• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número1

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número1"

Copied!
8
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Beauty

in

Baobab:

a

pilot

study

of

the

safety

and

efficacy

of

Adansonia

digitata

seed

oil

Baatile

M.

Komane

a

,

Ilze

Vermaak

a,b

,

Guy

P.P.

Kamatou

a

,

Beverley

Summers

c

,

Alvaro

M.

Viljoen

a,b,∗

aDepartmentofPharmaceuticalSciences,FacultyofScience,TshwaneUniversityofTechnology,Pretoria,SouthAfrica

bSouthAfricanMedicalResearchCouncilHerbalDrugsResearchUnit,FacultyofScience,TshwaneUniversityofTechnology,Pretoria,SouthAfrica

cDepartmentofPharmacy,PhotobiologyLaboratory,SefakoMakgathoHealthSciencesUniversity,Pretoria,SouthAfrica

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received31May2016 Accepted14July2016 Availableonline12August2016

Keywords:

Adansoniadigitata

Baobab Cosmetic Efficacy Safety Seedoil

a

b

s

t

r

a

c

t

Recentlytherehasbeenarenewedimpetusinthesearchfornovelingredientstobeusedinthecosmetic industryandBaobab(AdansoniadigitataL.,Malvaceae)seedoilhasreceivedhighinterest.Inthisstudy, acommercialBaobabseedoilsamplewascharacterised(fattyacidcontent)usingGCxGC-ToF-MSanda pilotstudyonthesafetyandefficacyoftheseedoilwasperformed.ThesafetyandefficacyofBaobabseed oilaftertopicalapplicationwasdeterminedusinghealthyadultfemalecaucasianparticipants(n=20). A2×magnifyinglampwasusedforvisualanalysis,whileformonitoringandevaluationoftheirritancy level,transepidermalwaterloss(TEWL)andhydrationleveloftheskin,Chromameter®,Aquaflux®and Corneometer®instruments,respectively,wereused.Inaddition,Aquaflux®andCorneometer® instru-mentswereusedtoassessocclusiveeffects.ThirteenmethylesterswereidentifiedusingGCxGC-ToF-MS. Themajorfattyacidsincluded36.0%linoleicacid,25.1%oleicacidand28.8%palmiticacidwith10.1% constitutingtracefattyacids.Theirritancyofsodiumlaurylsulphate(SLS)inthepatchtestdiffered significantlycomparedtobothde-ionisedwater(p<0.001)andBaobabseedoil(p<0.001)butthe dif-ferencebetweentheirritancyofBaobabseedoilandde-ionisedwaterwasnotsignificant(p=0.850). ThemoistureefficacytestindicatedareducedTEWL(p=0.048)andanimprovedcapacitancemoisture retention(p<0.001)forallthetestproducts(Baobaboil,liquidparaffin,Vaseline®intensivecarelotion andVaseline®).Theocclusivitywipe-offtestindicatedanincreasedmoisturehydration(p<0.001)and decreasedTEWLparticularlywhenBaobaboilwasapplied.Baobabpossesseshydrating,moisturisingand occlusivepropertieswhentopicallyappliedtotheskin.Baobabseedoilcouldbeavaluablefunctional ingredientforcosmeceuticalapplications.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

TheBaobab(AdansoniadigitataL.,Malvaceae)tree,whichhas beenusedextensivelyasasourceoffood,fibreandmedicine,is commonlyreferredtoas“arbreapalabre”,meaningtheplacein thevillagewheretheeldersmeettoresolveproblems(Kamatou etal.,2011).Thisdeciduoustreeisapproximately23mtalland hasasmooth,reddish-brown,greyish-brownorpurplish-greybark withgreensimpleordigitateleavesthatalternateattheendsofthe branchesfollowedbyprogressively2–3foliolateleaves.The flow-ersarependulouswithfivewhitepetalswhilethepulp-containing fruits are apex-pointed,covered by velvety pale yellow-brown hairswithsmoothdarkbrowntoblackishseedscoveredby cream-colouredkernels(Fig.1)(Palgrave,1983;WickensandLowe,2008;

Correspondingauthor.

E-mail:viljoenam@tut.ac.za(A.M.Viljoen).

Kamatouetal.,2011).TheBaobabtreebelongstoapan-tropical familywithsixoftheeightspeciesspanningMadagascar,the sev-enthspeciesisendemictonorth-westernAustraliaandtheeighth speciesiswidelyspreadinsub-SaharanAfrica.InsouthernAfrica (Fig.2),BaobabisfoundinAngola,Zambia,Mozambique,Zimbabwe andSouthAfrica(Limpoporegion)(WickensandLowe,2008;Rahul etal.,2015).

InSouthAfrica,theBaobabandMarulaaretwoofthemost pop-ularindigenoustreespeciesusedforseedoilproduction(Venter, 2012).Theseedoilextractedfromthebaobabfruitpulpispopularly usedinthecosmeticsindustryandsoldinternationally(Munthali etal.,2012).About33%oftheseedcontentisoilwitholeicand linoleicacids asthemajorfattyacids followedby palmiticand

␣-linolenicacids.Thehighcontentoflinoleicandoleicacidsare

knowntosoftentheskinandtorestoreandmoisturisethe epider-mis.Inaddition,thefattyacidsregenerateepithelialtissueswhich renderstheseedoilaverygoodcarrieroilofvaluetothecosmetic industry(Glewetal.,1997;Chindoetal.,2010).

http://dx.doi.org/10.1016/j.bjp.2016.07.001

(2)

20 mm

20 mm

4 mm

1 mm

20 mm

50 mm

5 mm

2 mm

Fig.1.BotanicallinedrawingillustratingthediagnosticfeaturesofAdansonia digi-tata(Baobab).

Angola

Zambia

Mozambique

Namibia

Botswana

Swaziland

Lesotho

South Africa

Zimbabwe

Fig.2.DistributionmapofAdansoniadigitata(Baobab)insouthernAfrica.

Theseedoilhasbeenusedforcenturiesbylocalcommunitiesfor food,medicineandcosmeticapplications.Thenutritionalseedsare richinproteinandtheoilisgenerallyusedinfoodpreparationfor sauce/pasteoreatenraw/roasted(Osman,2004).Ithasbeenused toproducelubricants,soapsandtoothpaste,inthetopical treat-mentofvariousconditionssuchasmusclespasms,varicoseveins andwoundsandappliedasamoisturiserforskinhydration,for hairandnailconditioningandtotreatdandruff(Zimbaetal.,2005; Nkafamiyaetal.,2007;Chindoetal.,2010).SidibeandWilliams (2002)reportedthattheBaobabseedoilisusedforcosmetic appli-cationstotreatskinailments.TheBaobabtreehasbeenreferred toasa smallpharmacyorchemisttreeandmanyauthorshave reportedthatallBaobabplantpartsarevaluable(Gebaueretal., 2002;DeCaluwéetal.,2010).

Baobaboil, extractedfromtheseed,isusedinthecosmetics industryand isalsosoldinternationally eventhough thereis a lackofclinicalstudiestoconfirmitstraditional use(Gruenwald andGalizia,2005).TheglobaldemandforBaobaboilhasgrown substantiallywithexportstoEurope,AsiaandNorthAmerican mar-kets.InZimbabwe,approximately20,000litresofBaobaboilworth $100,000 is producedannually (Kamatouet al.,2011; Vermaak etal.,2011;Venter,2012).InSouthAfrica,commercialisationofthe seedoilstartedasearlyas2005attheVhembeMunicipalDistrictin theNorthernregionofVendawhereseedsweresoldatlocal mar-ketsandtheoilsextractedfromtheseedsweresoldtothecosmetic market(VenterandWitkowski,2010).

Therehavebeenseveralreportsonthephysico-chemical prop-erties, nutritionalcontent and fattyacidprofile ofthe seed oil using conventional methods such as gas-chromatography cou-pledtomassspectrometry(GC–MS)(SidibeandWilliams,2002; DeCaluwéetal.,2010).Comprehensivetwo-dimensional analy-siswhichprovidesbetterseparationcouldgivefurtherinsightinto thecompositionasitcanidentifyfattyacidspresentintrace-level concentrations.Thisstudycharacterisedthefattyacidcomposition ofcommerciallyavailableBaobabseedoilsubsequentlyusedina pilotstudytodetermineitssafetyandefficacy.

Materialsandmethods

Materialsandsamplepreparation

RefinedBaobabseedoil(Batchnumber:BAO0311EP;Product code: PDBAOADO1)waspurchased froma reputable commer-cial supplier (Scatters® Oils). Scatters® Oils (South Africa) is a supplierand exporterof natural, indigenousorganicoilstothe localandinternationalmarket(http://www.scattersoils.com/).The odourless yellow seed oil was stored at 2–8◦C and allowed to warm up to room temperature before commencement of thepilotstudy.Thecertificateof analysisindicated arefractive indexof1.476(1.474–1.485)andarelativedensityof0.894g/ml (0.892–0.950g/ml). A retention sample (BAOB005) is stored in theDepartmentofPharmaceuticalSciences,TshwaneUniversity ofTechnology.Afattyacidmethylesters(FAMEs)37-component standard mixture aswell aspure(≥99.0%) referencestandards (linoleic,oleic,palmitic,stearic,arachidic,linolenicandmyristic acid)wereobtainedfromSigma–Aldrich® (Johannesburg,South Africa).TheFAMEswerepreparedusingthemodifiedmethodof Rossé and Harynuk(2010).A volumeof 310␮l ofthe oil

sam-pleandthestandards(n=7)wereseparately preparedina vial andmixedwith500␮lof2.8gpotassiumhydroxidein100mlof

methanolsolution(stocksolution)andsonicatedfor30minina waterbathat60◦C.Boron-triflouride(1000

␮l)inmethanolwas

usedasacatalystandthemixturewassonicatedagainfor30min at60◦C.Petroleumether(1000

␮l)andsaturatedsodiumchloride

(3)

5minat10,000rpmat5◦C(Kothiyaletal.,2010).Thesupernatant wascollectedandanalysedusingtheGCxGC-ToF-MSsystem.

Theirritancypatchtestwasconductedusing1%sodium lau-rylsulphate(SLS)(≥99.0%purity;Sigma–Aldrich®,Johannesburg, SouthAfrica)solutionasapositivecontrol(irritant)andde-ionised waterasanegativecontrol.Forthemoistureefficacy,hydration andocclusivitytests,liquidparaffin(≥95%),Vaseline® intensive carelotion(MSDS#4059)andVaseline® petroleumjelly(MSDS #4056)obtainedfromUnilever© Pty Ltd(Durban, SouthAfrica) wereusedaspositivecontrolswhileuntreatedskinwasregarded asthenegativecontrol.

GCxGC-ToF-MSanalysis

TheGCxGC-ToF-MS(LECO®Pegasus4D,LECOAfrica,Pretoria) wasequipped with an Agilent GC (7890), Gerstel Autosampler (MPS2), a secondary oven and a dual stage modulator. Liquid nitrogencoolingwasusedforthecoldjetsandsyntheticairfor the hot jets. Separation of target compounds was achieved on apolarStabilwax® polyethyleneglycolcolumn(30m

×0.25mm i.d.×0.25␮mfilmthickness)(Restek,USA)inthefirstdimension

coupledwithanon-polarRxi®-5SilMScolumn(0.79m

×0.25mm i.d.×0.25␮mfilmthickness(RestekUSA)intheseconddimension.

Primaryandsecondarycolumnswereconnectedusingapress-tight connector.Helium(99.9999%purity)wasusedascarriergasata constantflowrateof1.4ml/minandthesplitinjectorwassetto 1:200.Themainoventemperaturewasinitiallysetto40◦C for 1min,andthenrampedto260◦Cat10C/min,withafinal isother-malperiodof2minat260◦C.Thesecondaryovenwasprogrammed witha+15◦Coffsetabovetheprimaryoven.TheGCtemperature programmeandMSmethodwasdevelopedtoutilise theadded selectivityofGCxGCandthefullrangemassspectrageneratedby ToF(timeofflight)-MSforseparatingandidentifyingcomponents. Differentmodulationperiods(2s,4s,5s,6sand8s)weretested duringtheoptimisationstagetodeterminethebestseparation.The chosenmodulationperiodwas2.0sandthehotpulsedurationwas setat0.5s.Themassspectrometerwasoperatedatanacquisition rateof100spectra/s.Asolventacquisitiondelayof180swasused toprotecttheMSanalyserfromexcessivesolventexposure.The ionsourcetemperatureandthetransferlinetotheToF-MSwere setto200◦Cand280C,respectively.Thedetectorvoltageusedwas 1650Vandelectronionisationat70eVwasused.Massspectrawere acquiredfrom30to450m/zand1␮l(1:50dilution)ofthesample

wasinjectedinduplicateusingtheGerstelmultipurposesampler. Thepercentageareawasautomaticallycalculatedbythesoftware takingintoaccountpeakheight,area,widthandthenoiselevel. Identificationofpeakswasbasedonretentiontimesofreference compounds(linoleic,oleic,palmitic,stearic,arachidic,linolenicand myristicacidaswellasthe37-componentmixture)andmass spec-tralibrarymatchingusingNIST®MassSpectralLibrary(NIST®11) andNIST®08(AdamsLibrary).Librarysimilarityfactorswere deter-minedforbothforwardandreversesearches.

Pilotstudy

Patientselectionandstudydesign

Threesingle-blind quantitativepilot studies (irritancypatch test, moistureefficacy and occlusivity studies) wereconducted betweenJulyandSeptember2014.Foreachstudy,twenty(n=20) healthyCaucasianadultfemalevolunteers(18–65yearsold)who compliedwiththeinclusionandexclusioncriteriawererecruited. Exclusion criteria comprised the following: known allergy to moisturisers,creams,lotionsorcleansingproducts;useof med-icationwhichmayinfluencetheinterpretationofthedatasuch astopical/systemiccorticosteroids,chronicantihistaminesand/or anti-inflammatories; useof anytopicalmedications onthetest

areas;clinicallysignificantskindiseaseswhichmaycontraindicate participation,includingpsoriasis,eczema,skincancerorotherskin pathology;damagedskininoraroundthetestareassuchas sun-burn,excessivesuntan,unevenskintones,scars,cuts,scratches, varicoseveins,tattoos,activedermallesions,orother disfigura-tionofthetestareathatwouldinterferewithvisualevaluations; immunologicaldisorderssuchasrheumatoidarthritis,HIVpositive status,AIDSorsystemiclupuserythematosus;insulin-dependent diabetes;anycondition,whichintheopinionoftheinvestigator mayaffecttheresultsorplacethesubjectatunduerisk;becurrently pregnant,planningapregnancy,lactating,orhavegivenbirthinthe last4weeks;peripheralvasculardisease;and/orparticipatedina studyinvolvingthesametestareawithinthethreeweekspriorto thedry-downperiod.

Signed informed consentwas obtainedfromall participants priortothecommencementofthestudy.Allstudieswere con-ducted at the Photobiology Laboratory according to Standard OperatingProceduresandcarriedoutinaccordancewiththe Dec-larationofHelsinkiand theGuidelinesforGood Practicein the ConductofClinicalTrialsinHumanParticipationinSouthAfrica. Permission to conductthe studywas granted by theResearch, EthicsandPublicationsCommitteeoftheSefakoMakgathoHealth Sciences University (MREC/H/48/2014: CR) and the study was approvedbytheSenateCommitteeforResearchEthicsatTshwane UniversityofTechnology(SCRE/2014/06/008).

Irritancypatchtest

Theirritancypatchtestwasconductedonthevolarforearm. Baobab oil (20␮l), de-ionised water (negative control) and 1%

sodiumlaurylsulphate (positivecontrol)wereappliedtopically usingwhitelitmuspaper(5mm×10mm)andplacedontheskin inFinnchambersandkeptinpositionfor2×23huntilassessment. Reassessmentwasconductedforanyirritant(notanallergic) reac-tionafterafurther48h.Reactionsweregraded;0.0=noreaction, 0.5=slightreaction,1.0=weakreaction,1.5=moderate reaction, 2.0=strongreaction)foreachirritant.Thevisualassessmentwas carriedoutusinga2×magnifyinglampforvisualscoringanda MinoltaCr400Chromameter®wasusedtoassessthesurfacecolour basedonthetristimulusanalysisofthereflectedxenonlightpulse usingtheL*a*bsystem.TheL*valueistheluminancevariablewhile a*andb*valuesarethechromaticityco-ordinates;red-green(a*) andblue-yellow(b*).Thevaluesareusedtodefineapointina three-dimensionalcolourspacethatcharacterisesacolour(Abuaglaand Al-Deeb, 2012).In this study a* value (redness) readings were recorded.

Irritancy levels were classified as follows: mean visual score+one standard deviation (SD)>1.5=sample is an irritant; meanvisualscore+SD≤1.5and>negativecontrol=samplehaslow irritancypotential;and,ameanvisualscore+SD≤negative con-trol=sampleisnon-irritant.Toquantifytheskinresponseforeach testsitecomparedtobaseline,thea*valuereadingswere calcu-latedat0,24,48,72and96hpostapplication;usingtheequation:

Delta a∗

=(product a∗

timet−product a∗ time0)

− (untreateda∗timet

−untreateda∗time0) (1)

TheDeltaa*valuesforallparticipantsforagivenproductata giventimepointwereaveragedandplotted(Spiewak,2008).

Moistureefficacystudy

(4)

lampwasusedforvisualassessment;anAquaflux®(BioxSystems Limited,London)instrumentwasusedtodeterminetheTEWLand skinbarrierefficacy;andaCorneometer®

(CourageandKhazaka, ElectronicGmbH,Khöln,Germany)wasusedtorecordmoisture retentionreadingsanddetermineskinbarrierfunction.Priortothe commencementofthestudy,participantswereexposedtoa7-day dry-downperiodwherethecalfareawaswashedina standard-isedway2–4timesdailyusingsoapandwateronly.Participants werenotallowedtoapplyanyproductstothelegsduring this period.Afterthe7-daydry-downperiodanamountof0.1mlof eachsamplewasappliedtwicedailyon5.7cm×3.7cmrandomised testsites(Untreated,Baobaboil,liquidparaffin,Vaseline®intensive carelotionandVaseline®

petroleumjelly)incircularmovements onthecalfareaoveradiameterof20mm.Thelaboratory techni-cianappliedthetestproductsinthemorningandAquaflux®and Corneometer®

readingswererecorded.Theparticipantsre-applied theproductsathomeafterbathingapproximately8hlater. Assess-mentswereperformedondays1,2,3,4,5,8,10and12.

Visualassessment

Beforeapplication,baseline readingsweretakenat0husing a 2× magnifying lamp for visual scoring.Visual assessment of skindryness wasbased on thefollowing grading: 0.0=no evi-denceofdryness;1.0=slightlydryskin;2.0=moderatelydryskin; 3.0=severelydryskin;and4.0=extremelydryskin.Visual assess-mentswereperformedondays1,2,3,4,5,8,10and12.Theraw dataobtainedfromvisualassessmentreadingsforeach testsite comparedtobaseline,wascalculatedusingEq.(1).

Aquaflux®transepidermalwaterloss(TEWL) TheAquaflux®

instrumentwasusedtomeasurewater evap-oration from the calf area based on the vapour pressure i.e. transepidermalwaterloss(TEWL)(Imhof,2007;Farahmandetal., 2009).Inmostcases,iftheskinwaterbarrierisdamagedtheTEWL readingwillbeincreased.Thetestproductswereappliedonthe fivetestsitesandreadingswererecordedondays1,2,3,4,5,8, 10and12.Aquaflux®assessmentsforeachtestsitecomparedto baseline,wascalculatedusingEq.(1).

Capacitance–Corneometer®moistureretention(hydration) The Corneometer® instrument records the concentration gradientof water inthestratum corneum basedonthe capac-itive measurement of the di-electrical constant of the stratum corneum.Thehydrationofthestratumcorneumisrelatedtothe suppleness,softnessandsmoothnessaswellastheyouthfuland healthyappearance ofthe skin(Jiangand Delacruz, 2011).The readingsrangefrom0(nomoisture/water)upto120(highlevel

ofmoisture/water)(Clarysetal.,2011).Thevaluesaregenerally classifiedunderdifferentcategorieswithextremedrynessbeing rated<30,drybeingbetween30and40andnormal>40(Heinrich etal.,2003).Thetestproductswereappliedtothefivetestsites andreadings wererecordedondays1,2, 3,4,5,8, 10and 12. Corneometer®assessmentsforeachtestsitecomparedtobaseline, wascalculatedusingEq.(1).

Occlusivitystudy

Awipe-offtestwasconductedonthevolarforearmforfive con-secutivedaysusingAquaflux®andCorneometer®instruments.Five testsites(Untreated,Baobaboil,liquidparaffin,Vaseline® inten-sivecarelotionandVaseline®petroleumjelly)wererotationally randomisedand0.1mlofeachsamplewasappliedtotheskin sur-face(20mmdiameter)usingcircularmovements.Readingswere recordedat0minand30minpostwipe-offperiodandEq.(1)was usedforcalculationoftheDeltaa*value(Spiewak,2008).

Dataanalysis

Statistical analyses were performed using Stata® 10 data software.ThePearson’schi-squaretestwasusedtotestfor asso-ciations betweenthe samples and the reaction categories. The Kruskal–Wallistestwasusedtocomparesamplesovermeasured outcomesincaseswheretheoutcomeisnotnormallydistributed. Otherwise,two-sampleindependentt-testsorone-wayanalysisof variance(ANOVA)testswereemployedforcontinuousand nor-mally distributedoutcomes.Where asignificantdifference was observed;aSidekposthoctestwasperformed.Allthe interpre-tationsareperformedat˛=0.05errorrate.

Resultsanddiscussion

GCxGC-ToF-MSanalysis

Table1showsthethirteen(13)methylestersidentifiedthrough comparisontothemassspectroscopydataofthestandardsand standardsmixturefromtherefinedBaobabseedoilcharacterised usingtwo-dimensionalgaschromatography.Theaverage percent-ageofsaturatedfattyacidspresentintheoilsamplewas34.6%with 28.7% monounsaturated and 36.7% polyunsaturated fatty acids. Majorsaturatedfattyacidsidentifiedintheoilsampleincluded palmitic(28.8%)andstearic(4.4%)acids.Unsaturatedfattyacids including monousaturated oleic acid (25.1%) and a high quan-tityofpolyunsaturatedlinoleicacid(36.0%)wasdetected.Other studiesreportingthefattyacidcontentofbaobabseedoilused one-dimensionalGC–MSforquantification.DeCaluwéetal.(2010) reported that themajor fatty acids present in baobab seed oil

Table1

FattyacidcompositionofAdansoniadigitatacommercialoilasdeterminedbyGCxGC–MS.

Fattyacidsdetected Chemicalname Molecular

formula

Carbon bonds

Percentagedetected (%)±standard deviation

Retentiontime 1stDimension (s)

Retentiontime 2ndDimension (s)

Pelargonicacid Nonanoicacid,methylester C9H18O2 C9:0 0.05±0.07 502 0.74

Myristicacid Tetradecanoicacid,methylester C18H34O2 C14:0 0.1±0.14 852 0.82

Palmiticacid Hexadecanoicacid,methylester C16H32O2 C16:0 28.5±0.42 972 0.85

Palmitoleicacid 7-Hexadecenoicacid,methylester,(Z)- C16H30O2 C16:1 0.25±0.07 984 0.8

Heptadecanoicacid Heptadecanoicacid,methylester C17H34O2 C17:0 0.17±0.04 1026 0.86

cis-10-Heptadecenoic acid

cis-10-Heptadecenoicacid C17H32O2 C17:1 0.58±0.02 1036 0.82

Linolelaidicacid 9,12-Octadecadienoicacid,methylester,(E,E)- C18H32O2 C18:2n6t 0.18±0.03 1058 0.77

Stearicacid Octadecanoicacid,methylester C18H36O2 C18:0 5.85±2.05 1080 0.88

Oleicacid 9-Octadecenoicacid,methylester,(Z)- C18H34O2 C18:1n9c 25.66±0.95 1090 0.83 Linoleicacid 9,12-Octadecadienoicacid,methylester,(Z,Z)- C18H32O2 C18:2n6t 35.75±0.35 1110 0.8 Linolenicacid 9,12,15-Octadecatrienoicacid,methylester,(Z,Z,Z)- C18H30O2 C18:3n3 0.5±0.00 1142 0.75 Elaidicacid 9-Octadecenoicacidmethylester(E)-, C18H34O2 C18:1n9t 2.8±0.00 1144 0.86

(5)

werepalmitic(27%),linoleicacid(27%)andoleic(25%)acidswhile

NamrathaandSahithi(2015)reported36%oleicacid,33%palmitic acidand31%linolenicacid.Areviewarticlefurtherreportedthat oleicacidinbaobabseedoilsamplesrangedfrom30to42%,linoleic acidfrom20to35%andpalmiticacidfrom18to30%,(Vermaak etal., 2011).Fattyacidsare consideredtobea combination of triglyceridesofhighersaturatedandunsaturatedfattyacids.These compoundsareestersofglycerolandhigherfattyacids contain-ing longaliphatic carbonchains. Depending ontheirfatty acid percentagestheymayexhibitavarietyofpropertieswhichcould bebeneficialtotheskinduringdailycosmeticuse(Zieli ´nskaand Nowak,2014).Withhighpercentagesofpalmitic(unsaturated), oleic(monounsaturated)andlinoleic(polyunsaturated) acidsas detectedin theBaobabseedoil,thefindingscouldsuggestthat theseedoilisofgreatimportanceasacosmeticbasetoprevent transepidermalwaterlossby creatingaprotective layeronthe epidermis(Zieli ´nskaandNowak,2014).Inaddition,linoleicacid (polyunsaturatedfattyacid)isanaturalcomponentofsebumand playsasignificantroleinstrengtheningthelipidbarrierofthe epi-dermisandnormalisestheskinmetabolism(Zieli ´nskaandNowak, 2014).Furthermore,thepresenceoflinoleicacidintheceramides ofthestratumcorneumdirectlycorrelateswiththepermeability barrierfunctionoftheskin(Stages,2012).Kanlayavattanakuland Lourith(2011)reportedthatBaobabseedoilcouldberegarded asapotentialtherapeutictopicalapplicationforacne treatment duetothehighpercentageoflinoleicacidpresent.Theoil sam-plecontained36%omega-6(linoleicacid)whichhasbeenshown tocontributetowardsmaintainingahealthyskinparticularlywhen topicallyappliedincasesofacne.Theapplicationoflinoleicacidfor oilyandproblematicskinmayresultinimprovedsebaceousgland functionandthepreventionofcomedo-acneformation(Zieli ´nska andNowak,2014).

Irritancypatchtest

Irritancypatchtestingistheprincipletestdemonstrating irri-tantcontactdermatitis.Anirritantisasubstancethatwouldcause inflammationinalmosteveryindividualifappliedinhigh concen-trationforalongperiodandwillresultinanirritantreactionbut willnotinfluencetheimmunesystem(Lewis,2014).Visual ery-themaassessment(Fig.3)revealedthatsodiumlauryl sulphate (positivecontrol)washighlyirritatingtotheskin,asexpected,at alltimeintervalswhilede-ionisedwaterandBaobaboilwere non-irritatingwithlowerythemascores.Thevisualgradingscoresof de-ionisedwater(negativecontrol)were0.13(24h),0.13(48h), 0.08(72h)and0.00(96h)whiletheresultsyieldedafter applica-tionofBaobaboilwere0.08(24h),0.05(48h),0.05(72h)and0.06 (96h).De-ionisedwaterischemicallyprocessedwaterusing ion-exchangeresinanditisconsideredsuitableforthemanufacturing ofcosmetics.Inrecentyears,Baobaboilhasbeenaddedtothelistof fixedoilscommonlyincludedincosmeticproductsduetoitshigh contentofpalmiticandoleicacids(Bazongoetal.,2014).

The visual erythema assessment results were corroborated throughtheChromameter®results. Sodiumlaurylsulphate(1%) washighlyirritating,withaverageincreasedchromaa*readings of1.97(24h)4.81(48h),5.15(72h)and4.52(96h),respectively (Fig.4)comparedtobaselinereadingsof0.64(24h)1.05(48h), 0.11(72h)and 0.73(96h).Baobaboilwasnon-irritatingtothe skinwithreadingsof0.33(24h),0.67(48h),0.51(72h)and0.51 (96h).Althoughde-ionisedwaterwasalsonon-irritatingatalltime points,theobservedreadingsat48,72and96hwereslightlyhigher thanBaobaboilwithvalues of1.15,0.96 and0.74 respectively. ThesefindingscorrelatedtoareportpublishedbyBurnett(2010) intheCosmeticIngredientReview(CIR,2011)duringwhich100% Baobaboilwastestedfordermalirritationpotentialusingthe Mat-TekEpiDermTMMTTviabilityassaywheretissueviabilityindicates

–0.4 –0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0h 24h 48h 72h 96h

Irritan

cy

level

visu

al

score

mean

value

1% Sodium lauryl sulphate De-ionised water

Baobab oil

Fig.3.Irritancylevelvisualscoremeanvaluewhen1%sodiumlaurylsulphate (pos-itivecontrol),de-ionisedwater(negativecontrol)andBaobaboil(testproduct)was appliedonthevolarforearmareaat24,48,72and96htimeinterval(n=19).

skinirritationpotentialoftestmaterials.TheMatTekEpiDermTM tissuesampleswereincubatedwith100␮lofthetestmaterialfor

1,4and24htogetherwiththepositivecontrol(1%TritonX-100) whichwasincubatedfor4or9h,andthenegativecontrol(undosed tissuesincubated for4h). Thepositive controlcausedexpected irritationwhileBaobaboilcausednoirritation(Burnett,2010).

Moistureefficacytest

Visualassessment(2×magnifyinglamp)

TheresultsinFig.5indicatedthatskindrynessrecoverywas significantforalltestproductscomparedtountreatedskinwith Vaseline® intensivecarelotionshowingthehighestskin recov-erypotential.Baobaboilandliquidparaffinexhibitedsimilarskin recoveryproperties.Baobaboiliswellknownforitsnon-siccative (non-drying) property and contains palmitic, oleic and linoleic acidswhichrendersitasuitablecosmeticoilforthepreventionof skindryness(PhytoTradeAfrica,2012).Thesmallmolecular struc-tureresultsinrapidabsorptionandpalmiticandoleicacidshave

Significant difference (

P=.005) between Baobab oil and 1% sodium lauryl sulphate –1

0 1 2 3 4 5 6 7

24h 48h 72h 96h

Chromameter

a

∗m

ean

v

alue

change

from

b

aseline

Baobab oil De-ionised water 1% Sodium lauryl sulphate

Fig.4. Chromameter®

(6)

0 0.5 1 1.5 2 2.5 3

Vaseline® intensive care

lotion Liquid paraffin Baobab oil

Untreated Vaseline ®

Mean

Visual

skin

dr

y

ness

score

Day 1 Day 12

Significant difference (P=.005) observed when baobab oil, liquid paraffin, Vaseline® intensive care lotion and Vaseline® were compared at Day 1 and 12.

Fig.5.VisualskindrynessscorereadingsatDay1and12(n=20).

0 2 4 6 8 10 12 14 16 18 20

Vaseline® intensive care

lotion Liquid paraffin Baobab oil

Untreated Vaseline ®

Significant difference (

P=.005) observed when baobab oil, liquid paraffin, Vaseline® intensive care lotion and Vaseline® were compared at Day 1 and 12.

TEWL

g/[m2h]

mean

readings

∗ ∗

∗ ∗

Day1 Day 12

Fig.6. MeanTEWLg/[m2h]readingsatDay1and12(n=20).

beenreportedtobeeffectivepercutaneousabsorptionenhancers. Itwasfurtherreportedthatlinoleicacid(36.0%inthetestsample) isthemostfrequentlyusedfattyacidincosmeticproductsasit moisturisestheskinandaidsinthehealingprocessofdermatoses andsunburns(Bazongoetal.,2014).

Aquaflux®

transepidermalwaterloss(TEWL)

AllofthetestproductssignificantlyreducedTEWLoveratest periodof12days(Fig.6).Vaseline®wasparticularlyeffectivewith ahighnegativevalueof−6.32observedatchangefrombaseline (D12−D1).Liquidparaffin(−4.84)andBaobaboil(−4.07) exhib-itedsimilareffectivitywhileVaseline®intensivecarelotionwasthe leasteffectiveat−3.53(Table2).Negativevaluesconfirmthatskin barrierpropertiesofthetestproductshadanefficientimpacton TEWL.Ahealthyskinhasahealthybarrierfunctionwhichdepends onlipidsthatarepresentinthecorneocytes.Anycauseoflipid con-tentreductionwillleadtoacompromisedbarrierandanincreased

Significant difference (P=.005) observed when baobab oil, liquid paraffin

and Vaseline® intensive care lotion were compared at Day 1 and 12. 0

5 10 15 20 25 30 35

Vaseline® intensive care

lotion Liquid paraffin Baobab oil

Untreated Vaseline ®

Mean corneometer® readings

Day1 Day 12

∗ ∗

Fig.7.MeanCorneometer®

readingsatDay1and12(n=20).

TEWL(Bouwstra andPonec, 2006).Baobab oilis consideredan excellentoiltoimproveskinbarrierfunctionbypreventingreduced TEWLthatoccursasaresultofanimpairedbarrier,duetoitshigh saturatedandunsaturatedfattyacidcontent(Kamatouetal.,2011). In2005,VenterreportedthatBaobaboilisagoodqualitynatural moisturiserasdeterminedthroughasurveyconductedintheLouis Trichardt(intheLimpopoProvinceof SouthAfrica)VhaVhenda regionwheretheuseofEcoproducts©oilswereincludedas ingre-dientsinbathsoaps,bodylotionsandfacemoisturisers(Hametal., 2010).InarecentpatentbyEngelsandGladbach(2009),an addi-tivefromtheBaobabplantwasusedinformulationsofcosmetic anddermatologicalemulsionsforskincareasamoisturiserthat createsafeelingofsmoothnessontheskin.

Capacitance-Corneometer®

moistureretentiontest(hydration) Techniques forthe assessment of skinhydration are mostly based onthe electrical propertiesof the stratum corneum and theCorneometer®

instrument is regarded asthe most popular approachtomeasureskinmoisture(Lodénetal.,1995).Theresults (Fig. 7)indicated that significantly higher mean valuereadings wererecordedforthreeofthefourtestproductsonday12with Vaseline®intensivecarelotionreadingsthehighestat30.56 fol-lowedbyBaobaboilat20.28andliquidparaffinat19.61.There wasnosignificantdifferencerecordedforVaseline®withamean readingonday1of19.70and20.18onday12.Baobaboilwasless hydratingthanVaseline®intensivecarelotion.Thesefindingscould beattributedtothenatureofVaseline®intensivecarelotionbeing awaterinoilemulsionthatsignificantlyinducechangesinskin capacitancecomparedtoBaobaboilwhichisalipid-richocclusive product,richinessentialfattyacids(palmitic,oleicandlinoleic) and hastheability topenetrate into theepidermiswith bene-fitsofrestoringtheintegrityoftheskincellmembrane(Johnson, 1981;JemecandWulf,1999).Thehighconcentrationofthelinoleic andoleicacidspresentinBaobaboilrendersitanexcellentskin regeneratingseedoilthatmimicsthethreeskinmechanismsof hydration,reinforcingthefunctionalityofthelipidicmantlewith lipophilicsubstances thus increasingthecapacity tolink water throughhydrophilicsubstancesandimprovingskindefencewhich

Table2

TEWLmeanreadingsatday1andday12(n=20).

Testproducts Day1:Meanvalue±standarddeviation Day12:Meanvalue±standarddeviation ChangefrombaselineD12−D1

Untreated 11.86±2.21 16.77±2.79 4.91

Baobaboil 15.14±4.22 11.07±2.26 −4.07

Liquidparaffin 16.53±3.13 11.69±2.11 −4.84

Vaseline®intensivecarelotion 15.23

±3.88 11.70±2.18 −3.53

Vaseline® 17.00±3.02 10.67±2.67a 6.32

aVaseline®

(7)

Significant difference (

P<.005) observed when Vaseline® intensive care lotion,

Vaseline® , liquid paraffin and Baobab oil were evaluated for moisture retention level at time 0 min pre and immediate post wipe off at 30 min

0 10 20 30 40 50 60 70

Vaseline® intensive care

lotion Liquid paraffin Baobab oil

Untreated Vaseline ®

Mean corneometer ®readings

∗ ∗ ∗

0 min 30 min

Fig.8.MeanCorneometer®

readingsforalltestproductsattime0minpreand immediatepostwipeoffat30min(n=20).

Significant difference (

P<0.005) observed when Baobab oil, liquid paraffin and vaseline® was evaluated for TEWL level at time 0 min pre and immediate post wipe off at 30 min

0 2 4 6 8 10 12

Vaseline® intensive care

lotion Liquid paraffin

Untreated Vaseline ®

TEWL

[g/m2h]

mean

readings

0 min 30 min Baobab oil

Fig.9.MeanTEWLg/[m2h]readingsofalltestproductsattime0minpreand

immediatepostwipeoffat30min(n=20).

makestheseedoilaverygoodcarrieroilandanessentialingredient inthecosmeticindustry(Theodore,1989;Darlenskìetal.,2011).

Fig. 8 reflects the occlusion potential in a 30-min wipe-off test. All test products improved moisture retention. Vaseline® demonstratedthebestmoistureretention propertyfollowedby liquidparaffin,Vaseline®intensivecarelotionandBaobaboil.The occlusionproperties arefurtherillustrated in Fig.9.Baobab oil applicationcaused a reductionin theTEWLvalue witha mean reading of4.77g/[m2h].In contrast,Vaseline® intensivecareat 6.62g/[m2h], liquid paraffin at 9.32g/[m2h] and Vaseline® at 0.25g/[m2h]causednoreductioninTEWL.Vaseline® isa well-knownpetrolatumthathasbeenusedasaningredientforover50 yearstosmoothenoutskinsurfaceduetoitsocclusiveproperty thatcausesmoisturetoaccumulateinthestratumcorneumthus preventingabnormaldesquamatingpropertyoftheskin(Kligman, 1978;Burton,1983).Yet,accordingtoEngelsandGladbach(2009), baobabisregarded asapreferred oilin skincareproductsdue toitsrevitalising,moisturisingandrestructuringpropertiesasa resultofthebalanceinthesaturated(palmitic)monounsaturated (oleic)andpolyunsaturated(linoleic)acidcomposition(Engelsand Gladbach,2009).

Conclusion

Seedoilsareanimportantcomponentofmanyplantsand cur-rentlyplayasignificantroleinthecosmeticandpharmaceutical industry.Baobab (A. digitata L.)seedoilisone suchingredient, whichhasrapidlygainedpopularityonglobalmarketsandishighly regardedbyresearchersinthefieldofethnobotanyand ethnophar-macologyparticularlyfor cosmeticbenefit.Thisstudy aimedto elaborateonthescientificconfirmationthatBaobaboilhasgood

cosmeticpotentialwithitsnon-irritating,hydrating,moisturising andoccludingbenefitontheskin.Inaddition,theuniqueratioof saturatedandunsaturatedfattyacidpresentintheoilrendersit anoilwhichmayhavepharmacologicalpropertiesthatcouldbe highlysignificantinthecosmeticindustrywhentopicallyapplied.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thattheproceduresfollowedwereinaccordancewiththe regula-tionsoftherelevantclinicalresearchethicscommitteeandwith thoseoftheCodeofEthicsoftheWorldMedicalAssociation (Dec-larationofHelsinki).

Confidentialityofdata. Theauthorsdeclarethattheyhave fol-lowed theprotocolsof theirwork centeronthe publicationof patientdata.

Right to privacy and informed consent.The authors have

obtainedthewritteninformedconsentofthepatientsorsubjects mentionedinthearticle.Thecorrespondingauthorisinpossession ofthisdocument.

Authors’contributions

BKwasinvolvedinalltheexperimentalwork,analysedthedata anddraftedthepaper.IVcontributedtoprojectplanningand draft-ingofthemanuscript.GKperformedthefattyacidprofilingusing GCxGC-MS.BSplannedandsupervisedthesafetyandefficacy stud-iesandcriticallyreviewedthemanuscript.AVinitiatedtheproject andwasinvolvedinallaspectsofplanninginadditiontocritical reviewingofthemanuscript.Alltheauthorshaveread thefinal manuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

The authors thank Tshwane University of Technology, the NationalResearchFoundationandRestekforfinancialsupport.We furtheracknowledgeparticipantsand techniciansat the photo-biologyLaboratory(SefakoMakgathoHealthSciencesUniversity) andMr.MaupiLetsoalo(TshwaneUniversity ofTechnology)for assistancewithstatisticalanalysis.WethankSandieBurrowsfor preparingthebotanicallinediagram(Fig.2).

References

Abuagla,A.M.,Al-Deeb,M.A.,2012.Effectofbaitquantityandtrapcoloronthe trappingefficacyofthe,pheromonetrapfortheredpalmweevil,Rhynchophorus

ferrugineus.http://www.insectscience.org/12.120(accessedSeptember2015).

Bazongo,P.,Bassolé,I.H.N.,Nielsen,S.,Hilou,A.,Dicko,M.H.,Shukla,V.K.S.,2014.

Characteristics,compositionandoxidativestabilityofLanneamicrocarpaseed andseedoil.Molecules19,2684–2693.

Bouwstra,J.A.,Ponec,M.,2006.Theskinbarrierinhealthyanddiseasedstate. Biochim.Biophys.1758,2080–2095.

Burnett,C.L.,2010.Draftreportofthevegetableoilgroup:GreenBook2and3, CosmeticIngredientReview.http://www.cir-safety.org/aug10.shtml(accessed January2016).

Burton,C.K.,1983.Skincarecomposition,PatentApplicationPublication,Pub.No.: US1982/4389418A.

Chindo,I.Y.,Gushit,J.S.,Olotu,P.N.,Mugana,J.,Takbal,D.N.,2010.Comparisonofthe qualityparametersoftheseedandcondimentoilofAdansoniadigitata.J.Am. Sci.6,990–994.

Clarys,P.,Clijsen,R.,Taeymans,J.O.,Barel,A.,2011.Hydrationmeasurementsofthe stratumcorneum:comparisonbetweenthecapacitancemethod(digitalversion oftheCorneometerCM825®

(8)

CosmeticIngredientReview,2011. FinalReport, Plant-derivedFatty AcidOils as Used in Cosmetics. http://www.beauty-review.nl/wp-content/uploads/ 2014/05/plant-derivedfatty-acid-oilsasusedincosmetics.pdf (accessed September2015).

Darlenskì,R.,Kazandjieva,J.,Tsankov,N.,2011.Skinbarrierfunction:morphological basisandregulatorymechanisms.J.Clin.Med.Res.4,36–45.

DeCaluwé,E.,Halamová,K.,VanDamme,P.,2010.AdansoniadigitataL.Areviewof traditionaluses,phytochemistryandpharmacology.AfrikaFocus23,11–51.

Engels,P.,Gladbach,B.,2009.Cosmeticpreparationswithanadditivefromthe Baobabtree,PatentApplicationPublication,Pub.No.:US2009/0324656A1.

Farahmand,S.,Tien,L.,Hui,X.,Maibach,H.I.,2009.Measuringtransepidermalwater loss:acomparativeinvivostudyofcondenser-chamber,unventilated-chamber andopen-chambersystems.SkinRes.Technol.15,392–398.

Gebauer,J.,El-Siddig,K.,Ebert,G.,2002.Baobab(AdansoniadigitataL.):areviewona multipurposetreewithpromisingfutureintheSudan.Gartenbauwissenschaft 67,155–160.

Glew,R.H.,Vanderjagt,D.J.,Lockett,C.,Grivetti,L.E.,Smith,G.C.,Pastuszyn,A., Mill-son,M.,1997.Aminoacid,fattyacidandmineralcompositionof24indigenous plantsofBurkinaFaso.J.FoodCompos.Anal.10,205–217.

Gruenwald,J.,Galizia,M.D.,2005.MarketbriefintheEuropeanUnionforselected naturalingredientsderivedfromnativespecies.AdansoniadigitataL.Baobab. TheUnitedNationsConferenceonTradeandDevelopment(UNCTAD).BioTrade Initiative/BioTradeFacilitationProgramme(BTFP)Hardcastle.

Ham,C.,Diederichs,N.,Jacobson,M.,Falcão,M.,Howard,M.,Mander,M.,Manjoro, A.,Dube,T.,2010.Increasingtherurallivelihoodbenefitsfromnaturalplant productventuresinSouthernAfrica:CaseStudiesandBusinessModels, Com-mercialproductsfromthewildresearchgroup(CPWild)DepartmentofForest andWoodScience,StellenboschUniversityincollaborationwith:TheSchoolof ForestResources.PennsylvaniaStateUniversity,EduardoMondlaneUniversity, CatholicUniversityofBeira.

Heinrich,U.,Koop,U.,Leneveu-Duchemin,M.C.,Osterrieder,K.,Bielfeldt,S., Chkar-nat,C.,Degwert,J.,Häntschel,D.,Jaspers,S.,Nissen,H.P.,Rohr,M.,Schneider, G.,Tronnier,H.,2003.Multicentrecomparisonofskinhydrationintermsof physical-physiological-andproduct-dependentparametersbythecapacitive method(CorneometerCM825).Int.J.Cosmet.Sci.25,45–53.

Imhof,R.E.,2007.In-vivoandin-vitroapplicationsofclosed-chamberTEWL mea-surements.LectureNotes:IntensivecourseinDermato-cosmeticSciences.

Jemec,G.B.E.,Wulf,H.C.,1999.Correlationbetweenthegreasinessandthe plasti-cizingeffectofmoisturizers.ActaDerm.Venereol.79,115–117.

Jiang,Z.X.,Delacruz,J.,2011.Appearancebenefitsofskinmoisturization.SkinRes. Technol.17,51–55.

Johnson,Z.M.,1981.Methodoftreatingpsoriasis,PatentApplicationPublication, Pub.No.:US1981/4,454,188.

Kamatou,G.P.P.,Vermaak,I.,Viljoen,A.M.,2011.AnupdatedreviewofAdansonia digitata:acommerciallyimportantAfricantree.S.Afri.J.Bot.77,908–919.

Kanlayavattanakul,M.,Lourith,N.,2011.Therapeuticagentsandherbsintopical applicationforacnetreatment.Int.J.Cosmet.Sci.33,289–297.

Kothiyal,S.K.,Semwal,D.K.,Badoni,R.,Rawat,U.,2010.GC–MSanalysisoffattyacids andtheantimicrobialactivityofIlexdipyrenaWallichleaves.AsianJTradit.Med. 5,153–157.

Kligman,A.M.,1978.Regressionmethodsforassessingtheefficacyofmoisturizers. Cosmet.Toilet.93,27–35.

Lewis,V.,2014.PatchTestingforSkinAllergies.http://www.netdoctor.co.uk/../ examinations(accessedDecember2015).

Lodén,M.,Hagforsen,E.,Lindberg,M.,1995.Thepresenceofbodyhairinfluences themeasurementofskinhydrationwiththeCorneometer.ActaDerm.Venereol. 6,449–450.

Munthali,C.R.Y.,Chirwa,P.W.,Akinnifesi,F.K.,2012.Phenotypicvariationinfruit andseedmorphologyofAdansoniadigitataL.(Baobab)infiveselectedwild populationsinMalawi.Agrofor.Syst.85,271–290.

Namratha,V.,Sahithi,P.,2015.Baobab:Areviewabout“TheTreeofLife”.Int.J.Adv. HerbalSci.Technol.1,20–26.

Nkafamiya,I.,Osemeahon,S.,Dahiru,D.,Umaru,H.,2007.Studiesonthechemical compositionandphysicochemicalpropertiesoftheseedsofBaobab(Adasonia digitata).Afr.J.Biotechnol.6,756–759.

Osman,M.A.,2004.ChemicalandnutrientanalysisofBaobab(Adansoniadigitata) fruitandseedproteinsolubility.PlantFoodsHumNutr.59,29–33.

Palgrave,K.C.,1983.TreesofSouthernAfrica.StruikPublishers,SouthAfrica.

PhytoTradeAfrica,2012.Baobabtreeanditsfruit.http://www.phytotrade.com/ products/baobab/(accessedJanuary2016).

Rahul,J.,Jain,M.K.,Singh,S.P.,Kamal,R.K.,Naz,A.A.,Gupta,A.K.,Mrityunjay,S.K., 2015.AdansoniadigitataL.(Baobab):areviewoftraditionalinformationand taxonomicdescription.AsianPac.J.Trop.Biomed.5,79–84.

Rossé,A.D.,Harynuk,J.J.,2010.Methodologyforthederivatizationand quantifi-cationofdialkylphosphateestersinpetroleumsamples.Anal.Methods.2, 1176–1179.

Sidibe,M.,Williams,J.T.,2002.Baobab–Adansoniadigitata.Fruitsforthefuture4. InternationalCentreforUnderutilisedCrops,UnitedKingdom,Southampton.

Spiewak,R.,2008.Patchtestingforcontactallergyandallergicdermatitis.Open AllergyJ.1,42–51.

Stages,L.,2012.Essentialfattyacidsandskinhealth.http://www.lpi.oregonstate. edu/mic/..health/skin-health/nutrient(accessedJanuary2016).

Theodore, J., 1989. Baobab encyclopaedia Americana Grolier incorporated 3, 207.

Venter,S.M.,Witkowski,T.F.,2010.Baobab(AdansoniadigitataL.)fruitproductionin communalandconservationland-usetypesinSouthernAfrica.For.Ecol.Manag. 259,294–300.

Venter,S.M.,(Ph.D.thesis)2012.TheecologyofBaobabs(AdansoniadigitataL.)In relationtosustainableutilizationinNorthernVenda.Universityofthe Witwa-tersrand,SouthAfrica,pp.200.

Vermaak,I.,Kamatou,G.P.P.,Komane-Mofokeng,B.,Viljoen,A.M.,Beckett,K.,2011.

Africanseedoilsofcommercialimportance–cosmeticapplications.S.Afr.J.Bot. 77,920–933.

Wickens,G.E.,Lowe,P.,2008.TheBaobabs:PachycaulsofAfrica,Madagascarand Australia.SpringerScienceandBusinessMedia,UnitedKingdom.

Zieli ´nska,A.,Nowak,I.,2014.Fattyacidsinvegetableoilsandtheirimportancein cosmeticindustry.Chemik68,103–110.

Imagem

Fig. 1. Botanical line drawing illustrating the diagnostic features of Adansonia digi- digi-tata (Baobab)
Table 1 shows the thirteen (13) methyl esters identified through comparison to the mass spectroscopy data of the standards and standards mixture from the refined Baobab seed oil characterised using two-dimensional gas chromatography
Fig. 3. Irritancy level visual score mean value when 1% sodium lauryl sulphate (pos- (pos-itive control), de-ionised water (negative control) and Baobab oil (test product) was applied on the volar forearm area at 24, 48, 72 and 96 h time interval (n = 19).
Fig. 6. Mean TEWL g/[m 2 h] readings at Day 1 and 12 (n = 20).
+2

Referências

Documentos relacionados

Chemical composition and toxicity of the essential oils from Cunila species (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus.. Acaricidal activity of thymol

Cytotoxic activity observed after treatments with crude extract, total alka- loids (TA), alkaloid-free fractions described as hexane fraction (FHex), butanol fraction

Cytotoxic effects of Nepeta binaloudensis various extracts on MCF-10A (Normal), MBA-MD-231 and MCF-7 (cancer) breast cell lines.. Cells were treated for 24, 48 and 72 h with

However, when the selectivity index are considered, all bioactive fractions and rhein presented positive SI values at concentrations that exhib- ited strong antibacterial

Percentage of cell viability of Vero cell lines treated with different concen- trations of ultrafiltered protein extract ranging from 2 to 100 ␮ g/ml, isolated from the leaves

study was to compare metabolite profile and ␤ -glucuronidase inhibitory activity of these three important.. species of Swertia and to identify the

Minimal biofilm inhibitory concentration (MBIC) values for the Piper regnellii dichloromethane extract, eupomathenoid-5, conocarpan and vancomycin to S. Scanning electron micrographs

Interaction analysis of fluconazole with the lipophilic fraction of Hypericum carinatum (LF) (IC 50 ) against Candida krusei (CK03) (A) and Candida parapsilosis