5,6 Thesymptomsintheautosomal

reces-sive phenotype predominantly appear at infancy or early

childhood,inwhichgrowthretardationisverycommon.This

variantcanoccurwithorwithoutdeafness,andparentsare

notaffected.2AutosomalrecessivedRTAisassociatedwith

mutationsinanyofthefollowinggenes:SLC4A1,7ATP6V0A4,

andATP6V1B1.2,8 Individuals without hearing defects

usu-allycarrymutationsintheATP6V0A4gene,whilethosewith

deafnesshaveATP6V1B1genemutations.Inapproximately

20%ofthepatientswithdRTA,nomutationswerefoundin

anyoftheserelatedgenes.3Indeed,therearedRTApatients

withdeafnesswithoutATP6V1B1 genemutations,and

oth-ers withnormal hearing whodonot have ATP6V0A4 gene

mutations.3 Thesefindings suggestthatother transporters

orchannelsmightcausedRTA.Intermsofcomplexity,itis

knownthatsomepatientswithmutationsintheATP6V0A4

gene develop deafness only in the second decade of life.

Thus, there remains much to be elucidated in terms of

phenotype---genotypecorrelations.8---10 Sofar,morethan20

mutationsinATP6V0A4arealreadyknown.

Whole-exome sequencing provides coverage of more

than95%oftheexons,whichcontain85%ofdisease-causing

mutations in Mendelian disorders and many

disease-predisposing single nucleotide polymorphisms (SNPs)

throughout the genome.11,12 Whole-exome sequencing is

worthwhile to evaluate the disease pathogenesis and to

recognize new pathogenic genes or mutations associated

to disorder, especially in Mendelian disorders.11,12 In this

regard,thepresentstudyaimedtoevaluatetheusefulness

ofwhole-exomesequencingforgeneticdiagnosisofdRTA.

Patients

and

methods

Subjectsandclinicalassessment

(3)

(two girls), diagnosed withdRTA andnerve deafness, and their healthy mother;the father is unknown. Allpatients weresubmittedtoasystematicprotocol includingclinical andnutritionalevaluation,laboratorymeasurements,renal ultrasonography, and genetic analysis. Informed consent, approved by the institutional Ethics Board of UFMG, was obtained fromall participants; in thecase of children,it wasalsoobtainedfromtheirparent/guardian.

DNAextraction

GenomicDNAwasextractedfrom5mLofdRTApatientsand theirparent’speripheralblood,usingaQIAampBloodDNA mini Kit (Qiagen®, Milano, Italy) according to the manu-facturer’sinstructions.Allsampleswerequalitycontrolled for purity using a NanoDrop spectrophotometer (Thermo Scientific®, Waltham, USA). DNA samples were stored at −20◦Cuntilusage.

Whole-exomesequencing

Exomesequencingwasperformedontwopoolsofsamplesto optimizetheresults.Sampleswerepooledconsidering the clinicalfeaturesofthepatients.ThefirstpoolhadDNAfrom thetwosiblingswithdRTAwithoutdeafness,andthesecond, fromthetwinsisters withdRTAassociatedwithdeafness. Arraycapturewasusedtoisolatetherelevanthumangenes (SeqCap EZ Human Exome Library v2.0, Roche®, Basel, Switzerland) andthesegenesweresequenced onthe Illu-mina HiSeq 2000plataform (Sigma---Aldrich Corporation®, Missouri,USA).

Filteringdata

The following principle stepswere takentoprioritize the high-qualityvariants:(i)variantswithinintergenic,intronic, and untranslated region (UTR) regions and synonymous mutations were excluded from downstream analysis; (ii) variants with quality score less than 20 were excluded; (iii) onlytheconservationscore(phyloP)fromcomparison of human and 43 vertebrates higher than 3 were consid-ered; (iv) after this prior selection, the remaining genes were filtered by the function. The software PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/)predicted

possi-bleimpactofvariants.Thefinalsetofselectedvariantswas

visuallyinspected usinganIntegrative GenomicsViewer.13

Previously described polymorphic variants in public data

wereinvestigatedandcomparedwiththevariationsfound

inthecurrentexome.Theselectedmutationstobe

investi-gatedineachgroupofthisstudywerenotfoundinprevious

exomesequences(http://evs.gs.washington.edu/EVS/).

Validationofdata

Polymerase chain reaction (PCR) Sanger sequencing was used in the analysis to confirm the data. All patients and their parents were submitted to the PCR. Amplifi-cation products of appropriate size were identified using polyacrylamide gel electrophoresis. Products were puri-fied using the QIAquick PCR purification kit (Qiagen®,

Milano, Italy) and then submitted to sequencing reac-tionusingboth forward andreverse primers withthe ABI BigDye Terminator Cycle Sequencing Kit v. 3.1 on an ABI PRISM3730XL GeneticAnalyzer(Applied Biosystems®, Fos-ter City, USA). Each read was aligned to the reference sequence, and mutations were identified with Sequencer software (http://www.genecodes.com). All primers were

designedusingtheonlinetoolPrimer3.Theprimersforexon

12of ATP6V1B1gene were:5′TTGACCCCTCGGAATGTAGG3

and 5′CCGGACCCTCTTCTCCTTAC3(product size of 238

base pairs). The primers for exon 13 of ATP6V1B1 were:

5′ATGCAAATCGTGGAGCTGTG3and 5

ATGAATCAGGGCAA-GACGGT3′(productsizeof264basepairs).

Structuralstudiesofmutations

ProteinandDNAsequencealignmentswereperformedusing the ClustalW and the MultAlin (http://multalin.toulouse. inra.fr/multalin/), respectively. The prediction of amino

acid substitution on the biological function of the

pro-tein was evaluated using both PolyPhen-2 and Provean

software (http://provean.jcvi.org and http://genetics.

bwh.harvard.edu/pph2/,respectively).

Results

dRTAwithoutdeafness

Thisfamilyconsistedoftwosiblings,a13-year-oldgirland her7-year-oldbrother,withwell-defineddRTA.Thegirlwas theproband,diagnosedwithdRTAattheageof4months. The initialfindings werefailure tothrive,hyperchloremic metabolicacidosiswithabnormallyhighurinepH(7.0), nor-mal venous blood pH (7.36), normal glomerular filtration rate,andnephrocalciosis.Theboywasdiagnosedinhis1st month of life, after a severe dehydration withmetabolic acidosis, hypokalemia, transient elevation of serum cre-atinine,andhypocalcemia. His firstrenalultrasonography showedbilateralnephrocalcinosis.Table1summarizes

clin-icalandbiochemicalmanifestationsat baselineleadingto

the diagnosis of dRTA in each patient. The parents were

unaffected,andhadanolderchildthatdiedbytheageof4

monthswithsimilarsymptoms.

Whole-exomesequencingconductedinthisgroup

gener-ated3577singlenucleotidevariations(SNVs)and416small

insertionsanddeletions(INDELs).Filteringforvariantswas

appliedtoselectthecandidategene(Table2).

Afterfilteringtheexomedata,theATP6V0A4genewas

selectedfor study.A singlenucleotidechange GAC→TAC

(c.1232G>T) in exon 13 was observed, which caused an

aminoacid substitution: aspartic acid totyrosine in

posi-tion411(p.D411Y). Thisaminoacidchangewaspredicted

tobedamaging byProveanandPolyPhen-2.This mutation

occursatanevolutionarilyconservedaminoacidandaffects

highlypreservedresidues(datanotshown).

ThepatientsandtheirparentsweresubmittedtoSanger

sequencingbyusingthedesignedprimerforexon13ofthe

ATP6V0A4gene.Thetwosiblingspresentedthesame

muta-tioninhomozygosis(c.1232G>T),whilebothparentshada

heterozygoustrace(Fig.1AandB).Thisisanovelautosomal

(4)

Table1 ClinicalandbiochemicalfindingsatbaselineofpatientswithdRTA.

Findings/patients II2---Family1 II3---Family1 II1---Family2 II2---Family2

Age 4months 1month 2years 2years

Sex Female Male Female Female

Deafness/SNHL Absent Absent Present Present

Birthweight(g) Notavailable 3450 2340 2300

Weight(g) 3960 3760 8250 8300

WAZ <−3 0 <−3 <−3

Height(cm) 54.5 50.0 73.5 74.0

HAZ <−3 −2 <−3 <−3

Nephrocalcinosis Present Present Absent Absent

Initialmanifestations Failuretothrive, dehydration

Vomitingand dehydration

Rickets,failureto thrive,growth retardation

Rickets,failureto thrive,growth retardation

Serumcreatinine(mg/dL) 0.4 1.7 0.5 0.5

BloodvenouspH 7.36 7.16 7.23 7.12

Serumbicarbonate(mmol/L) 19.0 8.0 15.9 13.7

Serumpotassium(mEq/L) 3.8 2.0 4.0 4.1

Serumchloride(mmol/L) 109 118 117 123

UrinarypH 7.5 7.1 7.0 7.0

Romannumeralsindicatethefamilypositiononthepedigree:II2,Family1referstothesecondproband(daughter)offamilyone;II3, Family1referstothethirdproband(son)offamilyone;II1,Family2---thefirsttwindaughteroffamilytwo;II2,Family2---thesecond twindaughter;SNHL,sensorineuralhearingloss;WAZ,weight-for-agez-score;HAZ,height-for-agez-score.

dRTAwithdeafness

This family consisted of a twin pair of girls with dRTA in associationwithnervedeafness. The girlswerediagnosed attheageof2afteralongperiodoftreatingforricketsand growth retardation with only nutritional support. Clinical andbiochemicalfeaturesatbaselineareshowninTable1.

Whole-exome sequencing conducted in the family two

generated 4375 SNVs and 2416 INDELs. After filteringthe

variants,onlyonecandidategeneremained(Table2).

Based on the exome data, the ATP6V1B1 gene was

selected as the candidate in this group. A homozygous

one base-pair insertion (c.11491155insC) in exon 12 was

detected (Fig. 2A). The two dRTA twin sisters presented

the insertion described. PCR of their unaffected mother

wasperformed(fatherunknown).Thetwosiblingshadthe

same homozygous mutation, while the mother presented

thisinsertioninheterozygosis(Fig.2BandC).

Discussion

Several DNA errorsare located in exons leadingto struc-tural alterations in proteins and functional changes.3 In

thismanner, whole-exomeanalyzes theseexonsin arapid

and cost-effectivemanner, allowing geneticevaluation of

complexandmonogenicdiseases.14,15Inraredisorders,the

useofwhole-exomemayminimizethefailureindetecting

mutationsathot-spotsregions.Nonetheless,directSanger

sequencingisstillconsideredthemostaccuratemethodto

findmutations,sinceothergenetestingtechniques,suchas

wholeexome,maynotdetectallsequencevariations.The

search ina whole-genome basisand validationof findings

withSangersequencingmethodappears tobeanefficient

waytodeterminegeneticcausalityofadisorder.However,

the incorporation of these next-generation technologies

intoclinical practiceisstillchallenging,sincethese

tech-niquesareremainveryexpensive,anddatainterpretation

Table2 VariantprioritizingforFamily1andforFamily2.

Parameters Family1 Family2

Numberofvariants Numberofvariants

Totalvariants 3993 6791

Intergenic,intronic,andUTRregionsand synonymousmutationswereexcluded

1445 1912

Qualityscore<20wereexcluded 879 1012

PhyloP<3wereexcluded 131 215

Selectionbyfunction 15 14

PolyPhen<0.7wereexcluded 10 6

Selectionusingcross-referencegenedatabaseand IGV

1 1

Candidategene 1 1

(5)

A

l:1

ll:1 ll:2 ll:3

l:2 WT

T T G G T T

G

A A C

I.1

I.2

II.2

II.3

B

Figure1 Identification,pedigreeofFamily1,andresultsofsequencingfor c.1232G>Tmutation.(A)Thepedigreeshowsthe affectedstatuses,individualidentifiers,andgenotypesatcodon411.Thearrowindicatestheproband.(B)DNAsequence chro-matogramsinwhichthetwoaffectedsiblingshavehomozygousGtoTsubstitutionatc.1232.Thissubstitutionoccursinheterozygosis inbothparents.WT,wildtype.*Mutatednucleotide.

is laborious and difficult.11,12 Recent studies suggest that

whole-exomesequencingwould beuseful toevaluate

dis-easepathogenesisandtorecognizenewpathogenicgenes

or mutations associated to disorder, special in Mendelian

disorders.16 Thus, the present study used whole exome

followed by Sanger sequencing as a strategy for genetic

diagnosisofdRTAinfourchildren.

These results showed, for the first time, the utility

of whole-exome sequencing in renal tubular disorders,

by allowing the identification of a recurrent and a new

pathogenicmutationindRTA.InheritedformsofdRTAhave

threevariants:autosomal dominantand autosomal

reces-sive,withorwithoutdeafness.4Dominantdiseasetypically

presents more mildly in adolescence or adulthood, and

it has been only associated to mutations in the

bicar-bonate/chloride exchanger (AE1). However, the recessive

variantoccursininfancyorearlychildhood,inwhichgrowth

retardation is very common,4 asobserved in the present

cases.Autosomalrecessive dRTAhasbeen associatedwith

mutations in the genes ATP6V1B1 and ATP6V0A4, which

A

l:1

Allele1wt Allele2Ins Consensus

1145 1155 1164 1174

lI:1 lI:2

l:2

WT

T A AT A

C C C C C C C C C

I.2

II.1

II.2

B

C

(6)

encode the subunits a4 and B1 of the vacuolar-type pro-tonATPase(V-orH+-ATPase),respectively.17---22Inaddition,

mutationsintheSLC4A1gene,responsiblefor the

expres-sionof AE1proteins, have been alsodetected in casesof

autosomalrecessivedRTAwithoutdeafness.23---28

Indeed, mutations in different subunits of the proton

pumpthatareexpressedinkidneyandeartissuescancause

tubulardefects associatedwith deafness.17 The

vacuolar-type proton ATPase (V- or H+-ATPase) is a pump with

multiplesubunitsthatisessentialfor normalacidification.

Twostructuraldomainsformthis pump:membrane-bound

V0 and cytoplasmic or peripheral V1. Each domain

com-prisesmultiplesubunits(a---eandA---H,respectively),which

are responsible for ATP hydrolysis and proton transport,

respectively.4 The ATP6V1B1 gene encodes the B1

sub-unit, while the ATP6V0A4 gene encodes the a4 subunit.

The vacuolar-type proton ATPase is expressed apically on

renal␣-intercalatedcells,andinthecochleaand

endolym-phaticsac. Basedonthe typeofhearingloss,thesetypes

of mutations can be suspected. Conductive deafness was

observedin mutations of the intracellular isoformof

car-bonic anidrase (CA), whereas sensorineural hearing loss

(SNHL)hasbeen associatedwithATP6V1B1 andATP6V0A4

mutations.18---20 Accordingly, a homozygous one base-pair

insertion (c.1149 1155insC) was found in exon 12 of the

ATP6V1B1 gene in twin sisters with SNHL. Mutations in theSLC4A1geneusuallydonothave anyassociation with

deafness.22---28Therefore,thepresenceandthekindof

deaf-nessarehelpfulindistinguishingdifferentformsofdRTA.

Inthetwofamiliesofthisstudy,parentswereunaffected

and dRTA had early onset, leading togrowth impairment

during infancy. Therefore, mutations in the SLC4A1 gene

(AE1proteins)werehighlyunlikelyinthepatients.InFamily

1,exomesequencingidentifiedanovel homozygous

muta-tion in the ATP6V0A4 gene. Based on previous reports10

andontheclinicalandbiochemicalfeatures,thisgenewas

selectedasapotentialcandidatetosearchformutations,

sincenohearinglosswasdetectedintheaffectedpatients.

A singlenucleotide change in exon13 wasobserved that

caused an amino acid substitution: aspartic acid to

tyro-sineinposition411.Thisaminoacidchange waspredicted

tobedamagingbyProveanandPolyPhen-2.Unfortunately,

nofunctionalstudieswereperformedtodecipherthe

pre-ciseroleofthismutation.However,itshouldbementioned

that this mutation occurs at an evolutionarily conserved

aminoacidand affects highly preserved residues. In

addi-tion,thesubstitutionofasparticacidbytyrosinemaychange

chemicalproperties ofthe proteinat criticalregions. For

instance,thischangemayaltertheisoelectricpointofthe

protein,considering that tyrosine is a neutral aminoacid,

whileasparticacidisanacid.

The twingirls of family twohadSNHL andearly-onset

symptoms of dRTA. The phenotypes, together with the

whole-exome data, led the authors to investigate the

ATP6V1B1gene.Accordingly,a previouslydescribed

muta-tion was found,9 which was also confirmed by Sanger

sequencing.Itshouldbepointed,however,thatATP6V1B1or

ATP6V0A4genemutationshavenotbeennotfoundinsome

familieswith primaryrecessive forms of dRTA. There are

numerousothercandidategenesforrecessivedRTA,29

espe-ciallythosegenesrelatedtotheprotontransporters.Inthis

regard,theuseof whole-exomesequencingtogetherwith

thephenotypecharacteristicsmayresultinthediscoveryof

newmutationsandgeneticalterationsinthiscomplexand

raredisease.

Insummary,whole-exomesequencingfollowedbySanger

sequencingwasasuccessfulstrategyinidentifyingnoveland

recurrentmutationsinthesecasesofdRTA.However,which

geneticvariantsarepotentially causativeof renaltubular

transportalterationsremainstobeelucidated,especiallyin

recessiveformsdRTA.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

This study was partially supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) and FAPEMIG (Fundac¸ão de Amparo à Pesquisa do EstadodeMinasGerais,Brazil),bytheGrantINCT-MM (Insti-tutoNacionaldeCiênciaeTecnologia---MedicinaMolecular: FAPEMIG:CBB-APQ-00075-09/CNPq573646/2008-2). Dr.LA DeMarco,Dr.EAOliveira,Dr.DMMiranda,andDr.ACSimões eSilvareceivedaresearchgrantfromCNPq.

References

1.RodríguezSorianoJ.Renaltubularacidosis:theclinicalentity. JAmSocNephrol.2002;13:2160---70.

2.Fry AC, Karet FE. Inherited renal acidoses. Physiology (Bethesda).2007;22:202---11.

3.EscobarL,MejíaN,GilH,SantosF.Distalrenaltubularacidosis: ahereditarydiseasewithaninadequateurinaryH+excretion.

Nefrologia.2013;33:289---96.

4.Pereira PC, Miranda DM, Oliveira EA, Silva AC. Molecular pathophysiology of renal tubular acidosis. Curr Genomics. 2009;10:51---9.

5.BruceLJ,CopeDL,JonesGK,SchofieldAE,BurleyM,PoveyS, etal.Familialdistal renaltubularacidosisisassociatedwith mutationsintheredcellanionexchanger(Band3,AE1)gene. JClinInvest.1997;100:1693---707.

6.Karet FE,Gainza FJ, GyöryAZ, Unwin RJ, Wrong O, Tanner MJ, et al. Mutations in the chloride-bicarbonate exchanger geneAE1causeautosomaldominantbutnotautosomal reces-sivedistal renal tubularacidosis. Proc Natl Acad SciU SA. 1998;95:6337---42.

7.TanphaichitrVS,SumboonnanondaA,IdeguchiH,ShayakulC, BrugnaraC,TakaoM,etal.NovelAE1mutationsinrecessive distalrenaltubularacidosis.Loss-of-functionisrescuedby gly-cophorinA.JClinInvest.1998;102:2173---9.

8.Vargas-PoussouR,HouillierP,LePottierN,StrompfL,LoiratC, BaudouinV,etal.Geneticinvestigationofautosomalrecessive distalrenaltubularacidosis:evidenceforearlysensorineural hearinglossassociatedwithmutationsintheATP6V0A4gene.J AmSocNephrol.2006;17:1437---43.

9.KaretFE,FinbergKE,NelsonRD,NayirA,MocanH,SanjadSA, etal.MutationsinthegeneencodingB1subunitofH+-ATPase

causerenaltubularacidosiswithsensorineuraldeafness.Nat Genet.1999;21:84---90.

(7)

11.SmithA,BoycottKM,JarinovaO.LakeLouisemutation detec-tion meeting 2013: clinical translation of next-generation sequencingrequiresoptimizationofworkflowsand interpreta-tionofvariants.HumMutat.2014;35:265---9.

12.RabbaniB,TekinM,MahdiehN.Thepromiseofwhole-exome sequencinginmedicalgenetics.JHumGenet.2014;59:5---15. 13.RobinsonJT,ThorvaldsdóttirH,WincklerW,GuttmanM,Lander

ES,GetzG,etal.Integrativegenomicsviewer.NatBiotechnol. 2011;29:24---6.

14.Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, et al. Genetic diagnosis bywhole exome capture and mas-sively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106:19096---101.

15.BonnefondA,DurandE,SandO,DeGraeveF,GallinaS,Busiah K,etal.Moleculardiagnosisofneonataldiabetesmellitususing next-generationsequencing of thewhole exome.PLoS ONE. 2010;5:e13630.

16.YangY,MuznyDM,ReidJG,BainbridgeMN,WillisA,WardPA, et al. Clinical whole-exomesequencing for thediagnosis of Mendeliandisorders.NEnglJMed.2013;369:1502---11. 17.LangF,VallonV,KnipperM,WangemannP.Functional

signifi-canceofchannelsandtransportersexpressedintheinnerear andkidney.AmJPhysiolCellPhysiol.2007;293:C1187---208. 18.StoverEH,BorthwickKJ,BavaliaC,EadyN,FritzDM,Rungroj

N,etal.NovelATP6V1B1andATP6V0A4mutationsinautosomal recessivedistalrenal tubularacidosiswithnewevidencefor hearingloss.JMedGenet.2002;39:796---803.

19.BatlleD,HaqueSK.Geneticcausesandmechanismsofdistal renaltubularacidosis.NephrolDialTranspl.2012;27:3691---704. 20.GilH,SantosF,GarcíaE,AlvarezMV,Ordó˜nezFA,MálagaS,etal. DistalRTA withnervedeafness: clinicalspectrumand muta-tionalanalysisinfivechildren.PediatrNephrol.2007;22:825---8.

21.MiuraK,SekineT,TakahashiK,TakitaJ,HaritaY,OhkiK,etal. Mutationalanalysesofthe ATP6V1B1and ATP6V0A4genes in patientswithprimarydistalrenaltubularacidosis.NephrolDial Transpl.2013;28:2123---30.

22.ElhayekD,PerezdeNanclaresG,ChouchaneS,HamamiS,Mlika A,TroudiM,etal.Moleculardiagnosisofdistalrenaltubular acidosisinTunisianpatients:proposedalgorithmforNorthern Africa populations for the ATP6V1B1, ATP6V0A4 and SCL4A1 genes.BMCMedGenet.2013;14:119.

23.AlperSL,DarmanRB,ChernovaMN,DahlNK.TheAEgenefamily ofCl/HCO3-exchangers.JNephrol.2002;15:S41---53.

24.SchusterVL.Functionandregulationofcollectingduct interca-latedcells.AnnuRevPhysiol.1993;55:267---88.

25.Chang YH, Shaw CF, Jian SH, Hsieh KH, Chiou YH, Lu PJ. Compoundmutationsinhumananionexchanger1are associ-atedwithcompletedistalrenaltubularacidosisandhereditary spherocytosis.KidneyInt.2009;76:774---83.

26.AlperSL.MolecularphysiologyandgeneticsofNa+-independent

SLC4anionexchangers.JExpBiol.2009;212:1672---83. 27.Cheidde L,Vieira TC,LimaPR,SaadST, HeilbergIP.Anovel

mutationintheanionexchanger1geneisassociatedwith famil-ialdistalrenaltubularacidosisandnephrocalcinosis.Pediatrics. 2003;112:1361---7.

28.Wrong O, Bruce LJ, Unwin RJ, Toye AM, Tanner MJ.Band 3 mutations,distal renal tubularacidosis, andSoutheast Asian ovalocytosis.KidneyInt.2002;62:10---9.

Imagem

Table 1 Clinical and biochemical findings at baseline of patients with dRTA.
Figure 1 Identification, pedigree of Family 1, and results of sequencing for c.1232G&gt;T mutation

Referências

Documentos relacionados

According to the studied variables, is suggested that the risk factors for vertical transmission of HIV-1 were absence of antiretroviral therapy, high viral load in the pregnant

Conclusions: The prevalence of febrile seizures in Midwestern Brazil was lower than that found in other Brazilian regions, probably due to the inclusion only of febrile seizures

Therefore, the aim of this study was to evaluate the contribution of ultra-processed food in the dietary con- sumption of children treated at a Basic Health Unit and its

Considering the above, the aim of the study was to analyze the association between the practice of physical activity, participation in Physical Education classes, and social

A team of trained research assistants (C.F.G., I.M.O., M.S.P., R.F.L., S.M.C., V.S.F.) performed the anthropo- metric assessment and conducted the body composition data

The variables analyzed were: age, gender, body mass index, systolic blood pressure, diastolic blood pressure, total cholesterol, high-density lipoprotein cholesterol (HDL-C),

In spite of a paucity of data providing conclusive evidence to support the current recommendations of fiber intake for constipated pediatric patients, pediatric clinical trials

Thus, the aim of this study is to describe the association between the presence of electronic devices in the bedroom with sedentary time and physical activity, both assessed