• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número1

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número1"

Copied!
7
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

article

Alkaloids

and

biological

activity

of

beribá

(

Annona

hypoglauca

)

Maria

V.N.

Rinaldi

a

,

Ingrit

E.C.

Díaz

b

,

Ivana

B.

Suffredini

b,∗

,

Paulo

R.H.

Moreno

c

aProgramadePós-graduac¸ãoemFármacoeMedicamento,FaculdadedeCiênciasFarmacêuticas,UniversidadedeSãoPaulo,SãoPaulo,SP,Brazil

bNúcleodePesquisasemBiodiversidade,LaboratóriodeExtrac¸ão,UniversidadePaulista,SãoPaulo,SP,Brazil

cInstitutodeQuímica,UniversidadedeSãoPaulo,SãoPaulo,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18May2016 Accepted4August2016

Availableonline22September2016

Keywords:

Annonahypoglauca

Antibacterialactivity Cytotoxicity Isoquinolinealkaloids Isoboldine

Actinodaphnine

a

b

s

t

r

a

c

t

AnnonahypoglaucaMart.,Annonaceae,popularlyknownas“beribá”,wascollectedinfloodedareasofthe AmazonianRainForest.Thecrudeextractobtainedfromthisspecieswasfoundtobecytotoxicagainst humancancercells.ChemicalinformationonA.hypoglaucaisscarce.So,thepresentworkaimedthe isolationandidentificationofitsalkaloidsandtotesttheircytotoxicactivity.Alkaloidswereobtained fromstembyacid–basepartitioningandtheremainingalkaloid-freeextractwaspartitionedwithorganic solvents.Gaschromatography–massspectrometryGC/MSanalysisoftotalalkaloidsallowedthe iden-tificationoffouraporphinealkaloids:actinodaphnine,anonaine,isoboldineandnornuciferine.Total alkaloidswerefractionatedbycolumnchromatographyandwerepurifiedbypreparative thin-layer-chromatography,whichallowedtheisolationoftwoaporphinealkaloids,actinodaphnineandisoboldine, characterizedbyNMRandCG–MSanalyses.Thisisthefirstreportfortheoccurrenceofactinodaphnine inAnnonaspecies.Allthesamplesweretestedincytotoxicandantibacterialassays.Totalalkaloidextract anditsfractionsshowedantimicrobialactivityagainstStaphylococcusaureusandEnterococcusfaecalis. Inthecytotoxicityassay,thecrudeextractshowedalethaleffectagainstbreastandcoloncancercells. Isoboldine-containingFA5andactinodaphnine-containingFA6showedactivityagainstbreastcancercell line,whilethealkaloid-freefractionsdidnotshowsignificantactivityagainstcancercelllines.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Annonaceaeisapantropicalfamilycontainingapproximately 130generaand2300speciesoftreesandshrubs(Heywood,1993; Cordelletal.,2001).ThetropicalAmericangenusAnnonaL.is rep-resentedby 140species, which arerecognized mainlyby their ediblefruits,suchasA.muricata(graviola),A.squamosa (fruta-do-conde),A.coriaceae(araticum)andA.cherimolia(cherimoya)plants belongingtothegenusAnnonaarealsousedinfolkmedicineas antitumor,anti-parasiteand antidiarrhea(Pimenta etal.,2003), antiprotozoal (Siqueira et al., 2011), anti-inflammatory (Siebra etal.,2009),cytotoxicandanti-ulcerogenicagents(Hamidetal., 2012).Some species have also been pharmacologically studied for theirplateletanti-aggregationand antiulcerogenicactivities (Villaretal.,1997;Padmaetal.,1998).ThegenusAnnonaisarich sourceofisoquinoline–particularlyaporphinealkaloids(Leboeuf etal.,1982;Rabêloetal.,2014)–andacetogenins(Bermejoetal., 2005).Thestructuraldiversityoftheisoquinolinealkaloidsisas wideastherangeofitsbiologicalactivities,whichcanbeusedas

∗ Correspondingauthor.

E-mail:extractlab@unip.br(I.B.Suffredini).

antimicrobial(Simeónet al.,1990), cytotoxic(Wu et al.,1993), antitumoral(SonnetandJacobson,1971),antiprotozoal(Tempone etal.,2005),antiviral(Montanhaetal.,1995)besidesmanyother applications, especially in demonstrating antimicrobial activity againstGram-positivebacteria(Villaretal.,1987;Abbasogluetal., 1991;Pauloetal.,1992).

AnnonahypoglaucaMart.occursinthefloodedareas(igapós)of thenorthernAmazonianforests,aswellasinterrafirmeforests. Thespeciescanbefoundasatreeupto10mheightwhen occur-ringinterrafirmeorasalianawhenoccurringintheigapóswhere itispopularlyknownasberibá(Gottsberger,1978),orbiribá,in theBrazilianAmazonregion,orasguanábanahuascaandtortuga blancabyotherSouthAmericancommunities,oraswildsoursop, itsEnglishname.Itsfruitsareeatenbylocalsandtheteamadewith thebarkisusedasmedicineagainstparasites,anemiaandchronic diarrhea(Revilla,2002).A.mucosa,A.sylvatica,Duguetia marcgra-vianaandFusealongifoliaarealsoknownasbiribá,inBrazil(Reflora, 2016).

Previousbiologicalscreeningaimingtheidentificationof cyto-toxicity of 1277 Amazon plant extracts against human breast cancercelllines(Suffredinietal.,2007a),prostatecancercelllines (Suffredinietal.,2006a),colon,lung,centralnervoussystemand leukemiacancercelllines(Suffredinietal.,2007b)havebeenmade,

http://dx.doi.org/10.1016/j.bjp.2016.08.006

(2)

togetherwiththeevaluationoftheantimicrobialactivityofthe extractsagainstsomepathogenicmicroorganismsas Staphylococ-cusaureus(Suffredinietal.,2004),Enterococcusfaecalis(Castilho et al., 2013, 2014), Streptococcus mutans (Barnabéet al., 2014) andEscherichiacoli(CamargoandSuffredini,2014).Fromthe pre-viousscreening,thecrude extractobtainedfromthestemof A. hypoglaucaMart.,Annonaceae,theso-calledEB1109,hasshowna significantactivityagainstbreastcancercelllineMCF-7(Suffredini etal.,2007a)andagainstS.mutans(Barnabéetal.,2014).Despite thesefirstresults,littleisknownaboutthechemicalcomposition andbiologicalactivitiesofA.hypoglauca,despiteawideliterature consideringotherAnnonaspecies.

Thepresentstudyaimstoreporttheisolationofaporphine alka-loids fromthestems of A. hypoglauca,as wellasto reportthe cytotoxicactivityofEB1109 and itsfractions. Asliteraturealso indicatesaputativeantimicrobialactivityrelatedtotheAnnona

alkaloids,allsampleswerealsotestedagainstthepathogenic bacte-ria.

Materialsandmethods

Plantmaterial

Thestem ofAnnona hypoglaucaMart.,Annonaceae,was col-lected in water-flooded forests (named igapó forest), Amazon rain forest, Manaus, (Lat. 2◦58and Long. 6027), Anavilhanas Ecological Station). A voucher specimen was deposited under identificationnumber [AAOliveira,3577 (UNIP Herbarium] and wasidentifiedbyDr.MateusL.B.Paciencia.Plantcollectionwas doneunder Brazilian Governmentplant collectlicense number MMA/ICMBio/SISBIO#14895andlicensetoaccessgeneticmaterial Ibama/MMA/CGen#012A-2008.

Extractionprocedures

Crudeextract:Thestemsoftheplant(1.074kg)wereair-dried at40◦Cinanair-circulatingoven.Plantmaterialwasgroundina hammermillbeforebeingsubmittedto24hmacerationwith10l ofamixturecontainingdichloromethane:methanol(1:1,v/v).The resultingorganicextractwasconcentratedtodryness(46.14g)and yielded4.3%ofEB1109(Younesetal.,2007).

Totalalkaloidfraction(TA):EB1109(5g)wereextractedwith 30ml0.1Mphosphoricacidunderagitationfor30min.Extraction wasrepeatedfourtimes.Acidsolutionswerefilteredandreunited tothesamefunnel.Acidsolutionwasthreetimesextractedwith 50ml hexane in order tohave non-polar compoundsremoved. TheacidsolutionwasbroughttopH∼9withammonia

hydrox-idesolution(25%,w/w)andwaspartitionedwithportionsof50ml chloroform,untilnegativetoDragendorff’sreagent.Theorganic phasewasdriedwithanhydroussodiumsulphateandconcentrated togivethetotalalkaloid(TA)fraction(3.1g;0.28%).TAyieldwas obtainedconsideringthecrudeplantmaterial.

Alkaloid-freeextracts: Thecake, consideredas theremaining insolublematerialresultedfromthealkaloidextraction,wasdried and the remainingsolids were dissolved in a series of solvent systems. Hexane (30ml) was added to the cake and the sys-temremainedunderagitationfor30min.Afterthat,thesystem was decanted and filtered. This procedure was repeated three timesunderthesameconditions.Thecombinedhexanesolutions were evaporated and originated fraction hexane (FHex,2.64g; 0.25%).Aseconddissolutiondoneinasimilarwaywasperformed withamixtureofdichloromethane(DCM)andmethanol(MeOH) (1:1, v/v), resulting fraction DCM/MeOH (DCM/MeOH; 1.71g; 0.16%).Thethirddissolutionwasmadewithethylacetate, result-ingin fractionFEAC (0.21g;0.02%).Finally, theremainingcake

material waspartitioned with a 20% ethanol:H2O solution and extractedwiththreeportionsof250mleachofbutanol,originating thefractionbutanol(FBuOH;0.65g;0.06%).Fractionsyieldswere obtainedconsideringthecrudeplantmaterial.

Isolationofalkaloids

TA(2g)wasfractionatedbycolumnchromatography (70cm lengthx40mmdiameter)on50gnormalphasesilicagel60.Elution wasmadewiththefollowingsolventmixtures:DCMandMeOH in order ofincreasing polarity,as follows: 100% DCM(200ml), DCM:MeOH9:1(400ml),DCM:MeOH8:2(400ml),DCM:MeOH 7:3(400ml),DCM:MeOH1:1(400ml)and100%MeOH(200ml). Theelutionresultedinthefollowingfractions:100%DCMyielded fraction1(FA1, 7.6mg;0.0011%);DCM:MeOH9:1(v/v)yielded fractions2(FA2,0.4mg;0.00005%)and3(FA3,738.4mg;0.1055%); DCM:MeOH8:2(v/v)yieldedfractions4(FA4,161.4mg;0.0231%) and5(FA5,176.1mg;0.0252%);DCM:MeOH7:3(v/v)yielded frac-tions6(FA6,395.8mg;0.0565%)and7(FA7,43.4mg;0.0062%); andfinallyfractions8(FA8, 26.9mg;0.0038%),9(FA9,22.1mg; 0.0031%) and 10 (FA10, 16.0mg; 0.0023%) were eluted with DCM:MeOH1:1(v/v).Fractionsyieldswereobtainedconsidering thecrudeplantmaterial.

Fractions FA4, FA5 and FA6 were again fractionated using preparative thin layer chromatography (PTLC) precoated with 1mmofsilicagel60F254,withoutbeingactivatedandasolvent mix-tureofCHCl3:MeOH(92:8)asmobilephase.Spotswereobserved underU.V.light(=366nm)andrevealedafterreactionwith Dra-gendorff’sreagent.Bandsrelatedtoeachisolatedcompoundwere elutedwithDCMandwerethensubmittedtoRMNanalysis. Frac-tionFA4originatedfourfractions,FA5originatedthreefractions, andFA6originatedsixfractions.Compound1wasthenisolated fromFA5.2usingPTLCasabrownamorphoussolid(3.7mg). Com-pounds2and3wereanalyzedby1HNMRasamixture.Lastly, compound4wasisolatedfromFA6.2,obtainedfrompreparative TLC,asalightbrownamorphoussolid(7.8mg).Fouralkaloidswere identified.

Compound1,isoboldine:(1HNMR,300MHz,CDCl

3,TMS inter-nalstandard):ı7.94(1H,s,H-11),6.74(1H,s,H-8),6.47(1H,s,H-3), 3.84–3.85(6H,s,br,OMe-10andOMe-2),2.49(3H,s,N-CH3)(Soares etal.,2015;JacksonandMartin,1966);13CNMR(75MHz,CDCl

3): ı145.74(C-2),144.90(C-9),144.43(C-10),140.47(C-1),129.7 (C-7a),124.4(C-11a),119.7(C-1a),113.87(C-11),111.55(C-8),108.64 (C-3),62.51(C-6a),56.16(C-2OMe),56.09(C-10OMe),53.36(C-5), 43.80(C-6N-CH3),33.9(C-7),28.79(C-4))(Jackmanetal.,1979). MS/EI (M+)RT=27.99:327(M+), 326(M+-1),310(M+-17), 284 (M+-43),269(M+-58),253(M+-74).

Compound 2, nornuciferine (present in fraction FA5.3): (1H NMR, 200MHz, CDCl3, TMS internal standard): ı 8.32 (1H, d,

J=7.8Hz,H-11),7.28(1H,m,H-8,H-9,H-10),6.58(1H,s,H-3),3.59 (3H,s,2-OCH3),3.32(3H,s,1-OCH3)(Dutraetal.,2012;Hasratetal., 1997).MS/EI(M+)RT=20.12:281(M+),280(M+-1),266(M+-15), 250(M+-31),237(M+-43),221,178,165,152.

Compound3,anonaine(presentinfractionFA5.3):(1HNMR, 200MHz,CDCl3,TMSinternalstandard):ı8.00(1H,d,J=7.8Hz; H-11),7.28–7.14(1H,m,H-8,H-9,H-10),6.68(1H,s,H-3),5.89 (1H,d,J=0.8Hz,1-OCH2O-2)and6.28(1H,d,J=0.8Hz,1-OCH2 O-2,)(Costaetal.,2012;Hasratetal.,1997).MS/EI(M+)RT=21.32: 265(M+),254(M+-1),236(M+-29).

(3)

(300MHz,CDCl3):CH:ı114.4;110.1;106.9;CH3:56.1;53.3;CH2: 100.6;42.55;35.4;28.3.13C NMR(75MHz,CDCl

3):ı146.99 (C-2),145.65(C-10),145.35(C-9),141.70(C-1),128.09(C-7a),125.98 (C-1b),125.65(C-3a),122.74(C-11a),116.57(C-1a),114.41(C-8), 110.11(C-11),106.96(C-3),100.62(OCH2O), 56.08(C-10OMe), 53.27(C-6a),42.56(C-5),35.37(C-7),28.32(C-4))(Stévignyetal., 2002).MS/EI(M+)RT=27.48:311(M+),310(M+-1),279,251,181.

NCH

3

H

3

CO

HO

OH

H

3

CO

1

NH

O

O

NH

H

3

CO

H

3

CO

2

NH

OH

H

3

CO

O

O

4

3

Spectroscopicanalysis

NMRspectraof1Hand13CwereobtainedonaBruker spectrom-eter,operatingat200MHzorat300MHz(1H)andat75MHz(13C). GC–MSwasperformedinanAgilentSeries6890chromatograph, equippedwithaHP-5column(30m×0.25mm,filmof0.25␮m), theinjectorwassetto290◦C,thecarriergas(He)flowwasadjusted to1ml/min,theinitialtemperaturewas95◦Cfor2min,followedby anincrementof8◦C/minuntil310C,thetemperaturewas main-tainedfor2min.TheMSdetectoroperatedintheelectronimpact (EI;70eV),wasusedtoqualitativeevaluatethealkaloidcontents.

Biologicalassays

Samplespreparation

Samplepreparationforcytotoxicassay:allthesampleswere diluted to 2mg/ml in 50% dimethylsulfoxide (DMSO) in water beforebeingevaluatedinasingle-concentrationassay(finaltest concentration 100␮g/ml). Sample preparation for antibacterial assay:samplesweredilutedinDMSO50%tothefollowing concen-trationsof200,180,160,140,120,100,80,60,40and20mg/ml, inordertoproportionatefinaltestconcentrationsof100,90,80, 70, 60, 50, 40, 30, 20 and 10␮g/ml. Vehicle wastested for its antimicrobialactivity,aswellasdoxorubicin(Adriamicin®)ata concentrationof25mMwasusedasstandarddruginthe cytotox-icityassayandgentamycin andtetracyclinepreparedatvarious concentrationswereusedasstandarddrugsintheantibacterial assay.AntibioticfinaltestconcentrationsforMIC/MBCassayranged from120␮g/mldownto0.16␮g/ml.

Antibacterialmicrodilutionbrothassay

Testswereperformedin asepticconditions(Suffredinietal., 2015). Bacteria inoculum was prepared at the concentra-tion of 1.5×102CFU/ml, starting from a 0.5 McFarland (or

1.5×108CFU/ml), as follows (Younes et al., 2007). S. aureus

(ATCC29213),Escherichiacoli(ATCC25922)andE.faecalis(ATCC 29212) were the bacterial strains tested. Bacteria inoculum of eachstrainwasobtainedfromfresh24-hculturecoloniesgrown onMüeller-Hinton agarplates. Eachstrain wasinoculated into 5ml of Müeller–Hinton broth in order to obtain a concentra-tionof1.5×108CFU/ml(0.5McFarland),whichwasdetermined

by a turbidimeter (Oxoid) adjusted to the 0.5 McFarland con-centration.Eachinoculumwasthendilutedinbrothmediumto 1.5×102CFU/ml.Onehundredandninetymicrolitersofthis

sus-pensionwastransferredtoeachmicroplatewell.Tenmicrolitersof eachtreatmentwereaddedtothemicroplatewellsandincubated at35◦Cfor18–20h.Treatmentsthathavevisuallyinhibited bacte-riafromgrowweresubculturedinMüeller-Hintonagarplatesthat wereincubatedat35◦Cfor18to20h.Observationsofbacteriagrow orlackofbacteriagrowdeterminedwhichtreatmentwaseffective. Allsamplesthatshowedeffectivenessinthesingle-concentration assayweresubmittedtothedeterminationofMICandMBC.

Determinationofminimalinhibitoryconcentrationandminimal bactericidalconcentration

Minimalinhibitoryconcentration(MIC)andminimal bacteri-cidalconcentration(MBC)weredeterminedforthetreatmentsthat showedtotalgrowthinhibitioninthesingle-concentrationassay usingtheprotocoldescribedabove.Thesameprotocolwasused todetermineMICandMBC.Sampleswerepreparedin concentra-tionsof0.2upto2mg/ml,ina0.200mg/mlfold(testconcentrations rangingfrom10to100␮g/ml,in10␮g/mlfold)wereevaluated. Turbidity wasobserved and those identified ashaving a visual lackofturbidityweresubculturedinMüeller–HintonagarPetri dishes,whichwerethenincubatedat35◦Cfor18–20h.Afterthe incubation, bacteriagrowthwasdeterminedand supportedthe establishmentofMIC’sandMBC’sasfollows:thelower concentra-tionobservedashavingalackofturbiditybutpresentingbacteria growthwasdeterminedastheMICandthelowerconcentration havingalackofturbidityanddidnotpresentanybacteriagrowth aftersubculturewasconsideredastheMBC.

Cytotoxicityassay

(4)

treatment(extract,fractions,isolatesordoxorubicin)wasadded to thewells in sextuplicates. Also, in order to obtain a better experiment control,two wellshaving only medium plus treat-mentwere added totheplates, as wellas16 wells containing mediumpluscellswithouttreatment,inordertoestablisha reg-ularcellgrow(positivecontrol).Plateswerekeptincubatingfor 48hbeforeevaluation.Afterthat,plateswerealsofixedwithTCAat thepre-stipulatedconcentration.TCAwasremovedwithwaterand sulforodamineB(SRB)colorimetricassaywasperformed. Accord-ingtoVoigt(2005),theproteindyeSRBassayiscurrentlyused formeasuringdrug-inducedcytotoxicityandcellproliferationfor bindingelectrostaticallyandpHdependenttoproteinbasicamino acidresiduesofTCA-fixedcellsinalinearcorrespondencetothe amountofcells.So,timezero(T0),cellcontrol(C)andtreatment(T) opticaldensitiesat515nmwereusedtocalculatethepercentage ofcellgrowinhibitionor,asfollows:[(T−T0)/(C−T0)×100=%of

growth].Resultswereinterpretedbythecomparisonofcellgrowth aftertreatment(T)topositivecontrolcells(C),bothconsideringcell growthatTimeZero(T0).If100>T>T0wasobservedthepresence ofcellgrowthinhibition;ifT=T0=0wasobservedthatcellsdonot growinrelationtothecelldensityatT0;ifT<T0,itmeansthat treatmentiseffectiveenoughtocausecelllethality.Treatments wereevaluatedataspecifictestconcentrationof100␮g/ml.

Resultsanddiscussion

Thealkaloid yieldfromA. hypoglaucastems was0.28%. Pre-viousstudies(Debourgesetal.,1987)relateyieldsrangingfrom 0.3%and 0.2%for Duguetia species, while (Fischeret al., 2004) describesyieldsof0.5% for Annona.The yieldof total alkaloids hereobtainedfromA.hypoglaucaissomewhatamongtheexpected values.

TAfractionwasanalyzedbygasGC–MS,andthepresenceoffour aporphinealkaloidscouldbedetermined:isoboldine(1)isolated fromFA5.2,nornuciferine(2)andanonaine(3),identifiedas mix-tureinfractionFA5.3andactinodaphnine(4),isolatedfromFA6.2. Compoundswerecharacterizedbythecomparisonoftheir frag-mentationpatterninthemassspectra(MS)tothelibraryfromthe equipment(Wiley25)andtotheliteraturedata.Majorcompound (Rt20.12min)showedthefollowing fragmentationpattern:m/z

281(M+.),280(M+-1),266(M+-15),250(M+-30),252(M+-29),237, 221,178,165,152whichiscompatibletonornuciferine(2).The peakatm/z280with100%intensityischaracteristicofaporphines, whicheasilylosethehydrogennexttotheNHgroupatC-6a(Ohashi etal.,1963).Nornuciferine(2)wasisolatedfromA.hayesiistemas

thesecondmajorcompound(Rasamizafyetal.,1987).This alka-loidwasalsoreportedtooccurinAnnonaandinotherAnnonaceae genus,suchasEnantia,Guatteria,Isolona,PseudovariaandXylopia

(Lebouefetal.,1982;Lúcioetal.,2015).ThecompoundhavingRt

21.32minwascharacterizedasanonaine(3),bycomparisonofits fragmentationpattern(m/z265(M+.), 264(M+-1),236(M+-29), withtheliterature(JacksonandMartin,1966;Bhakunietal.,1972). CompoundshowingRt27.48min,m/z 311(M+.), 310(M+-1), 282(M+-29),279(M+-31),266(M+-15),251,181wasidentifiedas actinodaphnine(4),whichfragmentationpatternisinaccordance topreviousreport(McLaffertyandStauffer,1989).Isoboldine(1) wascharacterizedatRt27.9minandbyitsfragmentationpattern,

m/z327(M+.),326(M+-1),310(M+-17),284(M+-43),269(M+-58), 253(M+-74)(JacksonandMartin,1966).Isoboldine(1)previously isolatedfromfiveAnnonaspecies:A.cherimola,A.glabra,A. mon-tana,A.salzmanniandA.senegalensis(Lebouefetal.,1982;Simeón etal.,1990;Philipovetal.,1994).Inthepresentwork,both isobol-dineandactinodaphninewerealsoisolatedfromTA,asdescribed below.

Thealkaloidfractions(FA5andFA6),originatedfromcolumn chromatography(CC),werepurifiedbyPTLCandyielded isobol-dine (1)as a brownamorphous solid.Isoboldine structure was proposed based on its molecular weight (M 327Da), that was determinedbyGC–MS, andit iscompatiblewiththemolecular formulaC19H21O4N.Moreover,1Hand13CNMRchemicalshift val-ueswereinaccordancetothosereportedintheliterature(Jackson andMartin,1966),thesingletsat6.47and6.74ppmweredueto thehydrogensincarbons3and8;respectively;abroadsingletat 3.83–3.84ppm(6H)relativetothemethoxygroupsfoundcarbons 2and10andasingletat2.49ppm,relativetothehydrogensinthe NCH3group.Jackmanetal.,1979;Soaresetal.,2015haveassigned thecarbonssignalsintheNMRspectraforthiscompound,andit ispossibletoverifyagainthelevelofaccordancebetweenthedata hereobtainedandtheliteratureresults.Isoboldine(1)was pre-viouslyisolatedfromA.cherimola(Simeónetal.,1990),A.glabra,

A.montanaandfromseveralotherAnnonaceaespecies.However, actinodaphnine(4)hasbeenexclusivelyisolatedfromGuatteria scandens(Hocquemilleretal.,1983),anditisbeingherereported as novelty for the Annona genus. This alkaloid was reported to occur ubiquitously in Hernandiaceae and Lauraceae species (Guinaudeauetal.,1983;Hocquemilleretal.,1983;Sulaimanetal., 2011).

Nornuciferine(2)andanonaine(3)(Hasratetal.,1997)hadtheir structuresproposedbasedonchemical shiftvalues recordedin a200MHzspectrometer,once theywerefoundasamixturein

Table1

Minimalinhibitoryconcentration(MIC)andminimalbactericidalconcentration(MBC)fromthecrudeextractobtainedfromthestemofAnnonahypoglaucaMart.andits alkaloidfractionsagainstthreebacteriastrains.

Extractsandfractions Staphylococcusaureus ATCC29213

EnterococcusfaecalisATCC29212 Escherichiacoli ATCC25922

MIC(␮g/ml) MBC(␮g/ml) MIC(␮g/ml) MBC(␮g/ml) MIC(␮g/ml)

Crudeextract >100 >100 >100 >100 >100

FHex >100 >100 >100 >100 >100

DCM/MeOH >100 >100 >100 >100 >100

FEAC >100 >100 >100 >100 >100

FBuOH >100 >100 >100 >100 >100

Totalalkaloids 60 70 50 50 >100

FA4.4 NT NT NT NT NT

FA5a 70 70 40 40 >100

FA6a 70 80 40 40 90

Gentamycin 0.20 0.20 8 8 0.40

Tetracyclin 0.50 0.50 32 32 2

MIC,minimalinhibitoryconcentration;MBC,minimalbactericidalconcentration,NT,nottested.FHex,fractionhexane,DCM/MeOH,fractiondichloromethaneandmethanol, FEAC,fractionethylacetate,FBuOH,fractionbutanol.

(5)

fractionFA5.3notallhydrogenscouldbeassigned.So, nornucifer-ineshowedadoubletat8.32ppm(J=7.8Hz)correspondingtotheH atcarbon11,asingletat6.58ppmfortheHatcarbon3,andsinglets at3.59and3.32ppmrelativetothetwomethoxygroups1-and 2-OCH3.Theotheralkaloid,anonaine,showedadoubletat8.00ppm (7.8Hz)relativetotheHatcarbon11,asingletat6.68relativeto theHatcarbon3andtwodoubletsat5.89and6.28belongingto themethylenedioxyatcarbons1and2(1-O-CH2-O-2).

Actinodaphnine(4)wasisolatedfromFA6.2asa lightbrown amorphous solid. The molecularweight(M 311Da)was deter-minedbyGC–MSanditwascompatiblewiththemolecularformula C18H17O4N. The structure of actinodaphine (4) was attributed basedonthecomparisonofNMRspectraldatawithvaluesreported intheliterature(Stévignyetal.,2002).Itispossibletoobservethe presenceoftwoapparentsingletsat5.86and6.01ppmthatwere attributedtothehydrogensinthemethylenedioxyinposition1,2. Thepresenceofasingletreferentto3Hin3.85ppmmaycorrespond toamethoxygroupasasubstituentatcarbon10.Theabsenceof asingletwithintegrationto3Hnextto2.82ppmeliminatesthe possibilityofaNCH3group,confirmingthatcompound4isa nora-porphine.Withtheseobservations,itwaspossibletoattributethat compound4isactinodaphnine.TheattributionsoftheJvalueswere comparedtoresultsfoundintheliterature(Stévignyetal.,2002). Thepuritygradeofthesamplepermitteditsanalysiswithdifferent carbonNMRexperimentstoconfirmthestructure.Actinodaphnine wasfirstisolated fromAnnonaceaespecies suchasG. scandens

asabrowncrystal(Guinaudeauetal.,1983;Hocquemilleretal., 1983).

EB1109, hexane fraction, DCM/MeOH fraction, ethyl acetate fraction butanol fraction (Table 1) did not show a significant antibacterialactivity,consideringthatcrudeextractsandfractions shouldhaveantibacterialactivity<100␮g/ml(Padmaetal.,1998) tobeconsideredasapotentialantimicrobialnaturalproductagent. Ontheotherhand,TA,FA5(majorcompoundisoboldine(1),other compoundsnornuciferine(2)andanonaine(3))andFA6 (actin-odaphnine(4))showedamoderateactivityagainstGram-positive bacteria(S.aureusandE.faecalis),MICaslowas70and40␮g/ml, respectively,andgivesusaprospectionofgoodantibacterial activ-itytoactinodaphnine. Almostallsampleswereinactiveagainst theGram-negativeorganism(E.coli), onlyFA6(MIC>90␮g/ml) showedsomeactivity.Previousreportsshowedthatisoboldine(1) wasnot consideredashavingantibacterialactivity(Villaretal., 1987; Bermejo etal., 2005)whereas anti-S. aureusactivity has beenconfirmedtoactinodaphnine(4)(Hoetetal.,2004), suppor-tingthepresentfindings.Accordingtothepresentachievements, thefractionationofEB1109uptoFA5andFA6ledtoan improve-mentoftheantibacterialactivityandconfirmedactinodaphnineas apotentialantibacterialagent.Theantimicrobialactivityagainst Gram-positivebacteriaofdifferentisoquinolinecompoundshave alreadybeenstudied,regardingtheirstructure–activity relation-ships. In these studies, aporphines demonstrated lower or no activity.Onlynor-aporphinesbearinga1,2-methylendioxygroup couldbeconsideredactive.A.hypoglaucaaccumulatedatleasttwo aporphinealkaloids,anonaine(3)andactinodaphnine(4),that con-tainthestructuralrequirementslikelytobetheresponsibleforthe resultsobserved.

Resultsshown inFig.1 andTable2 describethepercentage ofgrowthand lethalityobservedforalltreatmentsagainst can-cercelllines.EB1109showedcytotoxicityagainstbreast(MCF-7) andcolon (KM-12)cancercelllines.Thepercentageoflethality foundforbreastcelllineswas−32.80%.Thisnegativevalueshall

beinterpretedbasedonthetimezero(T0)opticaldensityrelated tocellgrowthbeforetreatmentaddition,soEB1109notonlykilled 100%ofthesecells(whencomparedtoacellgrowthcontrol with-outtreatment), but alsokilleda number ofthe cellsthat grew beforetreatment.EB1109hasalsoshownlethalityagainstKM-12

Percentage of growth inhibition

DOXO

FA6*

FA5*

FA4.4

TA

FBuOH

T

reatments [100

µ

g/ml]

FEAC

DCM/MeOH

FHex

Crude extract

–100 –50 50

% LE-% GI

100 0

MCF-7 PC-3 NCI-H460 KM-12 SF-268 RPMI-8226

Fig.1.Cytotoxicactivityobservedaftertreatmentswithcrudeextract,total alka-loids(TA),alkaloid-freefractionsdescribedashexanefraction(FHex),butanol fraction(FBuOH),dichloromethane/methanolfractionandethylacetatefraction (FEAC),from stemofAnnona hypoglauca againstsixhuman tumorcelllines. MCF-7:breastcarcinoma;PC-3:prostatecarcinoma;NCI-H460:non-smallcells lungcarcinoma;KM-12:colonadenocarcinoma;SF-268:glioblastomaand RPMI-8226:multiplemyeloma.*FA4.4,FA5andFA6:columnfractionsobtainedfrom TAcontainingasmajorcomponentsisoboldineandactinodaphnine,respectively. NI:noinhibition;NT:nottested.Graphicis interpretedasthepercentageof growthobservedforthesixcellsafterbeingtreated.Calculationsusetheformula [{(T−T0)/(C−T0)×100}−100=%ofgrowthinhibition].Resultsareinterpretedby

thecomparisonofcellgrowthaftertreatment(T)tothecellgrowthatTimeZero (T0).If100>T>T0itmeansthattreatmentpreventedapercentageofcellsfrom grow;ifT=T0=0itmeansthattreatmentiseffectivetoavoidcellsfromgrow,in relationtoT0;ifT<T0itmeansthattreatmentiseffectiveenoughtocauselethality.

(−2.5%)andcytotoxicityagainstcentralnervoussystemcellline

SF-268(41.5%growthinhibition),prostate cancercelllinePC-3 (88.6%ofgrowthinhibition),leukemiacelllineRPMI-8226(82.7% ofgrowthinhibition)andlungcancercelllineNCI-H461(98.7%of growthinhibition).Totalalkaloidfractionshowedexpressive cyto-toxicityagainstMCF-7(−8.90%oflethality)andhasalsoshown

(6)

Table2

PercentageofgrowthofcancercelllinesMCF-7(breast),PC-3(prostate),NCI-H460(lung),KM-12(colon),SF-268(centralnervoussystem)andRPMI-8226(leukemia),after treatmentwithorganicextractofstemofAnnonahypoglaucaanditsfractions.NegativenumbersmeanlethalitytocelllinesinrelationtocellgrowthcontrolandTimezero growthcontrol(cellgrowthbeforetreatmentaddition).

MCF-7 PC-3 NCI-H460 KM-12 SF-268 RPMI-8226

Crudeextract −32.80 11.4 1.3 −2.5 58.5 17.3

FHex NI 77.4 48.1 NI NI 53.5

DCM/MeOH 2.90 59.6 44.9 NI 93.7 53.4

FEAC Nottested 67.1 38.6 NI 77.4 NI

FBuOH 11.90 46.6 65.6 NI NI 83.8

TA −8.90 17.04 71.7 32.4 73.3 NI

FA4.4 Nottested −3.8 −26.0 11.7 45.4 29.7

FA5a

−11.60 Nottested Nottested −14.4 Nottested Nottested

FA6a

−3.10 Nottested Nottested −8.4 Nottested Nottested

DOXO −16.31 −50.0 −46.2 −5.1 −34.0 −14.3

FHex,fractionhexane;DCM/MeOH,fractiondichloromethaneandmethanol;FEAC,fractionethylacetate;FBuOH,fractionbutanol;TA,totalalkaloidfraction;DOXO, doxorubicin.

aFA5andFA6arecolumnfractionsobtainedfromthetotalalkaloidscontainingasmajorcomponentsisoboldineandactinodaphnine,respectively.

inhibitedbreastcancercelllines,andthatmayindicatethatthe alkaloidsareresponsible tothecytotoxicityagainstbreast can-cercellline.Noneofthefractionsobtainedfromthecakeshowed lethality,althoughhaveshowncytotoxicity,asDCM/MeOH frac-tion, which showed growth inhibition of 97.1% against breast cancercelllineandBuOHfraction, whichinhibitedin88.1%the growthofthesamecell.FA5andFA6weretestedonlyagainst MCF-7andKM-12.Itwasobservedalethalityof11.6%againstMCF-7 breastcancercelllineand14.4%againstcoloncancercellline KM-12forfractionFA5.Isoboldineisthemajorcompoundoffraction FA5,whichcontainsyetnornuciferineandanonaine. Nornucifer-ineshowedleishmanicidalactivityagainst Leishmania mexicana

andL.panamensis(Montenegroetal.,2003)Anonaine,asisolated fromdiverseAnnonaceaeandMagnoliaceaespecies isfoundto beactiveasantiplasmoidal,antimicrobial,antioxidant,anticancer, antidepressantandvasorelaxant(Lietal.,2013).Insilico analy-sisofanonaineledtotheidentificationofitspotentialtoinhibit topoisomeraseII,oneofthecrucialtargetsagainstcancers(Singh etal.,2016).FA6hasalsoshownalethaleffect,althoughweaker, againstthecelllinesofbreastcancerMCF-7(−3.1%)andcolon

can-cerKM-12(−8.4%).Actinodaphnine(4)wasfoundinthisfraction.

Aporphinoidalkaloidsbearinga methylenedioxygroup,suchas actinodaphnine(4),exhibitedahighaffinitytotheDNAmolecule demonstratingacytotoxicactivityinvitroandanon-specific inhi-bitionoftheTopoisomeraseIactivitythroughDNAintercalation (Hoetetal.,2004).Inourfindings,fractionFA5,which contains isoboldine(1),nornuciferine(2)andanonaine(3),wasmore effi-cient thanFA6,the fractioncontainingactinodaphnine. Further studiesrelatedtostructure–activityrelationshipareneededto elu-cidatedifferencesinbiologicalactivityrelatedtoAnnonaalkaloids. Moreover,fractionFA4.4,obtainedfromfractionFA4byCCD,was testedandresultsshoweditssignificantlethalityagainstlung can-cercelllineNCI-H460(−26.0%)andprostatecancerPC-3(−3.8%),

andshowingagrowthinhibitionagainstthecelllinesofCNS can-cerSF-268(54.6%),leukemiaRPMI-8226(70.3%)andcoloncancer KM-12(88.3%).Itisclearthatthetotalalkaloidfractionandtheir fractionsFA5andFA6haveshownanexcellenttumorcelllethality incomparisontoanyofthefractionsobtainedfromthecake,and clearly,thealkaloidsareresponsibleforthesignificantcytotoxic activity,butmaybethepresenceofothercompoundsmayinduce somesynergismobservedintheextremegoodactivityofthecrude extract.Also,fractionFA4.4hasshownadifferentcytotoxicity pro-file,becauseitwastheonlyfractionamongalltestedthatrevealed anextremegoodactivityagainstlungcancercellline,althoughno alkaloidhasbeenidentifiedfromthatfractionsofar.Thestronger effectobservedforthecrudeextractmightbeexplainedbya syn-ergismamongthealkaloidsandtheothermetabolitespresentin theextract.

Conclusions

ThepresentresultsdemonstratedthatA. hypoglaucashowed animprovementofitsantibacterialactivity,asfractionationwas performed,maybeduetothepresenceofactinodaphnine. Actin-odaphnine,thealkaloidpresentinFA6,mayalsobetheresponsible forthefractioncytotoxicity,butthepresenceofisoboldine, nornu-ciferineandanonainemayhavesynergisticallycontributedtothe expressivelethalitytobreastcancercells,ifcomparedtoFA6.This isthefirstreportfortheoccurrenceofactinodaphnineinAnnona

species.Also,EB1109,TA,FA5andFA6showedsignificant cyto-toxicactivityagainstbreastandcoloncancercelllines.Finally,the identificationofsuchenthusiasticresultsledustopursuenew evi-dencesofbiologicalactivitiesrelatedtoA.hypoglauca,aswellasto achieveresultsonitstoxicactivitiesinthefuture.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare

thatnoexperimentswereperformedonhumansoranimalsfor thisstudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat

nopatientdataappearinthisarticle.

Authorscontributions

MVNRexecutedalltheexperiments;IECDmadeNMRanalyses; IBSexecuted/designedcytotoxicityassays andmanuscript writ-ingandtranslation;PRHMwriting/translationofthemanuscript, designedthechemicalexperiments,conductedasasupervisor.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

TheauthorsareindebtedtoFAPESP(#99/05904-6; #08/58706-8)forthefinancialsupportandtheCNPqforresearchgrant.

References

(7)

Barnabé,M.,Saraceni,C.H.C.,Dutra-Correa,M.,Suffredini,I.B.,2014.Theinfluence ofBrazilianplantextractsonStreptococcusmutansbiofilm.J.Appl.OralSci.22, 366–372.

Bermejo, A., Figadere, B., Zafra-Polo, M.C., Barrachina, E.E., Cortes, D., 2005. AcetogeninsfromAnnonaceae:recentprogressinisolation,synthesisand mech-anismsofaction.Nat.Prod.Rep.22,269–303.

Bhakuni,D.S.,Tewari,S.,Dhar,M.M.,1972.AporphinealkaloidsofAnnonasquamosa. Phytochemistry11,1819–1822.

Camargo,L.R.P.,Suffredini,I.B.,2014.Atividadeanti-Escherichiacolideextratosde plantasbrasileiras.Novastendênciasempesquisaveterinária.Arq.Bras.Med. Vet.Zootec.66,617–620.

Castilho,A.L.,daSilva,J.P.C.,Saraceni,C.H.C.,Díaz,I.E.C.,Paciencia,M.L.B.,Varella, A.D.,Suffredini,I.B.,2014.InvitroactivityofAmazonplantextractsagainst

Enterococcusfaecalis.Braz.J.Microbiol.45,769–779.

Castilho,A.L.,Saraceni,C.H.C.,Diaz,I.E.C.,Paciencia,M.L.B.,Suffredini,I.B.,2013. Newtrendsindentistry:plantextractsagainstEnterococcusfaecalis.Theefficacy comparedtochlorhexidine.Braz.OralRes.27,109–115.

Cordell,G.A.,Quinn-Beattie,M.L.,Farnsworth,N.R.,2001.Thepotentialofalkaloids indrugsdiscovery.Phytother.Res.15,183–205.

Costa,E.V.,Sampaio,M.F.C.,Salvador,M.J.,Nepel,A.,Barison,A.,2012.Chemical constituentsofthestembarkofAnnonapickelii(Annonaceae).Quim.Nova38, 769–776.

Debourges,D.,Roblot,F.,Hocquemiller,R.,Cavé,A.,1987.AlkaloidesdesAnnonacées 77.AlcaloidesdesDuguetiaspixiana.J.Nat.Prod.50,664–673.

Dutra,L.M.,Costa,E.V.,Moraes,V.R.S.,nogueira,P.C.L.,Vendramin,M.E.,Barison, A.,Prata,A.P.N.,2012.ChemicalconstituentsfromtheleavesofAnnonapickeii

(Annonaceae).Biochem.Syst.Ecol.41,115–118.

Fischer,D.C.H.,Gualda,N.C.A.,Bachiega,D.,Carvalho,C.S.,Lupo,F.N.,Bonotto,S.V., Alves,M.O.,Yogi,A.,DiSanti,S.M.,Avila,P.E.,Kirchgatter,K.,Moreno,P.R.H., 2004.Invitroscreeningforantiplasmodialactivityofisoquinolinealkaloidsfrom Brazilianplantspecies.ActaTrop.92,261–266.

Gottsberger,G.,1978.SeeddispersalbyfishininundatedregionsofHumaita, Ama-zonia.Biotropica10,170–183.

Guinaudeau,H.,Leboeuf,M.,Cavé,A.,1983.Aporphinealkaloids,III.J.Nat.Prod.46, 761–835.

Hamid,R.A.,Foong,C.P.,Ahmad,Z.,Hussain,M.K.,2012.Antinociceptiveand anti-ulcerogenicactivitiesoftheethanolicextractofAnnonamuricataleaf.Rev.Bras. Farmacogn.22,630–641.

Hasrat,J.A.,Pieters,L.,deBacker,J.P.,Vauquelin,G.,Vlietnick,A.J.,1997.Screening ofmedicinalplantsfromSurinamefor5-HT1Aligands:bioactiveisoquinoline alkaloidsfromthefruitofAnnonamuricata.Phytomedicine4,133–140. Heywood,V.H.,1993.FloweringPlantsoftheWorld.BTBatsfordLtd,London. Hocquemiller,R.,Rasamizafy,S.,Cavé,A.,1983.AlcaloïdesdesAnnonaceesXXXVII:

AlcaloïdesduGuatteriascandens.J.Nat.Prod.46,335–341.

Hoet,S.,Stévigny,C.,Block,S.,Opperdoes,F.,Colson,P.,Baldeyrou,B.,Lansiaux,A., Bailly,C.,Quetin-Leclercq,J.,2004.AlkaloidsfromCassythafiliformisandrelated aporphines:antitrypanosomalactivity,cytotoxicity,andinteractionwithDNA andtopoisomerases.PlantaMed.70,407–413.

Jackman,L.M.,Thewella,J.C.,Moniot,J.L.,Shamma,M.,Stephens,R.L.,Wenkert, E.,1979.Thecarbon-13NMRspectraofaporphinealkaloids.J.Nat.Prod.42, 437–449.

Jackson,A.H.,Martin,J.A.,1966.Stericeffectsinthemassspectraofaporphine alkaloids.J.Chem.Soc.(C)23,2181–2183.

Leboeuf,M.,Cavé,A.,Bhaumilk,P.K.,Mukherjee,R.,1982.Thephytochemistryofthe Annonaceae.Phytochemistry21,2783–2813.

Li,H.T.,Wu,H.M.,Chen,H.L.,Liu,C.M.,Chen,C.Y.,2013.Thepharmacological activ-itiesof(−)-anonaine.Molecules18,8257–8263.

Lúcio,A.S.S.C.,Almeida,J.R.G.S.,Cunha,E.V.L.,Tavares,J.F.,Barbosa-Filho,J.M.,2015. AlkaloidsoftheAnnonaceae:occurrenceandacompilationoftheir biologi-calactivities.TheAlkaloids:ChemistryandBiology,74.,1sted.Elsevier,pp. 233–409.

McLafferty,F.W.,Stauffer,D.B.,1989.TheWiley/NBSRegistryofMassSpectralData. Wiley-Interscience,NewYork.

Monks,A.,Scudiero,D.,Skehan,P.,Shoemaker,R.,Paull,K.,Vistica,D.,Hose,C., Langley,J.,Cronise,P.,Vaigrowolff,A.,Graygoodrich,M.,Campbell,H.,Mayo,J., Boyd,M.,1991.Feasibilityofahigh-fluxanticancerdrugscreenusingadiverse panelofculturedhumantumorcelllines.J.Natl.CancerInst.83,757–766. Montanha,J.A.,Amoros,M.,Boustie,J.,Girre,L.,1995.Anti-herpesvírusactivityof

aporphinealkaloids.PlantaMed.61,416–424.

Montenegro,H.,Gutiérrez,M.,Romero,L.I.,Ortega-Barría,E.,Capson,T.L.,Rios, L.C.,2003.AporphinealkaloidsfromGuatteriaspp.withleishmanicidalactivity. PlantaMed.69,677–679.

Ohashi,M.,Wilson,J.M.,Budzikiewicz,H.,Shamma,M.,Slusarchyk,W.A.,Djerassi, C.,1963.MassspectrometryinstructuralandstereochemicalproblemsXXXI. Aporphinesandrelatedalkaloids.J.Am.Chem.Soc.85,2807–2810.

Padma,P.,Chansouria,J.P.N.,Khosa,R.L.,1998.Effectofsomeindigenousdrugson coldimmobilizationstressinducedgastriculcer.Phytother.Res.12,127–128. Paulo,M.Q.,Barbosa-Filho,J.M.,Lima,E.O.,Maia,R.F.,Barbosa,R.C.B.B.C.,Kaplan,

M.A.C., 1992. Antimicrobial activity of benzilisoquinoline alkaloids from

AnnonasalzmaniiD.C.J.Ethnopharmacol.36,36–41.

Pimenta,L.P.S.,Pinto,G.B.,Takahashi,J.A.,Silva,L.G.F.,Boaventura,M.A.D.,2003. Bio-logicalscreeningofAnnonaceusBrazilianmedicinalplantsusingArtemiasalina

(BrineShrimpTest).Phytomedicine10,209–212.

Rabêlo,S.V.,Araújo,C.S.,Costa,V.C.O.,Tavares,J.F.,Silva,M.S.,Barbosa-Filho,J.M., Almeida,J.R.G.S.,2014.OccurrenceofalkaloidsinspeciesofthegenusAnnonaL. (Annonaceae):areview.NutraceuticalsandFunctionalFoods:NaturalRemedy, vol.1.,1ed.NovaSciencePublishers,NewYork,UnitedStates,pp.41–60. Rasamizafy,S.,Hocquemiller,R.,Cassels,B.K.,Cavé,A.,1987.AlkaloidsfromAnnona

hayesii.J.Nat.Prod.50,759–761.

Reflora. 2016. http://reflora.jbrj.gov.br/reflora/listaBrasil/ConsultaPublicaUC/ BemVindoConsultaPublicaConsultar.do?invalidatePageControlCounter=7& idsFilhosAlgas=%5B2%5D&idsFilhosFungos=%5B1%2C11%2C10%5D&lingua=& grupo=5&familia=null&genero=&especie=&autor=&nomeVernaculo=birib%C3% A1&nomeCompleto=&formaVida=null&substrato=null&ocorreBrasil= QUALQUER&ocorrencia=OCORRE&endemismo=TODOS&origem=TODOS& regiao=QUALQUER&estado=QUALQUER&ilhaOceanica=32767& domFitogeograficos=QUALQUER&bacia=QUALQUER&vegetacao=TODOS& mostrarAte=SUBESP VAR&opcoesBusca=TODOS OS NOMES&loginUsuario= Visitante&senhaUsuario=&contexto=consulta-publica(Accessedin26.07.16). Revilla,J.,2002.PlantasúteisdaBaciaAmazônica,II.INPA,Manaus,pp.444. Siebra,C.A.,Nardin,J.M.,Florão,A.,Rocha,F.H.,Bastos,D.Z.,Oliveira,B.H.,

Weffort-Santos,A.M.,2009.PotencialantiinflamatóriodeAnnonaglabraAnnonaceae. Rev.Bras.Farmacogn.19,82–88.

Simeón,S.,Ríos,J.L.,Villar,A.,1990.AntimicrobialactivityofAnnonacherimoliastem barkalkaloids.Pharmazie45,442–443.

Singh, S.,Das, T., Awasthi,M., Pandey,V.P., Pandey,B., Dwivedi,U.N., 2016. DNAtopoisomerase-directedanticancerousalkaloids:ADMET-basedscreening, moleculardocking,anddynamicssimulation.Biotechnol.Appl.Biochem.63, 125–137.

Siqueira,C.A.T.,Oliani,J.,Sartoratto,A.,Queiroga,C.L.,Moreno,P.R.H.,Reimão,J.Q., Tempone,A.G.,Fischer,D.C.H.,2011.Chemicalconstituentsofthevolatileoil fromleavesofAnnonacoriaceaandinvitroantiprotozoalactivity.Rev.Bras. Farmacogn.21,33–40.

Soares,E.R.,Silva,F.M.A.,Almeida,R.A.,Lima,B.R.,SilvaFilho,F.A.,Barison,A.,Koolen, H.H.F.,Pinheiro,M.L.B.,Souza,A.D.L.,2015.DirectinfusionESI-IT-MSnalkaloid

profileandisolationoftetrahydroharmanandotheralkaloidsfromBocageopsis pleiospermaMaas(Annonaceae).Phytochem.Anal.26,339–345.

Sonnet,P.E.,Jacobson,M.,1971.TumorinhibitorsII:cytotoxicalkaloidsfromAnnona purpurea.J.Pharm.Sci.60,1254–1256.

Stévigny,C.,Block,S.,Pauw-Gillet,M.C.,Hoffmam,E.,Llabres,G.,Adjakidjé,V., Quetin-Leclercq,J.,2002.CytotoxicaporphinealkaloidsfromCassythafiliformis. PlantaMed.68,1042–1044.

Suffredini, I.B.,Paciencia,M.L.B.,Frana,S.A.,Varella, A.D.,Younes,R.N., 2007a.

InvitrobreastcancercelllethalityofBrazilianplantextracts.Pharmazie10, 798–800.

Suffredini,I.B.,Paciencia,M.L.B.,Varella,A.D.,Younes,R.N.,2007b.Invitrocytotoxic activityofBrazilianplantextractsagainstahumanlung,colonandCNSsolid cancersandleukemia.Fitoterapia78,223–226.

Suffredini,I.B.,Paciencia,M.L.B.,Varella,A.D.,Younes,R.N.,2006a.Invitroprostate cancercellgrowthinhibitionbyBrazilianplantextracts.Pharmazie61,722–724. Suffredini,I.B.,Varella,A.D.,Younes,R.N.,2006b.Cytotoxicmoleculesfromnatural sources.TappingtheBrazilianbiodiversity.AnticancerAgentsMed.Chem.6, 67–75.

Suffredini,I.B.,Sader,H.S.,Gonc¸alves,A.G.,Reis,A.O.,Gales,A.C.,Varella,A.D.,Younes, R.N.,2004.Screeningofantibacterialactiveextractsobtainedfromplantsnative toBrazilianAmazonrainforestandAtlanticforest.Braz.J.Med.Biol.Res.37, 379–384.

Suffredini,I.B.,Saraceni,C.H.C.,Díaz,I.E.C.,2015.Canmouthwashescontaining chlorhexidine0.12%beusedassynonymofawatersolutionofchlorhexidine 0.12%?Braz.J.Pharm.Sci.51,367–372.

Sulaiman,S.N.,Mukhtar,M.R.,Hadi,A.H.,Awang,K.,Hazni,H.,Zahari,A.,Litaudon, M.,Zaima,K.,Morita,H.,2011.Lancifoliaineanewbisbenzylisoquinolinefrom thebarkofLitsealancifolia.Molecules16,3119–3127.

Tempone,A.G.,Borborema,S.E.T.,Andrade,H.F.J.,AmorimGualda,N.C.,Yogi,A., Carvalho,C.S.,Bachiega, D.,Lupo, F.N.,Bonotto,S.V.,Fischer,D.C.H.,2005. AntiprotozoalactivityofBrazilianplantextractsfromisoquinoline alkaloid-producingfamilies.Phytomedicine12,382–390.

Villar,R.,Calleja,J.M.,Morales,C.,Cáceres,A.,1997.Screeningof17Guatemalan medicinalplantsforplateletantiaggregantactivity.Phytother.Res.11,441–445. Villar,A.,Mares,M.,Rios,J.L.,Canton,E.,Gobernado,M.,1987.Antimicrobialactivity

ofbenzylisoquinolinealkaloids.Pharmazie42,248–250.

Voigt,W.,2005.SulforhodamineBassayandchemosensitivity.MethodsMol.Med. 110,39–48.

Wu,Y.C.,Chang,G.Y.,Duh,C.Y.,Wang,S.K.,1993.CytotoxicalkaloidsofAnnona montana.Phytochemistry33,497–500.

Imagem

Fig. 1. Cytotoxic activity observed after treatments with crude extract, total alka- alka-loids (TA), alkaloid-free fractions described as hexane fraction (FHex), butanol fraction (FBuOH), dichloromethane/methanol fraction and ethyl acetate fraction (FEAC)

Referências

Documentos relacionados

In the present study, the most important features were occurrence of hypodermis and lens shaped epidermal cells, set of trichomes; midrib, petiole and stem shape and vascular

The herbal drugs of powdered leaves possess leaf blade frag- ments with straight to wavy (adaxial face) or sinuous (abaxial face) anticlinal epidermal cell walls, sac-like

rebaudiana roots: chromatographic system hexane:ethyl acetate 95:5 (v/v): CHEC, roots of plants grown at HDPM-UEM (control); CHES, roots grown in a gyratory shaker in the pres- ence

Thin-layer chromatography profile of Samples 7.1–7.2 ( Passiflora edulis f. urnifolia ) using Eluent System 1, with isoorientin as the standard.. about 2 ␮ l of the supernatant

The plate was developed using toluene-ethyl acetate-formic acid, 5:4:1 (v/v/v) as a mobile phase and.. detection and quantification were performed by densitometric scanning at

Chemical constituents from active fraction in roots and rhizomes of Cynanchum paniculatum with reversal activity of multidrug resistance. Chemical constituents from

Effects of extracts of clusianone (CL) isolated from Clusia fluminensis on survival (A, D) and development of nymphs (B, E), adults (C, F) of Dysdercus peruvianus , (A, B, C)

The strains used were Staphylococcus aureus ATCC 25923, Bacil- lus subtilis ATCC 6633, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa (isolated at the Hospital Regional