• Nenhum resultado encontrado

Chemical Synthesis and Optical Properties of ZnO Nanoparticles

N/A
N/A
Protected

Academic year: 2017

Share "Chemical Synthesis and Optical Properties of ZnO Nanoparticles"

Copied!
2
0
0

Texto

(1)

JOURNAL OF NANO- AND ELECTRONIC PHYSICS Р А А - А Р

Vol. 6 No 4, 04015(2pp) (2014) Том 6 № 4, 04015(2cc) (2014)

2077-6772/2014/6(4)04015(2) 04015-1  2014 Sumy State University

Chemical Synthesis and Optical Properties of ZnO Nanoparticles

P.K. Samanta1,*, A. Saha2, T. Kamilya3

1 Department of Physics, Ghatal R.S. Mahavidyalaya, Paschim Medinipur-721212 India

2 UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8, Bidhannagar, Kolkata 700098 India

3 Department of Physics, Narajole Raj College, Paschim Medinipur-721211 India

(Received 29 August 2014; revised manuscript received 25 November 2014; published online 29 November 2014)

We report here a simple wet chemical process to synthesize ZnO nanoparticles. The morphology of the nanoparticles was observed in field emission scanning electron microscope. The nanoparticles have average diameter ~ 100 nm. The optical property of the synthesized ZnO nanoparticles was investigated using UV-visible absorption spectra. The synthesized nanoparticles exhibit strong absorption at ~ 279 nm. The band gap of the nanoparticles was calculated from the absorption spectrum and found to be 3.76 eV. Thus the synthesized ZnO nanoparticles will be useful in various optoelectronic applications.

Keywords: ZnO, Chemical-synthesis, FESEM, Absorption, Band-gap.

PACS numbers: 78.67.Bf, 78.67.Rb, 87.64. – t

* pijush.samanta@gmail.com

1. INTRODUCTION

Zinc Oxide (ZnO) is a very well known material being investigated over the past decade due to their unique multifunctional properties [1]. ZnO is a high and direct bad gap semiconductor of band gap ~ 3.4 eV and large exciton binding energy of 60 meV at temperature. Due to this large band gap it exhibits photoluminescence in UV region [2]. However during growth of ZnO nanocrystals several defects states may be created in between the conduction band and valence band leading to the photo-luminescence in visible region. There are various reports on the visible emission of ZnO nanostructures [3-6]. Va-rieties of synthesis methods such as electrochemical, pulsed laser deposition, sputtering, chemical vapour deposition have already appeared in literature [7-8]. Here, in this paper, we report a simple wet chemical method of synthesizing ZnO nanoparticles followed by typical morphological and optical characterization.

2. EXPERIMENTAL

The entire chemicals used in this synthesis process were of analytical grade and used as supplied (Merck). In a typical synthesis process 0.1 M of zinc acetate di-hydrate was dissolve in 50 ml di-ethylene glycol and stirred vigorously at room temperature till the zinc acetate dissolve completely. After complete dissolution, the solution was stirred further in a constant tempera-ture bath maintained at 100 °C for 1 hr. After the stir-ring the solution was cooled to room temperature and mixed with 100 ml of ethanol and stirred for 10 minutes. The solution was then filtered and washed 3-4 times by ethanol. The white precipitate was then dried in a furnace at 150 °C for further characterization.

Field emission scanning electron microscopy (FESEM) was carried out in ZEISS FESEM operating at 5 kV. For UV-visible (UV-VIS) spectroscopy a small amount of sample was dissolved in ethanol and ultra-sonicated for 30 mins. The UV-VIS data were recorded in a Perkin-Elmer LS-45 spectrophotometer over the wavelength range 200 nm to 600 nm.

3. RESULTS AND DISCUSSIONS

Typical FESEM image of the ZnO nanoparticles is shown in Fig. 1. Spherical ZnO nanoparticles are found to form. The average diameter of the nanoparticles is found to be ~ 100 nm as calculated from FESEM.

Fig. 1– SEM image of ZnO nanoparticles

Typical UV-VIS absorption spectrum of the synthe-sized ZnO nanoparticles is shown in Fig. 2.

The nanoparticles exhibit strong absorption at ~ 279 nm. The band gap of the synthesized nanoparti-cles was calculated using Tauc equation [9]:

n

g

h D h E

     (1)

Here, hv is the energy of the incident photon Eg, the band gap of the material, D is a constant. The transi-tion data enables us the best linear fit in the band edge region for n 1/ 2. Plot of (hν)2 vs hν is shown in Fig. 3. By extrapolating the linear portion of the plot to the

(2)

P.K. SAMANTA,A. SAHA,T. KAMILYA J. NANO- ELECTRON. PHYS. 6, 04015 (2014)

04015-2 200 300 400 500 600 700 800

Ab

s

o

rp

tion

(

A. U.)

Wavelength (nm)

2.0 2.5 3.0 3.5 4.0

0.0 3.0x1013

6.0x1013

9.0x1013



h





(eV

2-c

m

-2)

Energy (eV)

Fig. 2– UV-VIS spectrum of ZnO nanoparticles Fig. 3– Tauc plot for determination of band gap

4. CONCLUSIONS

In conclusion, we have synthesized spherical ZnO nanoparticles of average diameter ~ 100 nm using a simple wet chemical synthesis process. FESEM image revealed the formation of spherical ZnO nanoparticles. The nanoparticles exhibit strong absorption at ~ 279 nm. The ZnO nanoparticles have band gap ~ 3.76 eV as calculated from the absorption data. This band gap enhancement occurs due to quantum

con-finement of carrier within the small dimension of the nanocrystals.

ACKNOWLEDGEMENT

The authors sincerely acknowledge UGC-DAE-CSR Kolkata centre for financial support with Grant No. UGC-DAE-CSR-KC/CRS/13/RC12/0983 dated 16.12.2013 for carryout this research work.

REFERENCES

1. J. Ma, F. Ji, D. Zhang, H. Ma, S. Li, Thin Solid Films357, 98 (1999).

2. P.X. Gao, Y. Ding, Z.L. Wang, Nano Lett.9, 137 (2009). 3. P.K. Samanta, S. Mishra, Optik124, 2871 (2013).

4. P.K. Samanta, S. Dutta, S. Basak, T. Kamilya, Chem. Phys. Lett.584, 155 (2013).

5. P.K. Samanta, P.R. Chaudhuri, J. Opt.41, 75 (2012). 6. N. Karak, P.K. Samanta, T.K. Kundu, Optik 124, 6227

(2013).

Imagem

Fig. 1  –  SEM image of ZnO nanoparticles
Fig. 2 – UV-VIS spectrum of ZnO nanoparticles  Fig. 3 – Tauc plot for determination of band gap

Referências

Documentos relacionados

De área útil muito mais limitada, visto o diâmetro da Casa 2 ser de cerca de 2,5 m, esta estrutura, de época indubitavel- mente calcolítica – atestada pela grande quantidade

The leaves are suitable for green synthesis and we present in this research the eco-friendly, sim- ple and low cost synthesis of silver nanoparticles and the synthetic

Abstract: The present work reports the influence of zinc oxide (ZnO) seed layer annealing temperature on structural, optical and electrical properties of ZnO nanorod arrays,

Figure 3 shows TEM image of zirconia nanoparticles synthesized by sol-gel method using ZrOCl 2 .8H 2 O, The estimated diameters of nanoparticles were found to be 25 nm.. It could

In the present study we investigate thermally stable highly crystalline CdS nanoparticles synthesized by chemical bath with improved photoluminescence properties.. The obtained

In this paper, we aimed to develop environmentally friendly, rapid and simple producer for the synthesis gold nanoparticles (Au-NPs) using aqueous extract of sumac as

Table I - Lattice parameters, unit cell volume and X-ray density of Y-doped ZnO nanoparticles.. Using optical absorption data, band gap energies

After chemical surface modiication of the ZnO colloid using the coordinating solvent topo, the resulting sample showed a clear red shift (Figure 1a) of the ZnO excitonic peak