• Nenhum resultado encontrado

A identificação de sítios de clivagem das glicoproteínas variáveis de

CONCLUSÃO GERAL

4. A identificação de sítios de clivagem das glicoproteínas variáveis de

superfície (VSGs) de T. brucei e o reconhecimento pelas metaloproteases da matrix (MMPs) do hospedeiro contribui para melhor compreender o mecanismo de variação antigénica do protozoário. Adicionalmente, espera-se melhor compreender o mecanismo do escape e interação parasita-hospedeiro. Assim, contribuir para o desenho de alternativas terapêuticas adicionais baseando-se nos mecanismos patológicos.

REFERÊNCIAS

AGRAWAL, S. M.; LAU, L.; YONG V. W. MMPs in the central nervous system: Where the good guys go bad. Semin Cell Dev Biol, v. 19, n. 1, p. 42, 2008.

AKHOUNDI M, et al. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl Trop Dis, v. 10, n.3, p. e0004349–51, 2016.

ALBAJAR-VIÑAS, P.; JANNIN, J. The hidden chagas disease burden in Europe. Euro

Surveill, v.16, n.38, p. 19975, 2011.

ALMEIDA-DE-FARIA, M. et al. Trypanosoma cruzi: Characterization of an intracellular epimastigote- like form. Exp Parasitol;v. 92, n.4, p.:263-74,1999.

ANDRADE, M. A et al. Essential oils: In vitro activity against Leishmania amazonensis, cytotoxicity and chemical composition. BMC Complement Altern Med;v.16, n.1, p.444, 2016.

APT, W. Current and developing therapeutic agents in the treatment of Chagas disease. Drug Des Devel Ther, v 24;n.4, p. 243-53, 2010.

AWASTHI, A.; MATHUR, R K.;SAHA, B. Immune response to Leishmania infection.

Indian J Med Res, v. 119, p 238-258, 2004

AZEREDO-COUTINHO, R. B.G. et al.First report of diffuse cutaneous leishmaniasis and Leishmania amazonensis infection in Rio de Janeiro State, Brazil. Trans R Soc

Trop Med Hyg., v.101,n. 7, p. 735-7, 2007.

BANGS, J. D. et al.In vitro cytocidal effects on Trypanosoma brucei and inhibition of

Leishmania major GP63 by peptidomimetic metalloprotease inhibitors. Mol Biochem

BARAL, T. N. Immunobiology of African trypanosomes: Need of alternative interventions. J Biomed Biotechnol, v. 2010, p. 389153, 2010

BATES, P. A. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol, v.10, p.1097-106, 2007

BIANCHINI, G et al. Molecular dynamics simulation of Leishmania major surface metalloprotease GP63 (leishmanolysin). Proteins, v. 64, n. 2, p. 385–390, 2006. BOSSARD, G; CUNY, G; GEIGER, A. Secreted proteases of Trypanosoma brucei

gambiense : Possible targets for sleeping sickness control? BioFactors, v. 39, n. 4, p.

407–414, 2013.

BRISSE, S; BARNABÉ, C; TIBAYRENC, M. Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. Int J Parasitol, v.30, n.1, p.35-44, 2000.

CAMARGO, E. P. Growth and differentiation in Trypanosoma cruzi. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med São Paulo, v.6, p.93- 100,1964.

CARNEIRO, C M et al. Experimental and Clinical Treatment of Chagas Disease:

A Review. The American Journal of Tropical Medicine and Hygiene, 2017.

CARRINGTON, M et al. Sequence and expression of the glycosyl-phosphatidylinositol- specific phospholipase C of Trypanosoma brucei. Mol Biochem Parasitol, v.33, n.3, p. 289-96, 1989.

CARRINGTON, M et al. Variant specific glycoprotein of Trypanosoma brucei consists of two domains each having an independently conserved pattern of cysteine residues.

J Mol Biol, v. 221, n. 3, p.823-35, 1991.

CAZZULO, J. Proteinases of Trypanosoma Cruzi: Potential Targets for the Chemotherapy of Chagas Disease. Current Topics in Medicinal Chemistry, v. 2, n. 11, p. 1261–1271, 2002.

CECÍLIO, P et al,. Deception and manipulation: The arms of Leishmania, a successful parasite. Front Immunol, v. 20;n. 5:p. 480, 2014

CELES, F. S. et al. DETC-based bacterial cellulose bio-curatives for topical treatment of cutaneous leishmaniasis. Sci Rep. v.6;n.6, p.38330, 2016.

CHAGAS, C. Nova tripanomiaze humana. Estudos sobre a morfolojía e o ciclo evolutivo de Schizotrypanum cruzi, agente etiológico de nova entidade morbida do homen. Mem. Inst. Oswaldo Cruz, v.1, n.2, 1909.

CHATELAIN, E. Chagas disease research and development: Is there light at the end of the tunnel? Comput Struct Biotechnol J., v.15, p. 98-103, 2017.

CHATTOPADHYAY, A.; JAFURULLA, M. A novel mechanism for an old drug: amphotericin B in the treatment of visceral leishmaniasis. Biochem. Biophys. Res.

Commun., V.416, n. 7, p.12, 2011.

CHOE, Y et al. Development of a-keto-based inhibitors of cruzain, a cysteine protease implicated in Chagas disease. Bioorg Med. Chem., v.13, p. 2141–2156, 2005.

CORRAL, M. J et al. Improvement of 96-well microplate assay for estimation of cell growth and inhibition of Leishmania with Alamar Blue. J Microbiol Methods, v.94, n.2, p111-116, 2013.

COURA, J. R.; BORGES-PEREIRA, J. Chagas disease: 100 years after its discovery. A systemic review. Acta Trop., v. 115, n. (1-2), p. 5-13, 2010.

COURA, J. R.; BORGES-PEREIRA, J. Chagas disease: What is known and what should be improved: a systemic review. Rev Soc Bras Med Trop., v. 45, n.3, p.286- 96, 2012.

COURA, J. R.; DE CASTRO, S. L. A critical review on chagas disease chemotherapy.

CUEVAS, I. C.; CAZZULO, J. J.; SÁNCHEZ, D. O. gp63 homologues in Trypanosoma

cruzi: Surface antigens with metalloprotease activity and a possible role in host cell

infection. Infect Immun., v.71, n.10, p.5739-49, 2003.

CROOKS G. E et al. WebLogo: A sequence logo generator. Genome Res., v.14, n.6, p.1188-90, 2004

D’AVILA-LEVY, C. M. et al. GP63 function in the interaction of trypanosomatids with the invertebrate host: Facts and prospects. Subcell Biochem., V.74. p. 253-70, 2014. DE ALMEIDA, M. L. C; TURNER, M. J. The membrane form of variant surface glycoproteins of Trypanosoma brucei. Nature, v.302, n.5906, p.349-52, 1983.

DE MOURA, T. R. et al. Cross-resistance of Leishmania infantum isolates to nitric oxide from patients refractory to antimony treatment, and greater tolerance to antileishmanial responses by macrophages. Parasitol. Res., v.115, n.7, p.13-721, 2016.

DE SOUSA, K. P; ATOUGUIA, J; SILVA, M. S. Partial biochemical characterization of a Metalloproteinase from the bloodstream forms of Trypanosoma brucei brucei parasites. Protein J., v.29, n.4, p.283-9, 2010.

DE SOUZA, W. Cell Biology of Trypanosoma cruzi. Int Rev Cytol. V.86, p.197- 283,1984.

DE SOUZA, W.; DE CARVALHO, T. U; BARRIAS, E. S. Review on Trypanosoma

cruzi: Host cell interaction. Int J Cell Biol., v.2010;p. 295394, 2010.

DE SOUZA, W; DE CARVALHO, T. U; BARRIAS, E. S. Ultrastructure of Trypanosoma

cruzi and its interaction with host cells. American Trypanosomiasis Chagas Disease:

One Hundred Years of Research: Second Edition. Elsevier, 2017.

DE VRIES, H. J. C.; REEDIJK, S. H.; SCHALLIG, H. D. F. H. Cutaneous Leishmaniasis: Recent Developments in Diagnosis and Management. American

DESJEUX, P. Leishmaniasis: Public health aspects and control. Clin Dermatol., v.14, n.5, p.417-23,1996.

DOMÍNGUEZ, M et al. Early mechanisms of Leishmania infection in human blood.

Microbes Infect., v.5, n.6, p.507-13, 2003.

DOMÍNGUEZ, M; TORAÑO, A. Immune adherence-mediated opsonophagocytosis: the mechanism of Leishmania infection.J Exp Med., v. 189 n. 1, p.25-35,1999.

DONELSON, J E; HILL, K L ; EL-SAYED, N M. Multiple mechanisms of immune evasion by African trypanosomes. Mol Biochem Parasitol., v. 91, n.1, p.51-66, 1998. FERGUSON M. A; LOW M. G; CROSS G. A. Glycosyl-sn-1,2- dimyristylphosphatidylinositol is covalently linked to Trypanosoma brucei variant surface glycoprotein. J Biol Chem., v. 260, n.27, p:14547-55,1985.

FRANCO, J. R. et al. Epidemiology of human African trypanosomiasis. Clin

Epidemiol., v.6, p. 257-75, 2014

FRAZÃO N. F. Bioquímica Quântica de Fármacos Anti-Parkinsonianos. Tese (Doutorado em Física). UFRN – Natal, 2012.

GEURTS, N.; OPDENAKKER, G.; VAN DEN STEEN, P. E. Matrix metalloproteinases as therapeutic targets in protozoan parasitic infections. Pharmacology and

Therapeutics, v. 133, n. 3, p. 257–279, 2012.

GHORBANI, M.; FARHOUDI, R. Leishmaniasis in humans: Drug or vaccine therapy?

Drug Des Devel Ther., v.12, p.25-40, 2018.

GONZÁLEZ-ASEGUINOLAZA, G et al. Cloning of the gp63 surface protease of

Leishmania infantum. Differential post-translational modifications correlated with

different infective forms. Biochim Biophys Acta., v.1361, n.1, p.92-102, 1997.

GRANDGENETT, P. M et al. A function for a specific zinc metalloprotease of African trypanosomes. PLoS pathogens, v. 3, n. 10, p. 1432–45, Out 2007.

GRANDGENETT, P. M et al. Differential expression of GP63 genes in Trypanosoma

cruzi. Mol Biochem Parasitol., v.110, n.2, p.409-15, 2000.

GRUSZYNSKI, A. E et al. Regulation of surface coat exchange by differentiating African trypanosomes. Mol Biochem Parasitol., v. 147, n. 2, p. 211–23, 2006.

GRUSZYNSKI, A. E. et al. Surface Coat Remodeling during Differentiation of

Trypanosoma brucei. J Biol Chem., v.278, n.27, p. 24665-72, 2003.

HAMDI, A et al. In vitro antileishmanial and cytotoxicity activities of essential oils from Haplophyllum tuberculatum A. Juss leaves, stems and aerial parts. BMC Complement

Altern Med., v.18, n.1, p.60, 2018.

HE, X.; ZHANG, J Z. H. A new method for direct calculation of total energy of protein.

J Chem Phys., v.122, n.3, p.31103, 2005.

HE, X; ZHANG, J. Z. H. The generalized molecular fractionation with conjugate caps/molecular mechanics method for direct calculation of protein energy. J Chem

Phys, v.124, n.18, p.184703, 2006.

HONIGBERG, B. M. Evolutionary and Systematic Relationships in the Flagellate Order Trichomonadida Kirby. J Protozool., v.10, p.20-63, 1963.

HOOPER, N. M. Families of zinc metalloproteases. FEBS Lett., v.354, n.1, p.1-6, 1994.

HORN, D. Antigenic variation in African trypanosomes. Mol Biochem Parasitol., v.195, n.2, p.123-9, 2014.

HUTCHINSON, O. Clyde et al. Variant Surface Glycoprotein gene repertoires in

Trypanosoma brucei have diverged to become strain-specific. BMC Genomics, v.8,

p.234, 2007.

ISNARD, A.; SHIO, M.T.; OLIVIER, M. Impact of Leishmania metalloprotease GP63 on macrophage signaling. Front Cell Infect Microbiol., v.16, n.2, p.72, 2012.

KABIRI M, STEVERDING D. Identification of a developmentally regulated iron superoxide dismutase of Trypanosoma brucei. Biochem J.;v.360, p.173–177, 2001. KAUFER A et al. The evolution of trypanosomatid taxonomy. Parasites & Vectors, v.10, n. 287, 2017.

KENNEDY, P. G. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). The Lancet. Neurology, v. 12, n. 2, p. 186–94, 2013.

KHARE, S et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature, v. 537, n. 7619, p. 229–233, 2016.

KHOURI, Ricardo et al. DETC induces Leishmania parasite killing in human invitro and murine in vivo models: A promising therapeutic alternative in leishmaniasis. PLoS

One;v.5, n.12, p.e14394, 2010.

KOLEV, N. G.; GÜNZL, A.; TSCHUDI, C. Metacyclic VSG expression site promoters are recognized by the same general transcription factor that is required for RNA polymerase I transcription of bloodstream expression sites. Mol Biochem Parasitol., v. 216, p. 52–55, 2017.

LACOUNT, D. J et al. Expression and Function of the Trypanosoma brucei Major Surface Protease (GP63) Genes. J Biol Chem., v. 278, n. 27, p. 24658–24664, 2003. LAEMMLI, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, v.227, n.5259, p.680-5, 1970.

LECLERC, H.; SCHWARTZBROD, L.; DEI-CAS, E. Microbial agents associated with waterborne diseases. Crit Rev Microbiol., v.28, n.4, p. 371-409, 2002.

LESTINOVA, T et al. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis., v.11, n.7, p.e0005600, 2017

LEWARS, E. G. Computational chemistry. Introduction to the theory and applications of molecular and quantum mechanics: Third Edition. Springer International

Publishing, 2016.

LIDANI, K. C. F et al. “Chagas Disease: From Discovery to a Worldwide Health Problem.” Frontiers in public health, v.7, p.166, 2019.

LIU, X.et al. Molecular dynamics simulations and novel drug discovery. Expert Opin

Drug Discov., v.13, n.1, p.23-37, 2018.

LÖFFEK, S.; SCHILLING, O.; FRANZKE, C-W. Series "matrix metalloproteinases in lung health and disease": Biological role of matrix metalloproteinases: A critical balance. Eur Respir J.;v.38,n.1, p.191-208, 2011.

LOWNDES, C. M. et al. Heterogeneity of metalloprotease expression in Trypanosoma

cruzi. Parasitology., v.112, n.4, p.393-99,1996.

LUKEŠ, J. et al. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem

Parasitol.;v.195, n.2, p.115-22, 2014

MAGALHÃES, L. S. et al. “Increased thiol levels in antimony-resistant Leishmania

infantum isolated from treatment-refractory visceral leishmaniasis in Brazil.” Memorias

do Instituto Oswaldo Cruz; v.113,n.2, p.119-125, 2018.

MARANGONI, N. R. et al. Levels of matrix metalloproteinase-2 and metalloproteinase- 9 in the cerebrospinal fluid of dogs with visceral leishmaniasis. Parasite Immunol., v. 33 n.6, p.330-4, 2011.

MARCHESE, L et al. The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens., v.7, n.2, p. E36, 2018.

MARTÍNEZ-GARCÍA, M et al. Autophagic-related cell death of Trypanosoma brucei induced by bacteriocin AS-48. Int J Parasitol Drugs Drug Resist., v. 8, n. 2, p. 203– 212, 2018.

MASMOUDI, A. et al. Doxycycline for the treatment of cutaneous leishmaniasis. Dermatol Online J.14(8):22, 2008.

MASOCHA, W.; ROTTENBERG, M. E. Minocycline impedes African trypanosome invasion of the brain in a murine model. Antimicrob Agents Chemother., v.50, n.5, p.1798-804, 2006.

MATHERS, C. D. e EZZATI, M.; LOPEZ, A. D. Measuring the burden of neglected tropical diseases: The global burden of disease framework. PLoS Negl Trop Dis., v.1, n.2, p.e114, 2007.

MATTA, C. F. Modeling biophysical and biological properties from the characteristics of the molecular electron density, electron localization and delocalization matrices, and the electrostatic potential. J Comput Chem., v.35, n.16, p.1165-1198, 2014.

MARCHLER-BAUER A et al. CDD: NCBI’s conserved domain database. Nucleic

Acids Res. 43 (Database issue):D222-6, 2015.

MCGWIRE, Bradford S. e CHANG, Kwang Poo e ENGMAN, David M. Migration through the extracellular matrix by the parasitic protozoan Leishmania is enhanced by surface metalloprotease gp63. Infect Immun., v.71, n.2, p.1008-10, 2003.

MCGWIRE, Bradford S. et al. Extracellular release of the glycosylphosphatidylinositol (GPI)-linked Leishmania surface metalloprotease, gp63, is independent of GPI phospholipolysis. Implications for parasite virulence. J Biol Chem., v.277, n.11, p.8802-9, 2002.

MCKERROW, J. H. et al. Proteases in parasitic diseases. Annu Rev Pathol., v.1, p.497-536, 2006.

MEDEIROS, N. I.; GOMES, J. A. S.; CORREA-OLIVEIRA, R. Synergic and antagonistic relationship between MMP-2 and MMP-9 with fibrosis and inflammation in Chagas’ cardiomyopathy. Parasite Immunology, v. 39, n. 8, p. e12446, 2017. MÉNDEZ-LUCIO, O.; MEDINA-FRANCO, J. L. The many roles of molecular complexity in drug discovery. Drug Discov Today.; v.22, n.1, p.120-126, 2017.

MITRA, A. K.; MAWSON, A. R. Neglected Tropical Diseases: Epidemiology and Global Burden. Trop Med Infect Dis., v. 2, n. 3, p. 36, 2017.

MITTRA, B. et al. The iron-dependent mitochondrial superoxide dismutase SODA promotes Leishmania virulence. J Biol Chem., v, 292, n.29, p.12324-12338, 2017. MOGK, S. et al. African trypanosomes and brain infection the unsolved question.

Biological Reviews, v. 92, n. 3, p. 1675–1687, 2017.

MOGK, S. et al. Cyclical appearance of African trypanosomes in the cerebrospinal fluid: New insights in how trypanosomes enter the CNS. PLoS One, v.9, n.3, p.e91372, 2014.

MONCAYO, Á.; SILVEIRA, A.C. Current epidemiological trends of Chagas disease in Latin America and future challenges. American Trypanosomiasis Chagas Disease.

Mem Inst Oswaldo Cruz. v;10,n. 1, p.17-30, 2009.

MONTE, J.F.S. et al. Use of zymography in trypanosomiasis studies. Methods Mol

Biol. Humana Press, New York, v.1626, p. 213-220, 2017.

MONTEIRO, J. P. M. F. Caracterização bioquímica e propriedades biológicas de diferentes metaloproteinases de tripanosomatídeos (Leishmania spp., Trypanosoma

cruzi e Trypanosoma brucei brucei). Dissertação ( Mestardo em Ciências Biomédicas)

Universidade Nova de Lisboa – IHTM, 2015.

MOORE, W. G. I. et al. Matrix Metalloproteinases : A Review. Crit Rev Oral Biol., v. 4, n. 2, p. 197–250, 1993.

MORENO, C et al. Trypanosoma brucei Interaction with Host: Mechanism of VSG Release as Target for Drug Discovery for African Trypanosomiasis. International

Journal of Molecular Sciences, v. 20, n. 6, p. 1484, 2019.

MORGON, N. H.; COUTINHO, K. Métodos em Química Teórica e Modelagem Molecular. Ed. Livraria da Física: São Paulo, 2007.

MORGON, N. H.;CUSTÓDIO, R. Teoria do Funcional de Densidade. Química Nova, 1994.

MORRIS, G M. et al. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J Comput Chem., v.30, n.16, p.2785-91, 2009.

MOTA, K. B. et al. A quantum biochemistry model of the interaction between the estrogen receptor and the two antagonists used in breast cancer treatment.

Computational and Theoretical Chemistry, v.1089, p.21-27, 2016.

MURASE, L. S. et al. The role of metalloproteases in Leishmania species infection in the New World: A systematic review. Parasitology, v. 145, n.12,p.1499-1509, 2018. NAMBA, A. M.; DA SILVA, V. B.; DA SILVA, C. H. T. P. Dinâmica molecular: Teoria

e aplicações em planejamento de fármacos. Ecletica Quimica, 2008.

NOGUEIRA J. et al. Síntese, caracterização e estudo da atividade inibitória de novas dialquilfosforilarilidrazonas sobre o crescimento de Tripanossomatídeos. Quim. Nova, v. 34, n. 8, p. 1365-1369, 2011.

OLIVER, M. et al. Leishmania virulence factors: focus on the metalloprotease GP63.

Microbes and Infection, v. 14, p.1377e1389, 2012.

OLIVERA, G. C. et al. Nitric Oxide Protects against Infection-Induced Neuroinflammation by Preserving the Stability of the Blood-Brain Barrier. PLoS

Pathogens, v. 12, n. 2, p. 1–25, 2016.

PAGE-MCCAW, Andrea; EWALD, Andrew J.; WERB, Zena. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol, v.8,n.3, p.221-33, 2007. PARIS, Caroline e colab. Miltefosine Induces Apoptosis-Like Death in Leishmania

donovani Promastigotes. Antimicrob Agents Chemother. V.48, n.3, p.852-9, 2004.

PASSERO, Luiz Felipe D. et al. Proteins of Leishmania (Viannia) shawi confer protection associated with Th1 immune response and memory generation. Parasit

PEACOCK, C. S. et al. “Comparative genomic analysis of three Leishmania species that cause diverse human disease.” Nature genetics v. 39, n. 7, p.839-47, 2007. PEDROZA, A. C. Teoria do Funcional da Densidade: Uma Possível Solução para o Problema de Muitos Elétrons da Mecânica Quântica. Physicae Organum, v. 2, n. 1, p. 14, 2016.

PÉREZ-MOLINA, J. A.; NORMAN, F.; LÓPEZ-VÉLEZ, R. Chagas disease in non- endemic countries: Epidemiology, clinical presentation and treatment. Current

Infectious Disease Reports, 2012.

PINAZO, M. J et al. Benznidazole-related adverse drug reactions and their relationship to serum drug concentrations in patients with chronic chagas disease. Antimicrob

Agents Chemother, v. 57, n.1, p.390-5, 2013.

PINAZO, M. J et al. Tolerance of benznidazole in treatment of Chagas’ disease in adults. Antimicrob Agents Chemother, v.54, n.11, p.4896-9. Antimicrobial Agents and Chemotherapy, 2010.

PINGER, J.; CHOWDHURY, S.; PAPAVASILIOU, F. N. Variant surface glycoprotein density defines an immune evasion threshold for African trypanosomes undergoing antigenic variation. Nature Communications, v. 8, n. 1, 2017.

PODINOVSKAIA, M; DESCOTEAUX, A. Leishmania and the macrophage: A multifaceted interaction. Future Microbiol, v.10, n.1, p. 111-29, 2015.

PONTE-SUCRE, A. An overview of Trypanosoma brucei infections: An intense host- parasite interaction. Front Microbiol, v.7, p.2126, 2016.

PRATA, A. Clinical and epidemiological aspects of Chagas disease. Lancet Infect

Dis., v.1, n.2, p.92-100, 2001.

PULLMAN, A; PULLMAN, B. Quantum Biochemistry. Comprehensive Biochemistry., v.22, p.1-60,1967.

RAMÍREZ-TOLOZA, G.; FERREIRA, A. Trypanosoma cruzi evades the complement system as an efficient strategy to survive in the mammalian host: The specific roles of host/parasite molecules and Trypanosoma cruzi calreticulin. Front Microbiol., v.8, p.1667, 2017.

RASSI JR, A.; RASSI, A.; MARIN-NETO, J. A. Chagas disease. Lancet, v.375, n.9723, p.1388-402, 2010.

READY, P. D. Leishmaniasis emergence in Europe. Euro Surveill., v. 15, n.10, p.19505, 2010

REBELLO, K. M. et al. Participation of Trypanosoma cruzi gp63 molecules on the interaction with Rhodnius prolixus. Parasitology, v. 6, p.1-8, 2019.

REINITZ, D. M.; AIZENSTEIN, B. D.; MANSFIELD, J. M. Variable and conserved structural elements of trypanosome variant surface glycoproteins. Mol Biochem

Parasitology, v. 51, n. 1, p. 119–132, 1992.

RIBEIRO, A. R et al. Trypanosoma cruzi strains from triatomine collected in Bahia and Rio Grande do Sul, Brazil. Rev Saude Publica, v.48, n.2, p.295-302, 2014.

RIJO-FERREIRA, F et al. Sleeping sickness is a circadian disorder. Nature

Communications, v. 9, n. 1, 2018.

RIMOLDI, A et al. Morphological, biological and molecular characterization of three strains of Trypanosoma cruzi Chagas, 1909 (Kinetoplastida, Trypanosomatidae) isolated from Triatoma sordida (Stal) 1859 (Hemiptera, Reduviidae) and a domestic cat. Parasitology, v.139, n.1, p.37-44, 2012.

RODGERS, J. Trypanosomiasis and the brain. Parasitology, v. 137, n. 14, p. 1995– 2006, 2010.

ROLÓN, M et al. Development of resazurin microtiter assay for drug sensibility testing of Trypanosoma cruzi epimastigotes. Parasitol Res., v. 99, n.2, p.103-7, 2006.

ROSENBERG, G. A. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. The Lancet Neurology, v. 8, n. 2, p. 205–216, 2009. ROTUREAU, B.; VAN DEN ABBEELE, J. Through the dark continent: African trypanosome development in the tsetse fly. Front Cell Infect Microbiol, v.18, n.3, p.53, 2013.

RUDENKO, G. African trypanosomes: the genome and adaptations for immune evasion. Essays Biochem, v.51, p. 47-62, 2011.

SÁDLOVÁ, J. et al. Virulent and attenuated lines of Leishmania major: DNA karyotypes and differences in metalloproteinase GP63. Folia Parasitol (Praha), v.53, n.2, p.81- 90, 2006.

SAFOUHI, H.;BOUFERGUENE, A. Computational chemistry. Scientific Data Mining and Knowledge Discovery: Principles and Foundations. Springer Berlin Heidelberg, 2010. p. 173–206.

SALDÍVAR-GONZÁLEZ, F; PRIETO-MARTÍNEZ, F. D.; MEDINA-FRANCO, J. L. Descubrimiento y desarrollo de fármacos: un enfoque computacional. Educacion

Quimica, v. 28, n. 1, p. 51–58, 2017.

SANTOS, A. L. S.; BRANQUINHA, M. H.; D’AVILA-LEVY, C. M. The ubiquitous gp63- like metalloprotease from lower trypanosomatids: In the search for a function An Acad

Bras Cienc,v.78, n.4, p.687-714, 2006.

SCHLAGENHAUF, E.; ETGES, R.; METCALF, P. The crystal structure of the Leishmania major surface proteinase leishmanolysin (gp63).Structure, v.6, n.8, p.1035-46,1998.

SCHMUNIS, G. A. Epidemiology of Chagas disease in non-endemic countries: The role of international migration. Mem Inst Oswaldo Cruz, v.102, n.1, p.75-85, 2007. SHAPIRA, M; ZINOVIEV, A. Leishmania parasites act as a Trojan horse that paralyzes the translation system of host macrophages. Cell Host Microbe, v.9, n.4, p.257-9, 2011.

SHIVER, D. F. et al. Química Inorgânica. 4 ed, Porto Alegre: Boolman, 2008.

SIEUWERTS, A. M. et al. The MTT Tetrazolium Salt Assay Scrutinized: How to Use this Assay Reliably to Measure Metabolic Activity of Cell Cultures in vitro for the Assessment of Growth Characteristics, IC 50 -Values and Cell Survival. Eur J Clin

Chem Clin Biochem, v.33, n.11, p.813-23, 1995.

SILVA-JARDIM, I; THIEMANN, O. H.; ANIBAL, F. F. Leishmaniasis and Chagas disease chemotherapy: A critical review. J. Braz. Chem. Soc, v.25, n.10, 2014

SIMARRO, P. et al. Epidemiology of human African trypanosomiasis. Clinical

Epidemiology, v. 6, p. 257, 2014.

SINGH, N; KUMAR, M.; SINGH, R. K. Leishmaniasis: Current status of available drugs and new potential drug targets. Asian Pac J Trop Med; v.5, n.6, p.485-97, 2012. SIQUEIRA-NETO, J. L. et al. Cysteine proteases in protozoan parasites. PLoS Negl

Trop Dis., v.12, n.8, p.e0006512, 2018.

SONG J. et al. PROSPER: An Integrated Feature-Based Tool for Predicting Protease Substrate Cleavage Sites. PLoS One., v.7, n.11, p.e50300, 2012.

SOUTO, R. P.; ZINGALES, B. Sensitive detection and strain classification of Trypanosoma cruzi by amplification of a ribosomal RNA sequence. Mol Biochem

Parasitol, v.62, n.1, p.45-52,1993.

SQUARRE, D. et al. Human African Trypanosomiasis in the Kafue National Park, Zambia. PLoS Negl Trop Dis., v.10, n.5, p.0004567, 2016.

STAN, T. C. An Introduction to Computational Biochemistry. Copyright by Wiley-Liss, Inc. ISBN: 0-471-40120-X, 2002.

STUART, K. et al. Kinetoplastids: Related protozoan pathogens, different diseases. J

SUNTER, J.; WEBB, H.; CARRINGTON, M. Determinants of GPI-PLC Localisation to the Flagellum and Access to GPI-Anchored Substrates in Trypanosomes. PLoS

Pathog., v.9, n.8, p.1003566, 2013.

SWAMY, K. M. K. et al. New 7-hydroxycoumarin-based fluorescent chemosensors for Zn (II) and Cd (II). Bulletin of the Korean Chemical Society, v. 31, n.12, p. 3611- 3616, 2010.

TAMBOURGI, D. V. et al. Mechanism of induction of complement susceptibility of erythrocytes by spider and bacterial sphingomyelinases. Immunology, v.107, n.1, p.93-101, 2002.

TEIXEIRA, A. R. L.; NASCIMENTO, R. J.; STURM, N. R. Evolution and pathology

in Chagas disease - A Review. Mem Inst Oswaldo Cruz, v.101, n.5, p.463-91, 2006.

TEIXEIRA, S. M. et al. Trypanosomatid comparative genomics: Contributions to the study of parasite biology and different parasitic diseases. Genetics and Molecular

Biology, v. 35, n. 1, p. 1–17, 2012.

TOCKDALE, L.; NEWTON, R. A Review of Preventative Methods against Human Leishmaniasis Infection. PLoS Negl Trop Dis., v.7, n.6, p.e2278, 2013.

TORRES-GUERRERO, E. et al. Leishmaniasis: a review. F1000Res, v.26, n.6, p.750, 2017.

TYLER, K. M.; ENGMAN, D M. Flagellar elongation induced by glucose limitation is preadaptive for Trypanosoma cruzi differentiation. Cell Motil Cytoskeleton, v.46, n.4, p.269-78, 2000.

URBINA, A. Specific chemotherapy of Chagas disease: Relevance, current limitations and new approaches. Acta Trop.,v.115, n.1-2, p. 55-68, 2010.

VANNIER-SANTOS, M. A. et al. The putrescine analogue 1,4-diamino-2-butanone affects polyamine synthesis, transport, ultrastructure and intracellular survival in

VANNIER-SANTOS, M. A.; LINS, U. Cytochemical techniques and energy-filtering transmission electron microscopy applied to the study of parasitic protozoa. Biol

Proced Online, v.3, p.8-18, 2001.

VANNIER-SANTOS, M.; DE CASTRO, S. Electron Microscopy in Antiparasitic Chemotherapy: A (Close) View to a Kill. Curr Drug Targets, v.10, n.3, p.246-60, 2009. VERMA, Navin K. ; SINGH, Gaganmeet; DEY, Chinmoy S. Miltefosine induces apoptosis in arsenite-resistant Leishmania donovani promastigotes through mitochondrial dysfunction. Exp Parasitol, v.116, n.1, p.1-13, 2007.

VERMES, I. et al. A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods, v.184, n.1, p.39-51, 1995.

VINCENDEAU, P; BOUTEILLE, B. Immunology and immunopathology of African trypanosomiasis. An Acad Bras Cienc., v.78, n.4, p.645-65, 2006.

WEEB H et al. The GPI-phospholipase C of Trypanosoma brucei is non essential but influences parasitemia in mice. J Cell Biol., v.139, n.1, p.103-14, 1997.

WHO. Integrating neglected tropical diseases in global health and development Fourth WHO report on neglected tropical diseases. WHO, 2017.

WHO. Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected diseases, 2015.

YAO, C.; DONELSON, J. E.; WILSON, M. E. The major surface protease (MSP or GP63) of Leishmania spp. Biosynthesis, regulation of expression, and function. Mol

Biochem Parasitol; v.132,n.1, p.1-16, 2003.

YAO, C. Major Surface Protease (MSP, or GP63) of Trypanosomatids, One Size Fits All? Infect Immun, v.78, n1, p.22-31, 2010.

YAO, C.; DONELSON J. E.; WILSON M. E. Internal and surface-localized major surface proteases of Leishmania spp. and their differential release from promastigotes.