• Nenhum resultado encontrado

Vocal acoustic analysis: ANN versos SVM in classification of dysphonic voices and vocal cords paralysis

N/A
N/A
Protected

Academic year: 2021

Share "Vocal acoustic analysis: ANN versos SVM in classification of dysphonic voices and vocal cords paralysis"

Copied!
15
0
0

Texto

(1)

DOI: 10.4018/IJEHMC.2020010103



Copyright©2020,IGIGlobal.CopyingordistributinginprintorelectronicformswithoutwrittenpermissionofIGIGlobalisprohibited.

Vocal Acoustic Analysis:

ANN Versos SVM in Classification of Dysphonic

Voices and Vocal Cords Paralysis

João Paulo Teixeira, Research Centre in Digitalization and Intelligent Robotics (CEDRI) and Applied Management Research Unit (UNIAG), Instituto Politécnico de Bragança, Bragança, Portugal

Nuno Alves, Instituto Politécnico de Bragança, Bragança, Portugal

Paula Odete Fernandes, Applied Management Research Unit (UNIAG), Instituto Politécnico de Bragança, Bragança, Portugal https://orcid.org/0000-0001-8714-4901 ABSTRACT Vocalacousticanalysisisbecomingausefultoolfortheclassificationandrecognitionoflaryngological pathologies.Thistechniqueenablesanon-invasiveandlow-costassessmentofvoicedisorders,allowing amoreefficient,fast,andobjectivediagnosis.Inthiswork,ANNandSVMwereexperimentedon toclassifybetweendysphonic/controlandvocalcordparalysis/control.Avectorwasmadeupof4 jitterparameters,4shimmerparameters,andaharmonictonoiseratio(HNR),determinedfrom3 differentvowelsat3differenttones,withatotalof81features.Variableselectionanddimension reductiontechniquessuchashierarchicalclustering,multilinearregressionanalysisandprincipal componentanalysis(PCA)wasapplied.Theclassificationbetweendysphonicandcontrolwasmade withanaccuracyof100%forfemaleandmalegroupswithANNandSVM.Fortheclassification betweenvocalcordsparalysisandcontrolanaccuracyof78,9%wasachievedforfemalegroupwith SVM,and81,8%forthemalegroupwithANN. KEywoRDS

ANN, Classification, Feature Selection, Hierarchical Clustering, HNR, Jitter, Multilinear Regression Analysis, PCA, Shimmer, SVM, Vocal Acoustic Analysis, Voice Pathologies

1. INTRoDUCTIoN VocalAcousticAnalysisisoftenusedforvoicedisordersassessmentanddiagnose(Bielamowiczetal., 1996;Brockmann-Bauser,2011;Pylypowich,&Duff,2016;Salhi,Mourad,&Cherif,2010;Teixeira &Fernandes,2015).Theadvantageofsuchtechniquesreliesonthenon-invasivecharacterofthe examwhencomparedwithcurrentpracticeinmedicine,forexample,laryngoscopyorstroboscopic exams(Brockmann-Bauser,2011). Bothlaryngoscopyandstroboscopicexamconsistininsertingathintubeintothethroatorinto thenostrils.Stroboscopyispainless,anoffice-basedproceduredonewithtopicalanaesthesia.Itisa specialmethodusedtovisualizevocalfoldvibration(Hirano,1974).Itusesasynchronized,flashing

(2)

lightpassedthroughaflexibleorrigidtelescope.Theflashesoflightfromthestroboscopeare synchronisedtothevocalfoldvibrationataslightlyslowerspeed,allowingtheexaminertoobserve vocalfoldvibrationduringsoundproductioninwhatappearstobeslowmotion.Theresultingvideo depictsvideo-stroboscopicexaminationofthevocalfolds. Thisincisiontechniquewillalwaysbenecessarytoconfirmorevensupportchirurgicaloperations onthevocalfoldsorinthelarynx/pharynx. Althoughvoicedisordersmaybediagnosedbyanauditoryperceptualanalysismadebythe otolaryngologist,thismayleadtodifferentresultsdependingonthepractitionerexperience(Teixeira &Fernandes,2014). Itiscommonindailylifeofprimarycarefacilitiesthepeoplecomplainabouthoarsenessin theirvoices.Thedysphoniaaffects30%ofadultsand50%ofolderadults.Thisdiseasemodifies voicequalityandhasasignificantimpactonlifequality.Thisalsorepresentsasignificanteconomic burden.Inpatientswithaprogressivepathology,itisimportanttodoadiagnosisasfastaspossible forthesakeofhavingaccesstobettertreatmentandprognosis(Pylypowich&Duff,2016). Thereareseveralacousticparametersextractedfromspeechsignalprocessingusefultoidentify thevocalpathology,yetnoparameteraloneisabletoclassifybetweenhealthyorpathologicvoice. TeixeiraandFernandes(2015)analysedthestatisticalsignificanceofJitter,Shimmerand HNRparametersfordysphoniadetection.Astatisticalanalysiswasperformedoverthethree parametersforthevowels/a/,/i/and/u/atthreedifferenttones,high,lowandnormal.Inthis work,JitterandShimmeraresuggestedasgoodparameterstobeusedinanintelligentdiagnosis systemofdysphoniapathologies. Totestthisanalysis,itisnecessarytoapplyanintelligenttoolandsomereductiondimension andfeatureselectiontechniques.Featureselectionisintendedtoselectthebestsubsetofpredictors. Thefeatureselectionproblemarisesfromlargedatasetswhomaycontainredundantinformationand variablesthathavelittleornopredictivepower(May,Dandy,&Maier,2011).Thecorrectchoice ofinputfeaturesleadstoasmallsubsetthatmayboost/improvetheperformancewhenintelligent toolsareused. Henríquezetal.(2009)studiedtheusefulnessofsixnonlinearchaoticmeasuresbasedon nonlineardynamicstheoryinthediscriminationbetweentwolevelsofvoicequality:healthyand pathological.ThestudiedmeasuresarefirstandsecondorderRényientropies,thecorrelationentropy andthecorrelationdimension.Thevaluesofthefirstminimumofmutualinformationfunctionand Shannonentropywerealsostudied.Twodatabaseswereusedtoassesstheusefulnessofthemeasures: amulti-qualityandacommercialdatabase(MEEIVoiceDisorders).Aclassifierbasedonstandard neuralnetworkswasimplementedinordertoevaluatethemeasuresproposed.Globalsuccessrates of82.5%(multi-qualitydatabase)and99.7%(commercialdatabase)wereobtained.Thisdifference inperformancehighlightstheimportanceofhavingacontrolledspeechacquisitionprocess. InForeroetal.(2015),severalparametersofglottalsignalwereusedtoidentifynodule,unilateral paralysisorhealthyvoices.Thedatabase,obtainedfromaspeechtherapist,wascomposedbyrecords ofvoicesfrom12speakerswithnodule,8speakerswithvocalfoldparalysisand11speakerswith normalvoices.Threedifferentclassifierswereused,anArtificialNeuralNetwork,aSupportVector Machine(SVM)andHiddenMarkovModel.Thebestaccuracy,97.2%,wasreachedusingglottal signalparametersandMFCC’swithSVMclassifier. MarkakiandStylianou(2011)exploredtheinformationprovidedbyajointacousticandmodulation frequencyrepresentation,referredtoasmodulationspectrum,fordetectionanddiscriminationof voicedisorders.Theinitialrepresentationisfirsttransformedtoalowerdimensionaldomainusing higher-ordersingularvaluedecomposition(HOSVD).Forvoicepathologydetectionanaccuracyof 94.1%wasachievedusingoneSVMasclassifier. InPaneketal.(2015)avectormadeupof28acousticparameterswasevaluatedusingPrincipal ComponentAnalysis(PCA),kernelprincipalcomponentanalysis(kPCA)andanauto-associative neuralnetwork(NLPCA)infourkindsofpathologydetection(hyperfunctionaldysphonia,functional

(3)

dysphonia,laryngitisandvocalcordparalysis)usingthe/a/,/i/and/u/vowels,spokenatahigh,low andnormaltones.Theresultsshowbestefficiencylevelsofaround100%. Al-Nasherietal.(2016)investigateddifferentfrequencybandsusingcorrelationfunctions.The authorsextractedmaximumpeakvaluesandtheircorrespondinglagvaluesfromeachframeofa voicedsignalbyusingcorrelationfunctionsasfeaturestodetectandclassifypathologicsamples. Threedifferentdatabaseswereused,ArabicVoicePathologyDatabase(AVPD),SaarbrückenVoice Database(SVD)andMassachusettsEyeandEarInfirmary(MEEI).ASupportVectorMachine wasusedasclassifier.Forthedetectionofpathology,anaccuracyof99.8%,90.9%and91.1%was achievedforthethreedatabasesrespectively.Intheclassificationofthepathologytaskanaccuracy of99.2%,98.9%and95.1%,respectively,wasachievedforthethreedatabases. InSellamandJagadeesan(2014),anattemptwasmadetoanalyseandtodiscriminatepathologic voicefromnormalvoiceinchildrenusingdifferentclassificationmethods.Theclassificationof pathologicvoicefromnormalvoicewasimplementedusingSupportVectorMachine(SVM)and RadialBasisFunctionalNeuralNetwork(RBFNN).Severalacousticparameterswereextractedsuchas thesignalenergy,pitch,formantfrequencies,meansquareresidualsignal,reflectioncoefficients,Jitter andShimmer.ThebestaccuracyresultswereobtainedbyRBFNNwith,91%,andfortheSVM83%. Theartificialneuralnetworksareamongthemostusedclassifiersforthiskindoftask,although SVMisalsousedoften(Al-Nasherietal.,2016;Foreroetal.,2015;Henríquez,etal.,2009;Markaki &Stylianou,2011;Paneketal.,2015;Sellam&Jagadeesan,2014). Cordeiro(2017)presentedasetofexperimentstoidentifythebestsetoffeaturesfromthevocal tract(MFCC,LineSpectralFrequencies(LSF),Mel-LineSpectralFrequencies(MLSF)andfirstpeak ofthespectralenvelop)andthebestclassifiersamongstSVMandGaussianMixtureModels(GMM) fortheidentificationofpathologicvoices.Heachievedanaccuracyof84.4%fortheidentification between3groups(healthysubjects,subjectswithphysiologicallarynxpathologies-vocalfoldnodules andedemas,andsubjectswithneurologicallarynxpathologies-unilateralvocalfoldparalysis). HealsousedRegressionTreestothepathologicalvoicerecognitionbasedonformantanalysisand harmonic-to-noiseratiowith95%recognitionrate. InTeixeiraandGonçalves(2014)analgorithmwaspresentedtoautomaticallyextractthejitter, shimmerandHNRfeatures.Theaccuracyofmeasurementswascomparedwiththeonesextracted withPraatsoftware(Boersma&Weenink,2009)andshowedbetteraccuracyforsynthesizedspeech signalsandsimilarvaluesasthePraatsoftwareforrealsignals. Teixeira,FernandesandAlves(2017)publishedtheclassificationofdysphonicvoices.Aset ofJitter,Shimmer,andHNRparametersextractedfrom3sustainedvowelsatdifferenttonelevels wasanalysed.ThreemethodswereusedtoreducethefeaturesdimensionsettobeusedinanANN toclassifybetweencontrolanddysphonicvoices.Inthispresentresearch,thesamedatasetand methodologywereused,butanadditionalclassificationtoolwasexperimentedwith.TheSVMs werecomparedwiththeANNs.Inthiswork,besidesthedysphoniapathology,alsothevocalcords paralysispathologyisused. Nextsectiondescribesthemethodology.Inthissectionthedatabaseispresented,aswellasthe setoffeatures,abriefdescriptionoftheusedpathologiesandtheANNandSVMarchitectures,the methodsusedtoreducethefeaturesdimensionandthedescriptionoftheusedmeasurestoevaluate theperformanceofthemodel.Section3presentstheresultsobtainedfortheclassificationofeach pathologybygenderusingANNandSVMwithselectedfeaturesbythefeatureselectionmethods. Finally,section4presentstheconclusions.

2. METHoDS AND METHoDoLoGy

TheSaarbrückenVoiceDatabase(SVD)(Barry&Pützer,2007)wasusedinthisstudy.Foreach subject,onesegmentofspeechrecordwasusedforsustainedvowels/a/,/i/and/u/forHigh,Lowand Mid/Neutraltonesinatotalof9speechsegments.Eachsegmentofspeechconsistsofasteadystate

(4)

sustainablepronunciationoftherespectivevowel.Foreachspeechsegmentasetofjitter,shimmer andHNRparameters,detailedbelow,wasdeterminedusingthealgorithmdevelopedbyTeixeiraand Gonçalves(2016).ThisalgorithmextractsasetofJitterparameters(jitta,jitter,rapandppq5),Shimmer (ShdB,Shim,apq3andapq5)andHNR(HarmonictoNoiseRatio).Asubsetofthecontrolsubjects wasselectedinordertohavesimilardistributionbetweengenderandageofeachpathologicgroup. Twovoicepathologieswereusedseparatelyinthisstudy,dysphoniaandvocalcordsparalysis (VCP).Eachpathologywascomparedtocontrolsubjects.Thecontrolsubjectsconsistofvoice segmentsofhealthypersons. Theclassificationinhealthy/pathologicalvoicewascarriedoutforwomenandmenseparately. Thenumberofsamplestakenfromcontrolgroupwasthesameofthepathologicgroupunder examination(Paneketal.,2015).Moredetailsofthenumberofsamplesanddistributionofagescan beseeninTable1.Asimilarsetofdatabasesfordysphoniapathologicgroupwasusedin(Teixeira etal.,2017). Pathologysets(dysphoniaandVCP)includeallsubjectsavailableintheSVD,meanwhilethe subjectsoftherespectivecontrolgroupswereselectedinordertohavethemostsimilarpossibleage. Anyhow,theavailablecontrolsubjectsaremostlyyoungerthanpathologicsubjectsturningdifficult tohaveverysimilarageincontrolandpathologicgroups.Thestandarddeviationbetweenpathologic andcontrolgroupsismainlysimilarexceptinthefemalecontroldysphonia/dysphonia.Theeffect ofageingonvoicequalityisrecognised,anyhow,theauthorsbelievethatthesmalldifferenceinthe averageandstandarddeviationagegroupsdoesnotaffectthestudyresults. 2.1. Dysphonia Dysphoniaisamedicaltermmeaningdisorder(dys-)ofvoice(-phonia)(Teixeira&Fernandes, 2015).Theairflowmovingthroughthevocalcordsoriginatesthehumanvoice.Voiceisdifferent fromspeech,whichismodulatedbythepharynx,tongueandoralcavity(Pylypowich&Duff,2016). Althoughtherearemanycausesofdysphonia,itcanbecharacterisedbyadisturbanceinthephonation mechanismcausingalterationinvoicepitch.Voicedysfunctionisnotadiseasebyitselfbutcanbe asymptomofanunderlyingpathology.

2.2. Vocal Cords Paralysis

Vocalcordparalysisisavoicedisorderthatoccurswhenone(unilateral)orboth(bilateral)vocalfolds donotopenorcloseproperly.Unilateralparalysisisacommondisorder,whilebilateralparalysisis rarerandlife-threatening. Thevocalcordsaretwoelasticbandspresentinthelarynxjustabovethetrachea.When theyarebreathing,theyremaindistantandinswallowingtheyareclosed.However,inthe productionofvoice,theaircomingfromthelungscausesthemtovibrateoscillatingbetween theopenandclosedposition.

Table 1. Gender and age distribution of the subjects in the chosen subset of SVD

# Subjects Margin of Years Old Average (Standard Deviation) Years Old

Female Male Female Male Female Male

ControlDysphonia 41 29 19-56 20-69 24.8(7.32) 41.2(18.7)

Dysphonia 41 29 18-73 11-77 45.6(14.8) 48.7(18.0)

ControlVCP 126 69 18-84 18-69 31.0(15.9) 34.8(15.8)

(5)

Incasesofparalysis,thevocalchordsmayremainopenleavingtheairwaysandlungsunprotected. Thistypeofpathologycaneitheroccuraftertraumatothehead,neckorchestaswellasinpeoplewith neurologicalproblemssuchasmultiplesclerosis,Parkinson’sdiseaseorwhohavesufferedastroke. Symptomsmaymanifestashoarseness,breathiness,troublebreathing,wheezingandswallowing problems.Theremayalsobechangesinvoicequalitysuchaslossofvolumeorfundamentalfrequency. Bilateralvocalcordparalysisreferstotheneurologiccausesofbilateralvocalfoldimmobility andspecificallyreferstothereducedorabsentfunctionofthevagusnerveoritsdistalbranch,the recurrentlaryngealnerve.Vocalfoldimmobilitymayalsoresultfrommechanicalderangementof thelaryngealstructures,suchasthecricoarytenoidjoint(Netter,2014). 2.3. Parameters Jitter,shimmerandHNRparameterswereextractedwiththealgorithmdevelopedbyTeixeiraand Gonçalves(2015).Jitterisdefinedastheperiodicvariationfromcycletocycle,andshimmerrelates tothemagnitudevariationoftheglottalperiod.Aperspectiveofjitterandshimmercanbeseenin Figure1.Patientswithlackofcontrolofthevibrationofvocalfoldshavetendencytohavehigher valuesofjitter.Reductionofglottalresistanceandmasslesionscausesavariationinthemagnitude oftheglottalperiodcorrelatedwithbreathinessandnoiseemission,causinghighershimmer.The jitterandshimmercanbemeasuredusuallybyfourdifferentforms.Jittercanbemeasuredasabsolute (jitta),relative(jitter),RelativeAveragePerturbation(rap)andthePeriodPerturbationQuotient (ppq5),accordingtoEquations1to4.ShimmercanbemeasuredasabsolutevalueindB(ShdB), asrelativevalue(Shim),asAmplitudePerturbationQuotientin3cycles(apq3)andasAmplitude PerturbationQuotientin5cycles(apq5),asEquations5to8: jitta N i T T N i i = − = − − −

1 1 1 1 1  (1) jitter relative N T T N T i N i i i N i

(

)

= − = − × − − =

1 1 1 100 1 1 1 1  (2) rap N T T N T i N i n i i n i N i = − − × = − = − + =

1 1 1 3 1 100 1 1 1 1 1  (3) ppq N T T N T i N i n i i n i N i 5 1 1 1 5 1 100 2 2 2 2 1 = − − × = − = − + =

 (4) whereTiistheiglottalperiodlengthsandNisthenumberofglottalperiods.

(6)

ShdB N A A i N i i = −         = − +

1 1 1 20 1 1 * log  (5) Shim N A A N A i N i i i N i = − = − × − + =

1 1 1 100 1 1 1 1  (6) apq N A A N A i N i n i i n i N i 3 1 1 1 3 1 100 1 1 1 1 1 = − −        × = − = − + =

 (7) apq N A A N A i N i n i i n i N i 5 1 1 1 5 1 100 2 2 2 2 1 = − −        × = − = − + =

 (8) whereAiistheipeak-to-peakglottalmagnitudeandNthenumberofperiods. TheHarmonictoNoiseRatio(HNR),Equation9,providesanindicationoftheoverallperiodicity ofthevoicesignalbyquantifyingtheratiobetweentheperiodic(harmonicpart)andaperiodic(noise) components.Thisparameterisusuallymeasuredasanoverallcharacteristicofthesignal.Theoverall valueoftheHNRofthesignalvariesbecausedifferentvocaltractconfigurationsinvolvedifferent amplitudesfortheharmonics: HNR AC T AC AC T V V V =

( )

( )

( )

10 0 10 * log  (9)

whereACV(0)isthetotalenergyofthesignalandACV(T)istheenergyofthefirstharmonic.

2.4. Artificial Neural Network (ANN)

For the ANN classifier, a Multilayer Perceptron (MLP) structure, trained with the back-propagationalgorithmwasused.Differenttypologieswereexaminedwithadifferentnumber ofneuronsinthehiddenlayertoseekthebestgeneralizationperformance.Thedatasetwas dividedintothreesubsets,train,validationandtestsets.Thequantityofeachdatasetwas70%, 15%,15%,respectively. TheANNiscomposedofweightsandbiastryingtoadapttothedesiredoutput.Themodelhas oneneuronintheoutputlayer.Theoutputtargetwascomposedofzerosandones.Theoutputgiven bytheANNisnotalwaysexactlyzerooroneandsoithadtobepost-processedtobezeroorone. Forthisprocess,athresholdof0.5wasexperimentallyestablishedfortheoutput.Thenumberof inputnodesandhiddennodesisdifferentforeachmodel.

(7)

2.5. Support Vector Machines Asupportvectormachine(SVM)isatypeofintelligenttoolbasedonminimizingstructuralrisk.They canbeusedtosolveclassificationandregressionproblems.ThemainideaofSVMistoconstruct hyperplanesastheoptimalseparationsurfacebetweenpositiveandnegativeexamplesinabinary classificationcontext(Almeida,2010;Sellam&Jagadeesan,2014). Sinceproblemsarenotalwayslinear,itisnecessarytotransformthedatasothatitcanbelinearly separated.Forthisseparation,theSVMuseKernelmethodsthatmakeanon-lineartransformation tothedataforamulti-dimensionalspacewhereitwillbeanimageofthedatathatallowsalinear separation(Cruz,2007). Amongthemostusedkernelmethodsarethelinear,polynomial,radialbasisfunction(RBF)and multi-layerperceptron(MLP).InthetrainingoftheSVM,thehyperplaneparametersareadjusted sothatthedistanceofthehyperplanetothedataismaximum.TheSVMalsohasanothersetof parameterscalledhyper-parametersofwhichthekernelfunctionisdependentastheconstantCof theboundarylinesthatborderthehyperplane,thewidthoftheGaussiankernelandthedegreeofthe polynomialkernel,amongothers(Ben-Hur&Weston,2010).Thechoiceofkernelcanbeimportant forthesuccessoftheSVM. TheimplementationoftheSupportVectorMachinewasdoneusingtwomainfunctionstotrain theSVManddeterminethepredictivepoweroftheclassifier.TheSVMrequirestheinputmatrix tobedividedintotwosubsets,thetrainingandthetest.Thepercentageusedfortrainingwas85% and15%fortest.

All combinations of input parameters of the training function were experimented. The combinationsrefertothedifferentKerneltypes,parametersassociatedwiththeseKernels,anddifferent methodsthatallowstofindtheseparationhyperplane.Theprecision,sensitivityandspecificity underthetestsetwererecordedforallexperiments.Theprecision,sensitivityandspecificityarein accordancewiththenextsection.

(8)

2.6. Performance Evaluation Inordertoevaluatetheresults,aconfusionmatrixwasusedandsensitivity,specificityandaccuracy measureswerecalculated,aspresentedinTable2andEquation10: Accuracy TP TN TP FN TN FP = + + + +  (10) 2.7. Feature Selection Theselectionofinputfeaturesisafundamentalconsiderationinidentifyingtheoptimal functional form of statistical models. The task of selecting input features is common to the development of all statistical models, and is largely dependent on the discovery of relationshipswithintheavailabledatatoidentifysuitablepredictorsofthemodeloutput (May,Dandy&Maier,2011).Theprocessintendstoexplainthedatainthesimplestway eliminatingredundantfeatures.Appliedtoregressionanalysis,thisimpliesthatthesmallest modelthatfitsthedataisthebest.Unnecessaryparameterswilladdnoisetotheestimationof otherquantities.Itistheattempttoavoidcollinearity,causedbyhavingtoomanyvariables givingthesameinformation.Featureselectionallowstosavetimeandmoneyreducingthe problemdimension,turningthesystemmoreefficientfromthecomputationalpointofview (Guyon&Elisseeff,2003).

Three methods were used, the first two of feature selection and the last one of dimensionreduction.

2.7.1. First Method - Hierarchical Clustering (HC)

Hierarchicalclusteringwasusedinthefirstmethod(Rokach&Maimon,2005).Thebasicideaofthis methodistocreategroupswithvariablesmostcorrelated.Then,onlyoneparameterisselectedfrom eachgroupbyitsEuclidiandistance.TheparameterwiththegreaterEuclidiandistanceisselected. TheEuclidiandistanceiscalculatedforallparametersandbetweentheclassesbeingcompared, healthyorpathologic.

2.7.2. Second Method - Multilinear Regression Analysis (MRA)

Inthesecondmethod,amultilinearregressionanalysiswasapplied(Rokach&Maimon,2005).Itisa systematicmethodforaddingandremovingtermsfromamultilinearmodelbasedontheirstatistical significanceinaregression.Aninitialmodeliscreatedandthestaticsignificanceisevaluated.At eachstep,onevariableisaddedorremovedbasedonthisanalysis.Resultinginanoutputmodelthat willfeedtheneuralnetwork.

Table 2. Confusion matrix used in the analysis.

Results From Classification

Healthy Pathology

Diagnosed

Healthy TruePositive(TP) Falsepositive(FP) Pathology FalseNegative(FN) TrueNegative(TN)

(9)

2.7.3. Third Method - Principal Components Analysis (PCA) InthethirdmethodwasappliedatechniquecalledPrincipalComponentsAnalysis(PCA)(Smith, 2002).Itisastatisticaltechniquethatusesthemathematicalconceptslikestandarddeviation, covariance,eigenvaluesandeigenvectors.First,itisnecessarytosubtractthemeanfromeachdata dimensions.Thisproducesadatasetwhosemeaniszero,calleddataadjusted.Next,theeigenvectors andeigenvaluesarecalculatedfromcovariancematrix.Itisnecessarytodecidehowmanyprincipal componentstopick.Theprincipalcomponentsaredeterminedandintheoutputtheeigenvaluesare alreadyordered,itisjustnecessarytocalculatethecumulativepercentageofthesevalues.Therefore, thefirstfeweigenvectorscorrespondingto90%or95%ofthecumulativepercentageareselected. Thismeansthatthefirstfeweigenvectorsexplain90or95%ofthedata.Finally,theadjusteddata ismultipliedbytheinverseoftheeigenvectorsmatrixselected.Togetresultsclosertotherealthe meanvalueiscalculatedonlyforthetrainsetandsubtractedtovalidationandtestset.Forthetwo pathologies,sevenprincipalcomponentswereselected. 3. ANALySIS oF RESULTS Theclassificationinhealthyorpathologicalwascarriedoutseparatelyforeachpathologyandfor womenandmenalsoseparately.Thenumberofsamplestakenfromthecontrolgroupisthesameas thepathologicalgroupunderexamination.Avectorof9parameters(4ofJitter,4ofShimmerand HNR)timesthreetones(High,LowandNormal),timesthreevowels(/a/,/i/and/u/)wascreated usingthealgorithmdevelopedbyTeixeiraandGonçalves(2016).Oncethefeaturesvectorwas madeup81variables,somedimensionreductionandfeatureselectiontechniqueswereapplied.This reducestheprocessingtimeandshowsupthevariablescapabletodistinguishbetweenhealthyand pathologicsubject.AnANNandtheSVMwereusedfortheclassificationtask.FortheANN,different typologieswereexperimentedwithadifferentnumberofneuronsinthehiddenlayertofindthebest generalizationmodel.FortheSVMdifferentkernelandvaluesofthehyper-parametersweretested. ThesealternativesoftheANNandtheSVMwereexperimentedwiththeselectedfeaturesmadewith hierarchicalclusteringmethod,multilinearregressionanalysesmethodsandthecomponentsofthe PCAmethodforeachpathologicalgroup.

3.1. Feature Selection Analysis

Eachpathologicgroupanditscounterpartofcontrolswasanalysedbythefeatureselectionmethods HCandMRAtoselectthefeaturesalongtheinitialsetof81features.Table3presentstheselected featuresresultantfromthemethodsHCandMRAappliedforthedysphoniaandvocalcords paralysispathologies,bygender.Thetoplinepresentsthepathologicgroup,featureselectionmethod andgender.Theleftcolumnpresentsthefeaturesextractedfromeachspeechfile,thenumberof featuresselectedforeachmethodandthebestaccuracyinthetestsetgivenbytheANNandSVM classificationmodels.Insidethetable,theselectedspeechfileforeachfeatureispresentedinthe formatVT(V-vowel,T-tone).Forinstance,themethodMRAfordysphoniamalegroupselected thejitterfeatureextractedfromvowel/a/lowtoneandRapfromvowel/a/hightoneandachieved anaccuracyof100%inthetestset. ThefeatureselectionmethodwiththebestaccuracyachievedwasclearlytheMRA.Thismethod, generally,selectedasmallnumberoffeatures.Thefeaturesselectedmoreoftenare:jittaforthethree vowelsandthreetones,shimalsoforthethreevowelsandtones,andHNRforthethreevowelsand tonesexceptfor/u/athightone.Thiscanbejustifiedbecause/u/vowelhashighfrequencycomponents thataremoremixedwithnoisecomponents,andathightones,theharmoniccomponentscanbe moredifficulttoseparatefromnoisycomponents.Theotherfeatureswereusedmorerarelybutwith improvedresultsbytheMRAselectionmethod.

(10)

3.2. Dysphonia/Control Classification Although,theaccuracyhasbeencalculatedforvalidationandtrainingset,onlythetestsetaccuracy isanalysedhere.Thismeansthattheaccuracywasmeasuredinasetthatwasneverseenduring trainingstage.Anyhow,thistestsetcompliesonly15%ofthesubjectineachcase. Thedysphonia/controlclassificationwasmadeseparatelyforfemaleandmalesubjectswiththe ANNandSVM. Table4presentsthebestresultsbetweenseveralexperimentswithANN.Thistableshowsthe numberofinputnodes,hiddenandoutputlayers[I,H,O],thetransferfunctioninhiddenandoutput layers(TF-H,TF-O),thetrainingfunction(TRfunc),thecorrelationcoefficient(R)andAccuracy determinedforthetestset.Thecolumnsofthetabledisplayforeachcaseoftheselectedparameters methodandforfemaleandmalegroupsthebestarchitectureoftheANNconcerningthenumberof nodes,transferfunctionandtrainingfunction.Thebestarchitecturewasselectedusingtheperformance alongthetrainingandvalidationssetstogether.Thefinalperformanceispresentedinthetableforthe testset.Concerningthenumberoffeatures,4situationswereconsidered:usingtheallsetoffeatures, featuresselectedbyHCandMRA,andavectorcreatedbythePCAmethod. ThetransferfunctionusedintheANNarethetangentsigmoidal(tansig),logarithmicsigmoidal (logsig)andlinear(purelin).TheexperimentedtrainingfunctionsweretheLevenberg-Marquardt (trainlm)basedonMarquardt(1963),Resilientback-propagation(trainrp)basedonReidmillerand Braun(1993),andscaleconjugategradient(trainscg)(Moller,1993). Concerningthefemalegroup,thebestaccuracywas100%usingtheMRAfeatureselection method.Thismethodreducedfrom81to6featuresandyetachievedanexcellentaccuracy.Theother situationsofinputfeaturesusedhighernumberoffeaturesbutaccuracyremainedat83%.Forthe malegroup,thebestaccuracywas90%,achievedagainbytheMRAandPCAmethods.Anyhow, theMRAusedonly2featuresagainstthe7usedbyPCA.

Table 3. Set of selected features for HC and MRA feature selection methods by pathology and gender

Features Pathology/Method/Gender Dysph HC Female Dysph HC Male Dysph MRA Female Dysph MRA Male VCP HC Female VCP HC Male VCP MRA Female VCP MRA Male

Jitta ul,ih,an,un,in, ah,al

in,an,il,

ih,al,uh al,un,ah,an,ul,il un,il,ul,ih,an,ah an ah

Jitter al

Rap ah in

Ppq5 un

ShdB

Shim il,ul,in,ih,an ah,al,an,in in un,ah,al uh

Apq3 an,ah,uh ah

Apq5 in

HNR ih,il,ul,al al,ul,ah,un al al al,in an

#features 16 14 6 2 7 9 6 3

(11)

Table5displaystheperformanceoftheSVMforfemaleandmaledysphoniagroups.Thetable presentsthesensitivity,specificityandaccuracydeterminedunderthetestsetforbestkerneland parametersofSVMusingallfeatures,featuresselectedbyMRAandparametersdeterminedbyPCA. TheperformanceachievedbyHCfeaturesselectionmethodwasverypoorcomparedwiththeother methodandthereforeitwasexcludedfromthetable. Forfemaleandmalegroups,thebestperformancewasachievedagainbytheMRAfeature selectionmethodandwithdifferentkernelandparametersoftheSVMmodelforfemaleandmale groups.Theaccuracywasof100%usingonly6and2featuresforfemaleandmalegroups,respectively. Forthismodel,thesensibilityandspecificitywerealso100%forbothgenders. Asaconclusion,fordysphonia/controlclassificationthesetoffeaturesselectedforfemaleand malegroupsachieve100%accuracyusingthebestANNandSVM,andformalegroupachieved 90%accuracywiththebestANNand100%withthebestSVM. AccordingtoTable3,thebestsetoffeaturesforthefemalegroupis: • Shim:/i/vowelatnormaltone • Apq3:/a/vowelatnormalandhightones;/u/vowelathightone • Apq5:/i/vowelatnormaltone • HNR:/a/vowelatlowtone Forthemalegroup: • Jitter:/a/vowelatlowtone • Rap:/a/vowelathightone Table 4. Dysphonia, ANN

Input All features HC MRA PCA

Female Male Female Male Female Male Female Male

Arch.[I,H,O] [81,20,1] [81,10,1] [16,10,1] [14,20,1] [6,15,1] [2,15,1] [7,15,1] [7,10,1] TF-H tansig logsig tansig logsig tansig logsig tansig tansig TF-O purelin purelin purelin purelin purelin purelin purelin purelin TRfunc. trainlm trainlm trainlm trainlm trainscg trainlm trainlm trainscg

R 0.67 0.50 0.71 0.41 1.00 0.82 0.67 0.82

Accuracy 83.3 70.0 83.3 70.0 100.0 90.0 83.3 90.0

Table 5. Dysphonia, SVM

Input All Features MRA PCA

Female Male Female Male Female Male

Kernel linear linear linear Gaussian Gaussian linear

Parameters C=0.1 C=0.1 C=0.1 S=0.1,C=0.2 S=2,C=10 C=1

Sensitivity 100.0 100.0 100.0 100.0 83.3 100.0

Specificity 83.3 75.0 100.0 100.0 83.3 75.0

(12)

3.3. Vocal Cords Paralysis/Control Classification ThesametypeofanalysisispresentedforvocalcordsparalysisusingANNinTable6andusing SVMinTable7. ConsideringtheresultspresentedinTable6withANNforthefemalegroupthebestaccuracy was76.3%usingtheallsetoffeatures.Thefeatureselectionmethoddidnotgetanyimprovements intheperformanceoftheANN. Forthemalegroup,thebestaccuracywasachievedusingtheMRAfeatureselectionmethod andPCA.Inbothcases,thebestaccuracywas81.8%fortestset.TheMRAselectedonly3features touseintheinputlayeroftheANN.ThePCAchangesthefeaturesdimensionof81featuresto7 newfeatures. Table7presentsthebestresultsusingtheSVMforVCP/controlclassification.Thedatafollows thesamestructuredescribedforTable5.Oncemore,theHCfeatureselectionmethodresultedin poorresultsnotpresentedhere. Concerningtheresultsforthefemalegroup,thebestaccuracywas78.9%achievedwhenitwas usedtheallsetoffeaturesandrepeatedwiththefeatureselectedbyMRAmethod. Forthemalegroup,thebestaccuracywas80.0%achievedwiththe7parametersofPCA. ConsideringbothANNandSVMmodelsthebestresultsforthefemalegroupwas78.9%accuracy achievedusingSVMand76.3%withtheANN.Forthemalegroup,thebestaccuracywas81.8% attainedbytheANN,and80.0%achievedbySVM. Thebestsetoffeaturesforthefemalegroupisthealldatasetoronlythefollowingfeatures: • Jitta:/a/vowelatnormaltone • Ppq5:/u/vowelatnormaltone Table 6. Vocal cords paralysis, ANN

Input All Features HC MRA PCA

Female Male Female Male Female Male Female Male

Arch.[E,CE,S] [81,10,1] [81,15,1] [7,15,1] [10,15,1] [6,20,1] [3,25,1] [7,10,1] [7,15,1]

FTCE tansig logsig tansig logsig tansig tansig tansig logsig

FTS purelin purelin purelin purelin purelin purelin purelin purelin FT trainlm trainlm trainlm trainlm trainlm trainscg trainlm trainlm

R 0.527 0.567 0.484 0.462 0.436 0.647 0.476 0.636

Accuracy 76.3 77.3 73.7 72.7 71.1 81.8 73.7 81.8

Table 7. Vocal cords paralysis, SVM

Input All Features MRA PCA

Female Male Female Male Female Male

Kernel Polynomial Gaussian Polynomial linear Gaussian Polynomial Parameters O=2,C=0.04 S=4,C=0.2 O=2,C=10 C=0.1 S=1,C=0.1 O=4,C=1

Sensitivity 84.2 80.0 89.5 90.0 84.2 80.0

Specificity 73.7 70.0 68.4 60.0 68.4 80.0

(13)

• Shim:/u/vowelathightone • Apq3:/a/vowelathightone • HNR:/a/vowelatlowtoneand/i/vowelatnormaltone Forthemalegroup: • Jitta:/a/vowelathightone • Rap:/i/vowelatnormaltone • HNR:/a/vowelatnormaltone Afinalconsiderationabouttheaccuracyshouldbemade.Theaccuracywasmeasuredinthetest setthatconsistsof15%ofalldataset.Therefore,thetestsetconsistsof12subjectsfortheDysphonia/ female,9subjectsforDysphonia/male,38subjectsforVCP/femaleand21subjectsforVCP/male. Anaccuracyof100%meansthatallthesubjectsofthetestsetofthepathology/gendergetacorrect diagnosis.However,sincethenumberofsubjectsisnottoohighthisresultmustbeseencarefully. 4. CoNCLUSIoN Vocalacousticanalysistechniquewasappliedtoclassifybetweendysphonicandhealthyvoicesand betweenvocalcordsparalysisandhealthyvoices.Theclassificationwasmadeforfemaleandmale withdifferentmodelsandarchitectures.TheANNandSVMwereusedasclassifiertools.Different architecturesoftheANNandSVMwereexperimented.TheANNandtheSVMmadetheclassification usingasubsetoffeaturesselectedbyhierarchicalclustermethod,multilinearregressionanalysis,or asetofnewfeaturesobtainedwiththePCAmethod.Thesemethodsselectasubsetoffeaturesfrom the4measuresofjitter,4measuresofshimmerandHNRextractedfromspeechsoundfileswith3 vowelspronouncedatthreetones,inatotalof81features. Theaccuracyoftheclassificationbetweenpathologic/controlmeasuredinthetestsetwasused tocomparethemodels. Thebestresultsfortheclassificationbetweendysphonic/controlfemalesubjectswas100%of accuracy,achievedusingANNandSVMwiththesetoffeaturesselectedbyRMAmethod.Forthe malegroup,thebestresultwasalso100%ofaccuracy,obtainedbytheSVMwiththeMRAfeatures. TheMRAmethodreducedfrom81to6featuresforfemaleand2featuresformalegroups.The SVMshowedtobeverypowerfultoclassifydysphonicvoicesofbothgenders. Thevocalcordsparalysisshowedtobemoredifficulttoclassify.Thesamemethodologyachieved anaccuracyof78.9%forthefemalegroupwithSVM,and81.8%forthemalegroupwithANN. TheMRAmethodreducedthe81featuresto6featuresforthefemalegroupwiththesame accuracy,andtoonly3featuresforthemalegroup. ComparingtheANNandSVMmodelsbothprovedtobeadequatetoolstoclassifybetween controlandpathologicvoiceswithhighaccuracy. Somefuturechallengesinthisworkconsistsinextendthedevelopmentofthediagnosissystem toincludingotherpathologiesandthenclassifythepathology.Themajorlimitationconcernswith theshortlengthofthespeechdatabasewithclinicallabelledpathologies. ACKNowLEDGMENT TheauthorsthanktheHCIST2017conferencefortheinvitationtopublishthisarticle.

(14)

REFERENCES Al-nasheri,A.,Muhammad,G.,Alsulaiman,M.,&Ali,Z.(2016).InvestigationofVoicePathologyDetection andClassificationonDifferentFrequencyRegionsUsingCorrelationFunctions.Journal of Voice,31(1),3–15. doi:10.1016/j.jvoice.2016.01.014PMID:26992554 Almeida,N.C.(2010).Sistemainteligenteparadiagnósticodepatologiasnalaringeutilizandomáquinasde vetordesuporte.UniversidadeFederaldoRioGrandedoNorte.Retrievedfromhttps://repositorio.ufrn.br/jspui/ handle/123456789/15149 Barry,W.J.,&Pützer,M.(2007).SaarbrueckenVoiceDatabase.Stimmdaten Bank.Retrievedfromhttp://www. stimmdatenbank.coli.uni-saarland.de/help_en.php4 Ben-Hur,A.,&Weston,J.(2010).AUser’sGuidetoSupportVectorMachines.SourceForge.Retrievedfrom http://pyml.sourceforge.net/doc/howto.pdf Bielamowicz,S.,Kreiman,J.,Gerratt,B.,Dauer,M.,&Berke,G.(1996).ComparisonofVoiceAnalysis SystemsforPerturbationMeasurement.Journal of Speech and Hearing Research,39(1),126–134.doi:10.1044/ jshr.3901.126PMID:8820704 Boersma,P.,&Weenink,D.(2009).PraatManual:doingphoneticsbycomputer.5.1.18.[Computerprogram]. Retrievedfromhttp://www.fon.hum.uva.nl/praat/download_win.html Brockmann-Bauser,M.(2011).Improvingjitterandshimmermeasurementsinnormalvoices[PhDThesis]. NewcastleUniversity. Cordeiro,H.T.(2017).Reconhecimentodepatologiasdavozusandotécnicasdeprocessamentodafala.Retrieved fromhttps://run.unl.pt/handle/10362/19915 Cruz,A.(2007).DataMiningviaRedesNeuronaisArtificiaiseMáquinasdeVectoresdeSuporte. Forero,L.A.,Kohler,M.,Vellasco,M.,&Cataldo,E.(2015).AnalysisandClassificationofVoicePathologies Using Glottal Signal Parameters. Journal of Voice, 30(5), 549–556. doi:10.1016/j.jvoice.2015.06.010 PMID:26474715

Guyon,I.,&Elisseeff,A.(2003).AnIntroductiontoVariableandFeatureSelection.Journal of Machine Learning Research,3,1157–1182.Retrievedfromhttp://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf Henríquez,P.,Alonso,J.B.,Ferrer,M.A.,Travieso,C.M.,Godino-Llorente,J.I.,&Díaz-di-María,F.(2009). CharacterizationofHealthyandPathologicalVoiceThroughMeasuresBasedonNonlinearDynamics.IEEE Transactions on Audio, Speech, and Language Processing,17(6),1186–1195.doi:10.1109/TASL.2009.2016734 Hirano,M.(1974).Morphologicalstructureofthevocalcordasavibratoranditsvariations.Folia Phoniatrica, 26(2),89–94.doi:10.1159/000263771PMID:4845615

Markaki,M.,&Stylianou,Y.(2011).VoicePathologyDetectionandDiscriminationBasedonModulation Spectral Features. IEEE Transactions on Audio, Speech, and Language Processing, 19(7), 1938–1948. doi:10.1109/TASL.2010.2104141

Marquardt,D.W.(1963).AnAlgorithmforLeast-SquaresEstimationofNonlinearParameters.Journal of the Society for Industrial and Applied Mathematics,11(2),431–441.doi:10.1137/0111030

May,R.,Dandy,G.,&Maier,H.(2011).Review of Input Variable Selection Methods for Artificial Neural Networks.InMethodologicalAdvancesandBiomedicalApplications.doi:10.5772/16004

Moller,M.F.(1993).AScaledConjugateGradientAlgorithmforFastSupervisedLearning.Neural Networks, 6(4),525–533.doi:10.1016/S0893-6080(05)80056-5

Netter,F.(2014).Atlas of Human Anatomy(6thed.).Philadelphia,PA:SaundersElsevier.

Panek,D.,Skalski,A.,Gajda,J.,&Tadeusiewicz,R.(2015).AcousticAnalysisAssessmentinSpeechPathology Detection.International Journal of Applied Mathematics and Computer Science,25(3),631–643.doi:10.1515/ amcs-2015-0046

(15)

Pylypowich,A.,&Duff,E.(2016).DifferentiatingtheSymptomofDysphonia.The Journal for Nurse Practitioners,12(7),459–466.doi:10.1016/j.nurpra.2016.04.025

Reidmiller,M.,&Braun,H.(1993).Adirectadaptivemethodforfasterbackpropagationleaming:The RPROalgorithm.InProceedings of the IEEE International Conference on Neural Networks.doi:10.1109/ ICNN.1993.298623

Rokach,L.,&Maimon,O.(2005).ClusteringMethods.InData Mining and Knowledge Discovery Handbook (pp.321–352).NewYork:Springer-Verlag;doi:10.1007/0-387-25465-X_15

Salhi,L.,Mourad,T.,&Cherif,A.(2010).VoiceDisordersIdentificationUsingMultilayerNeuralNetwork. The International Arab Journal of Information Technology,177–185.

Sellam,V.,&Jagadeesan,J.(2014).ClassificationofNormalandPathologicalVoiceUsingSVMandRBFNN. Journal of Signal and Information Processing,5(1),1–7.doi:10.4236/jsip.2014.51001PMID:24513981 Smith,L.I.(2002).AtutorialonPrincipalComponentsAnalysis.Retrievedfromhttp://www.iro.umontreal. ca/~pift6080/H09/documents/papers/pca_tutorial.pdf

Teixeira,J.P.,&Fernandes,P.O.(2014).Jitter,ShimmerandHNRclassificationwithingender,tonesandvowels inhealthyvoices.Procedia Technology,16,1228–1237.doi:10.1016/j.protcy.2014.10.138

Teixeira,J.P.,&Fernandes,P.O.(2015).AcousticAnalysisofVocalDysphonia.Procedia Computer Science, 64,466–473.doi:10.1016/j.procs.2015.08.544

Teixeira,J.P.,Fernandes,P.O.,&Alves,N.(2017).VocalAcousticAnalysis-ClassificationofDysphonicVoices withArtificialNeuralNetworks.Procedia Computer Science,121,19–26.doi:10.1016/j.procs.2017.11.004 Teixeira,J.P.,&Gonçalves,A.(2014).AccuracyofJitterandShimmerMeasurements.Procedia Technology, 16,1190–1199.doi:10.1016/j.protcy.2014.10.134

Teixeira,J.P.,&Gonçalves,A.(2016).Algorithmforjitterandshimmermeasurementinpathologicvoices. Procedia Computer Science,100,271–279.doi:10.1016/j.procs.2016.09.155

João Paulo Teixeira is graduated, Master and PhD in Electrical and Computers Engineering from the Faculty of Engineering of the University of Porto (FEUP). He is Professor since 1995 in the Polytechnic Institute of Bragança teaching in the areas of digital electronics, signal processing and rehabilitation engineering. He is author of 2 books, twelve chapter books, 30 articles and more than 50 conference papers, all with revision by his peers. His research interest areas are related with signal processing and signal modulation and forecasting. He has been working with artificial neural networks, speech signal processing, EEG signals for discrimination of Alzheimer’s disease, ECG signal events detection and prediction of time series.

Nuno Alves completed his graduation in Biomedical Engineering and his Master Graduation in Biomedical Technology at Polytechnic Institute of Bragança.

Paula Odete Fernandes, PhD in Economics and Management, is a Professor of Management at the Polytechnic Institute of Bragança (IPB) - Portugal. She is a researcher and Scientific Coordinator of UNIAG (Applied Management Research Unit, since 2013) and researcher of Research Unit in Business Sciences (NECE-UBI, since 2010). She participated in 13 international and national projects I&D (5 as Responsible Researcher), supervised one PhD thesis and several master students (over 75 master theses). She published more than 190 publications in peer-reviewed journals, book chapters and proceedings, and has several communications at international scientific conferences and won 6 scientific awards. She serves as a member of Program Board and Organizing Committees for some Scientific Committees of International Conferences and has collaborated as a reviewer with several journals. Her current research interest is in tourism research, importance-performance analysis, management, artificial neural network, entrepreneurship, econometric modelling, marketing and strategic management, market research, corporate social responsibility and sustainable, higher education quality and applied research methods.

Referências

Documentos relacionados

The purpose of this study was to compare modelling by artificial neural networks (ANN) and linear discriminant analysis (LDA) as alternatives for the selection of promising

Finalidade: Identificar as categorias da «Classificac¸ão Internacional da Funcionalidade, Inca- pacidade e Saúde» (CIF) para a classificac¸ão da funcionalidade dos utentes da

A partir do cenário descrito, percebemos que uma ética inclusiva é fundamental para a transformação da sociedade por meio do reconhecimento radical do outro em

In the future, the strategy of the ISR area intends to maintain its focus on continuously improving the life quality of its employees and their families as a way to

Os alunos de 6º ano do Mestrado Integrado em Medicina assumiram tarefas de índole burocrática e auxiliaram a comunicação com as entidades de saúde reguladoras. O objetivo

Esta ocorrência de múltiplas lesões noutras estruturas do casco na maioria dos casos referidos poderá sugerir que o trauma necessário para lesionar os LC poderá

Podemos concluir que para Severina a matemátic que à usada na sua comunidade "nã à matemática ou nã à vista como um "verdadeira matemática" Ela recons-

This research, based on material balance research of phosphorus in artificial wetlands, HRT (hydraulic retention time) and analysis of wetland plant photosynthesis and