• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número2

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número2"

Copied!
14
0
0

Texto

(1)

RevistaBrasileiradeFarmacognosia26(2016)147–160

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Structure

and

histochemistry

of

medicinal

species

of

Solanum

Laudineia

J.

Matias

a

,

Maria

O.

Mercadante-Simões

a,∗

,

Vanessa

A.

Royo

b

,

Leonardo

M.

Ribeiro

c

,

Ariadna

C.

Santos

a

,

Jaciara

M.S.

Fonseca

b

aLaboratóriodeAnatomiaVegetal,DepartamentodeBiologiaGeral,UniversidadeEstadualdeMontesClaros,CampusPr.DarcyRibeiro,MontesClaros,MG,Brazil bLaboratóriodeProdutosNaturais,DepartamentodeBiologiaGeral,UniversidadeEstadualdeMontesClaros,CampusPr.DarcyRibeiro,MontesClaros,MG,Brazil cLaboratóriodeMicropropagac¸ão,DepartamentodeBiologiaGeral,UniversidadeEstadualdeMontesClaros,CampusPr.DarcyRibeiro,MontesClaros,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12June2015 Accepted4November2015 Availableonline11December2015

Keywords:

Environmentalconservation Herbalmedicine

Plantdrug Pharmacognosy Phytochemical Traditionalmedicine

a

b

s

t

r

a

c

t

Studiesonnativemedicinalplantsstrengtheninitiativestopreservetheenvironmentswherethose speciesnaturallyoccur,manyofthemalreadystronglymenacedevenbeforetheirpotentialtohumankind isknown.Rootandstembarks,leaves,andpericarpssamplesofSolanumagrariumSendtn.,S.lycocarpum

A.St.-Hil.,S.palinacanthumDunal,S.paniculatumL.,andS.stipulaceumRoem.&Schult.,speciesthatoccur intheCerrado(Brazililansavanna)wereprocessedaccordingtocommonlightmicroscopytechniques forstructuralanalysis,andhistochemicaltestswereperformedtolocateandidentifyclassesofchemical compounds.Thedistinctivefeaturesidentifiedwerelowconcentrationofcrystalsandintherootand stem,presenceofterpeneresinintheroot,andabsenceofhypodermisintheleaf,inS.agrarium;bright spots(groupofsclereids)intheroot,isobilateralmesophyll,thickenedcellwallswithhemicellulosesand strongaromainthefruit,inS.lycocarpum;highconcentrationofcrystalsandintherootandstem, oval-shapedlimb,presenceofisolatedcrystalsintheexocarp,inS.palinacanthum;strongsclerificationand rayswithgreatheightintherootandstem,inS.paniculatum;andaccumulationofsolubleproteininthe rootandstem,presenceofconspicuousmembranaceousstipules,absenceofspiniformtrichomes,inS. stipulaceum.Thisworkidentifiesdistinctivestructuralfeatures,itsecologicalimportance,anddetermines thedistributionofsecondarycompoundsassociatedwiththemedicinalpropertiesreportedforthese speciesandcontributestotheconservationofthenaturalenvironmentswheretheyoccur.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

The botanical and chemical characterization of medicinal

speciesisimportantfor thevalidation ofitstraditionaluseand forstudiestoobtainingnewproductsandinnovation(Araújoetal., 2010;Nurit-Silvaetal.,2011;WHO,2013).Thestructuralanalysis ofplantsidentifiesdistinctivefeaturesusefulforthedetermination oftheauthenticityofmedicinalplantspeciesandtheidentification oftheplantorganswherethehighestconcentrationsofactive sub-stancesarepresent,especiallywhentheplantsarefragmentedfor useinherbaldrugs(Argyropoulouetal.,2010;Ferreiraetal.,2011; Coelhoet al.,2012).Thesefeatures haveanecologicalfunction,

relatedtotheenvironment where theplantoccurs.The

under-standingofthisfunctionmayhelpoptimizetheircultivationand collection(Adamsetal.,2013;Moreiraetal.,2013;Sampaioetal., 2014).

∗ Correspondingauthor.

E-mail:maria.simoes@unimontes.br(M.O.Mercadante-Simões).

Chemical studies performed using histochemical techniques

allowaquickandinexpensivepreliminaryevaluationofthe medic-inalpotentialoftaxonomicallyclosespeciesinthesearchfornew pharmaceuticals(Coelhoetal.,2012;Demarcoetal.,2013;Araújo etal.,2014;Mercadante-Simõesetal.,2014).Thistechniquecan minimizecostsinthesearchfornewpharmaceuticalsandincrease thesafetyoftraditionalmedicines(Adamsetal.,2013;Santosetal., 2013),howeverhistochemicalstudiesarerareinSolanum(Araújo etal.,2010;Picolietal.,2013).

Solanaceaeiswidelydistributedwith269speciesofthegenus SolanumL.describedinBrazil(Stehmannetal.,2014).Someofthe speciesoccurringintheCerradobiomearetraditionallyusedfor thecontrolofdiabetes,andhavebeenrecognizedfortheir

medic-inalproperties:SolanumagrariumSendtn.hasanti-inflammatory

effects(Agraetal.,2007;Castroetal.,2011),S.lycocarpumA. St.-Hilishypoglycemic(Farinaetal.,2010),S.palinacanthumDunal isusedasantimicrobialandhypoglycemic(Pereiraetal.,2008),S. paniculatumL.hasantioxidantandanticarcinogenicaction(Ribeiro et al., 2007; Endringer et al., 2010), and S. stipulaceum Roem. & Schult. is used as a blood pressure regulator (Ribeiro et al., 2002).

http://dx.doi.org/10.1016/j.bjp.2015.11.002

(2)

MostpharmacognosticanalysesinSolanumspecieswere per-formedonleavesofonlyoneortwospecies(Araújoetal.,2010; Nurit-Silvaetal.,2011),andanatomicalstudiesonalarger num-berofspeciesareontaxonomy(Sampaioetal.,2014;Nurit-Silva etal.,2012).Thereforethegoalofthepresentstudywasto iden-tify distinctive structural features onthe root and stem barks, leavesand pericarpsof S.agrarium, S.lycocarpum, S. palinacan-thum,S.paniculatum,andS.stipulaceum,itsecologicalimportance,

determinethe distributionof secondary compounds associated

with the medicinal properties reported for these species and

contributetotheconservationofthenaturalenvironmentswhere theyoccur.

Materialsandmethods

Plantmaterial

Fragmentsofrootandstem(apicesandbark,consideringbark thetissuesexternaltothevascularcambium,sensuFahn,1990), leaf,pericarp,androotandstemapexeswerecollectedfromthree

(3)

L.J.Matiasetal./RevistaBrasileiradeFarmacognosia26(2016)147–160 149

Fig.2. StructuralandhistochemicalfeaturesofSolanumlycocarpumA.St.-Hil.(A–G,I–L,N,O)Crosssections.(H,M)Radiallongitudinalsection.(A)Rootprimarystructure showingsettlementofphellogenatthecortex(arrow).(B–I)Stem.(B)Primarystructurewithhighdensityoftectortrichomes.(C)Bicollateralbundle.(D)Settlementof phellogenatthecortex(arrow).(EandF)Corticalcellswithplastidspresentingterpenoids.(E)PinkwithNileblue.(F)BluewithNADI.(G)Sievetubeelementsoflarge diameter.(H)Obliquecompoundsieveplates.(I)Accumulationofcrystalsandintheraysandaxialparenchyma.(J–L)leaf.(J)Isobilateralmesophyllpresentingcrystalsand.(K andL)Palisadeparenchyma.(K)LipidsstainedpinkwithNileblue.(L)AlkaloidsstainedyellowwithEllramreagent.(M–O)Pericarp.(M)Mesocarpcellspresentingcellulose wallswithpronouncedthickness.(N)Lowpectinconcentrationinmesocarpcellwalls.(O)ExocarpandmesocarpwithalkaloidsstainedbrownwithDragendorff.(ap)axial parenchyma,(ca)cambium,(cc)companioncell,(cl)collenchyma,(co)cortex,(cs)crystalsand,(ec)epidermiscell,(ex)exocarp,(me)mesocarp,(oc)obliquecompound plate,(pc)pectin,(ph)phloem,(pi)pith,(pl)plastids,(pp)palisadeparenchyma,(pr)protoplast,(ra)ray,(si)sieveplate,(sp)spongyparenchyma,s(t)sievetubeelement, (su)suber,(tr)tectortrichome,(va)vascularbundle,(xy)xylem,(wa)wall.

individualsofSolanumagrariumSendtn.,S.lycocarpumA.St.-Hil.,S. palinacanthumDunal,S.paniculatumL.,andS.stipulaceumRoem. &Schult., occurringin theBrazilian Cerrado, in the municipal-ityofMontesClaros(16◦5006.1′′S,435524.8′′W;163053.2′′S,

44◦0428.0′′W).Voucherswereobtainedfromfertilematerialand

depositedattheBHCBHerbariumoftheDepartamentodeBotânica,

do Instituto de Ciências Biológicas, da UniversidadeFederal de

MinasGerais,Brazil(116081,168587-168590;LLGiacomin).

Structuralcharacterization

Morphologicalanalysiswasperformedonallfreshplant

mate-rialusing a binocular stereo-microscope,model 0766ZL (Motic,

Richmond, Canada) according to nomenclature proposed by

Junikka(1994).Forstructuralanalysis,theplantmaterialwas eval-uatedfreshorfixedinKarnovskysolution(Karnovsky,1965)for 12h, dehydratedin a gradedethanol series(Jensen,1962), and cold-embedded(Paivaetal.,2011)inhydroxyethyl-methacrylate

resin (Leica Microsystem Inc., Heidenbeg, Germany). Cross

sec-tionsand paradermicsectionswereobtainedusing a LPCtable

microtome(RolembergandBhering,BeloHorizonte,Brazil).Cross

sections and longitudinal sections, 5␮m thick, were obtained

using a rotary microtome (Atago, Tokyo, Japan). The sections

(4)

Fig.3.StructuralandhistochemicalfeaturesofSolanumpalinacanthumDunal.(A,D–I,K–S)Crosssections.(B–C,J)(tangentiallongitudinalsections.(A–E)Rootbark.(A) CortexwithalkaloidsstainedbrownwithDragendorff.(B)Axialparenchymawithcrystalidioblast.(C)Widerays.(D)Starchreserveinradialcell.(E)Formationofconducing elementsatthecambium.(F–J)Stembark.(F)Establishmentofphellogenattheepidermis.(G)PhellodermpresentingflavonoidsstainedredwithDMACA.(H)Crystalsand atthephloem.(IandJ)Formationoflysigenousductcontainingcrystalsand.(K–R)Leaf.(K–M)Shortglandulartrichome.(K)MucilagestainedredwithXP.(L)Lipidsstained bluewithNileblue.(M)Phenolstainedbrownwithironchloride.(N–P)Medianvein.(N)Mucilagestainedblackwithtannicacid.(O)Phenolsstainedbrownwithiron chloride.(P)AlkaloidsstainedyellowwithEllram.(Q-R)Palisadeparenchyma.(Q)FlavonoidsstainedredwithDMACA.(R)Alkaloidsstainedyellow-brownwithDittmar.(S) Exocarpwithundulatedcuticleandsinglecrystals.(ap)axialparenchyma,(ca)cambium,(cc)companioncell,(co)cortex,(cr)crystals,(cs)crystalsand,(ec)epidermiscell, (he)head,l(y)lysigenousduct,(ms)mesophyll,(nu)nucleus,p(a)parenchyma,(pe)periderm,(ph)phloem,(pl)phelloderm,(pp)palisadeparenchyma,(ra)ray,(si)sieve plate,(sg)starchgrains,(st)sievetubeelement,(su)suber,(pd)peduncle,(uc)undulatedcuticle,(va)vascularbundle,(wi)width,(wl)cellwalllysis,(xy)xylem.

Histochemicaltests

Histochemical tests were performed on sections obtained

from fresh material as described above using the following

reagents: Lugol(Johansen,1940)for detection ofstarch, tannic acid(Pizzolato and Lillie, 1973) and ruthenium red (Johansen,

1940) for acid polysaccharides, xylidine Ponceau (XP) (Vidal,

1970) and Coomassie blue (Fisher, 1968) for protein, Sudan

red IV and Sudan black B (Pearse, 1980) for total lipophilic

compounds, Nile blue (Cain, 1947) for acid and neutral lipids,

␣-naphthol and dimethylparaphenylenediamine hydrochloride

(NADI)(DavidandCarde,1964)foressentialoilsandoleoresins, Ell-ram,Dittmar(FurrandMalhberg,1981),andDragendorffreagents (SvendsenandVerpoorte,1983)foralkaloids,potassium dichro-mate(Gabe,1968)andironchloride(Johansen,1940)forphenols; vanillin chloride (Mace and Howell, 1974) for tannins; and p

-dimethylaminocinnamaldehyde(DMACA)(Feuchtetal.,1986)for

flavonoids.Controltestswereperformedsimultaneouslyaccording totherecommendationsoftherespectiveauthors.

PhotographicdocumentationwasperformedusinganAxioCam

MRccameracoupledtoanAxioVisionLEphotomicroscope(Zeiss,

Oberkochen,Germany)andanA620digitalcamera(Canon,Tokyo,

Japan)coupledtoaEclipseE-200lightmicroscope(Nikon,Tokyo, Japan).

Results

Structuralandhistochemicalcharactersreportedforthefour organsofthefivespeciesofSolanumarepresentedbyspecies,in Figs.1–5,andbyorgansinTables1–8.Thedatapresentedbyspecies

cancontributetotheelaborationofmonographs,andpresented

bytheorgansaretocontributetothequalitycontrolofthedrug obtainedfromthespecies.

S. agrarium presented root bark with a corrugated internal texture,resinaccumulationatthesuber,voluminousintercellular

spaces, low lignification, and considerable starch and protein

(5)

L.J.Matiasetal./RevistaBrasileiradeFarmacognosia26(2016)147–160 151

Fig.4. StructuralandhistochemicalfeaturesofSolanumpaniculatumL.(A,G–I)Longitudinalradialsections.(B,C,E,F,L–R)Crosssections.(D,J–K)Tangentiallongitudinal sections.(A–D)Rootbark.(A)Sclerifiedcortexwithvoluminousintercellularspaces(asterisk).(B)Cortexwithphenolsstainedbrownwithdichromate.(C)Phloemwith higherproportionofconducingelements(rectangle)thantheaxialparenchyma(circle)andcloserays(dottedline).(D)Highradialheight.(E–H)stembark.(E)Sievetube elementsatthepith.(F)CortexwithflavonoidsstainedredwithDMACA.(G)Pectinprojectionsincorticalcells.(H)Sclereidswithobservablepit.(I–K)sievetubeelements. (I)Obliqueplates.(J)Compoundplates.(K)Small-diametersieveareas.(L–R)leaf.(L–M)Glandulartrichome.(L)AlkaloidsstainedbrownwithDittmar.(M)Mucilagestained redwithXP.(N)Dorsiventralmesophyll.(O–Q)palisadeparenchyma,omucilagestainedblackwithtannicacid.(P)Phenolsstainedbrownwithdichromate.(Q)Flavonoids stainedredwithDMACA.(R)Lignifiedhypodermisattheabaxialsurfaceofthemedianvein.(cl)collenchyma,(co)cortex,(cs)crystalsand,(ec)epidermiscell,(ep)external phloem,(ip)internalphloem,(he)head,(hi)height,(hy)hypodermis,(oc)obliquecompoundplate,(op)obliqueplate,(pc)pectin,(pe)periderm,(ph)phloem,(pi)medulla, (pp)palisadeparenchyma,(pt)pit,(ra)ray,(sa)sieveareas,(sc)sclerification,(sp)spongyparenchyma,(st)sievetubeelement,(xy)xylem.

bitter taste and low sclerification; the cortex had voluminous

intercellularspaces,highstarchaccumulation,andasmall quan-tityofcrystalsand;thevolumeoccupiedbytheaxialparenchyma wassignificantlylargerthanthatofthesievetubeelementsatthe phloem(Tables3and4).Leavespresentedamedianveincomposed ofpolyhedricepidermiscells,nohypodermis,andaccumulationof terpenoidsinthesecretorytrichomes;thelower-calibervascular bundlesatthepetiolewerecollateralandnotsurroundedby per-icyclicfibers(Fig.1E–HandTable5).Theexocarpwaspurple,and alkaloidsandterpenoidsaccumulatedatthemesocarp(Fig.1I–L andTables7and8).

InS.lycocarpum,theestablishmentofphellogenintherootat theperipheralcorticalcells,andthesecondaryphloempresented

acompact arrangementofaxial parenchyma,homogeneousray

height,andsievetubeelementswithdiminutecaliberandpores

(Fig.2AandTables1and2).Thesteminprimarystructurewas

pilous;thestembarkpresentedlenticelsandcuboid-shapedsuber cells;thecortexaccumulatedterpenoids;andthephloemhad thin-walled sievetube elements(Fig.2B–Iand Tables 3 and4).The mesophyllwasisobilateral.Themedianveinregionpresented epi-dermalcellswithstraightanticlinalwalls,accumulationofcrystal sand,andhighsclerificationindex(Fig.2J–LandTable5).Thefruit hadastrongaroma,theexocarpexhibitedthickcollenchyma,and thecellsofthemesocarphadthickwallswithlowconcentrationof pectinbuthighconcentrationofmucilage,protein,andstarch,and analkaloid-richprotoplast(Fig.1M–OandTables7and8).

(6)

Table1

StructuralfeaturesofrootofSolanumagrariumSendtn.,SolanumlycocarpumA.St.-Hil.,SolanumpalinacanthumDunal,SolanumpaniculatumL.,andSolanumstipulaceum Roem.&Schult.

Features Solanumspecies

ag ly pl pn st

Morphology

Bittertaste 1 1 2 1 2

Externalsurface

Texture wr ro wr ro ro

Color br br br br br

Internalsurface

Corrugatedtexture 2 1 1 1 1

Peridermcrosssection

Color br br br br br

Thickness 1 2 1 2 2

Cortex/phloem

Color ye ye ye ye ye

Brightspots 1 2 1 1 1

Anatomy

Primarystructure Epidermis

Cellshape tb tb tb tb tb

Phellogenestablishment el el el el el

Cortex

Intercellularspace 2 1 1 1 1

Cellshape tb tb tb tb tb

Crystalsand 0 1 2 0 0

Endophyticfungi 2 1 2 1 2

Vascularsystem di di di di di

Secondarystructure Periderm

Suber

Cellshape tb tb tb cu tb

Cellwallthickening 1 1 1 1 1

Sclerification 0 0 0 2 0

Resin 2 1 1 0 0

Phelloderm

Thickness 1 1 1 1 1

Crystalsand 0 0 1 1 1

Sclereids 0 0 0 1 1

Cortex

Thickness 2 2 2 2 1

Intercellularspaces 2 1 1 1 1

Crystalsand 1 1 2 1 1

Sclereids 0 1 1 2 1

Phloem

Primaryphloemfibers 1 0 1 0 1

Pseudocortex 1 0 1 1 2

Sclerification 0 2 1 1 1

Sievetubeelements

Quantity 1 1 1 2 1

Wallthickening 2 1 2 2 2

Caliber 2 1 2 2 2

Length 1 1 1 1 1

Distribution rb rb rb rb rb

Plates oc oc oc oc oc

Sievediameter 2 1 2 2 2

Sieveareas

Quantity 1 1 1 1 2

Diameter 2 1 2 2 2

Axialparenchyma

Volume 2 2 2 1 2

Caliber 2 2 2 1 2

Crystalsand 1 1 2 2 2

Ray

Width 1–2 1–2 1–8 1–3 1–3

Height 6–20 12–14 1–11 10–25 1–12

Crystalsand 1 1 1 2 1

(ag)S.agrarium,(br)brown,(cu)cuboids,(di)diarch,(el)externallayers(epidermis/cortex),(ly)S.lycocarpum,(oc)obliquecompound,(pl)S.palinacanthum,(rb)radial bands,(ro)rough,(pn)S.paniculatum,(st)S.stipulaceum,(tb)tabular,(wr)wrinkled,(ye)yellow,(0)absent,(1)moderate,(2)pronounced.

Themesophyllaccumulatedtannins,hadacidpolysaccharide-rich cellwalls,and showedannularcollenchymaatthemedianvein cortex (Fig. 3K–R and Tables 5 and 6). Its exocarp wasyellow andhadsinglecrystalsattheepidermis;itsmesocarphadalight

white color, voluminous intercellular spaces, and alkaloid-rich

cells(Fig.1SandTables7and8).

(7)

L.J.Matiasetal./RevistaBrasileiradeFarmacognosia26(2016)147–160 153

Fig.5.StructuralandhistochemicalfeaturesofSolanumstipulaceumRoem.&Schult.(A–G,J–M)Crosssections.(HandI)Tangentiallongitudinalsections.(A–E)rootbark.(A) Tangentialexpansion(dottedline)ofrayformingthepseudocortex.(B–E)Proteinaccumulationatthephloemparenchyma.(B,D)StainedredwithXP.(C,E)Stainedbluewith Coomassieblue.(C)Controltest.(F–J)Stembark.(F)LipidsattheexternalcortexstainedblackwithSudanblackB.(G)Evidentannualrings.(H)Obliquecompoundplates withseveralsieveareas.(I)Lateralsieveareaswithlargediameter.(J)Axialparenchymapresentingcellswithlargecaliber.(K–M)Leaf.(K)Petiolewithtectortrichomes. (L–M)terpenoidsatthevein.(L)PinkandbluewithNileblue.(M)BluewithNADI.(ap)axialparenchyma,(cc)companioncell,(co)cortex,(cs)crystalsand,(fp)functional phloem,(np)non-conductingphloem,(oc)obliquecompoundplates,(pa)parenchyma,(pe)periderm,(ra)ray,(sa)sieveareas,(sg)starchgrains,(st)sievetubeelement, (tr)tectortrichome,(va)vascularbundle.

Table2

HistochemicalfeaturesofrootofSolanumagrariumSendtn.,SolanumlycocarpumA.St.-Hil.,SolanumpalinacanthumDunal,SolanumpaniculatumL.,andSolanumstipulaceum Roem.&Schult.

Test Suber Feloderm/cortex Phloem ag ly pl pn st ag ly pl pn st ag ly pl pn st

Primarymetabolites

Starch Lugol 0 0 0 0 0 2 1 1 1 1 2 1 1 1 1 Acidicpolysaccharides Tannicacid 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 Rhuteniumred 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Proteins XP 0 0 0 0 0 1 1 1 1 2 1 1 1 1 2

Coomassieblue 0 0 0 0 0 1 1 1 1 2 1 1 1 1 2 Generallipid SudanVI 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 Sudanblack 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 Neutrallipids Nileblue 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 Acidslipids 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0

Secondarymetabolites

(8)

Table3

StructuralfeaturesofstemofSolanumagrariumSendtn.,SolanumlycocarpumA.St.-Hil.,SolanumpalinacanthumDunal,SolanumpaniculatumL.,andSolanumstipulaceum

Roem.&Schult.

Features Solanumspecies

ag ly pl pn st

Morphology

Bittertaste 2 1 1 1 1

Externalsurface

Color db br gr gr gr

Trichomes 2 0 2 2 2

Textura sm ro wr wr sm

Lenticels 1 0 2 2 2

Thorns 1 1 1 1 0

Internalsurface

Corrugatedtexture 1 1 1 1 2

Peridermcrosssection

Color br br br br br

Thickness 1 1 1 1 1

Anatomy

Primarystructure Epidermis

Cellshape cu cu cu cu cu

Tectortrichomes

Quantity 1 2 0 0 1

Ramification 0 1 0 0 1

Glandulartrichomes

Quantity 0 0 1 0 0

Head 0 0 mc 0 0

Peduncle 0 0 sh 0 0

Cortex/phloem

Anelarcollenchyma 1 1 1 1 1

Corticalparenchyma

Thickness 2 2 2 1 2

Intercellularspaces 0 0 0 2 0

Cellshape ov gl gl ov gl

Crystalsand 0 1 1 2 2

Vascularsystem bi bi bi bi bi

Pericyclicfibers 0 0 0 0 2

Crystalsand 0 0 0 2 2

Vascularbundle bi bi bi bi bi

Medullaryparenchyma

Sclereids 0 0 0 0 2

Crystalsand 0 1 1 0 2

Secondarystructure Periderm

Suber

Cellshape ta cu ta ta ta

Cellwallthickening 1 1 1 1 1

Resin 1 1 0 0 0

Phellogeninstallation ep co ep ep co

Phelloderm

Thickness 1 1 1 1 1

Crystalsand 0 0 0 0 1

Sclereids 0 0 0 0 1

Cortex

Thickness 1 2 1 1 1

Colenchyma 1 1 1 0 1

Parenchyma

Intercellularspaces 2 1 1 1 1

Crystalsand 1 1 2 1 1

Sclereids 0 1 1 2 1

Phloem

Sievetubeelements

Quantity 1 2 2 2 2

Wallthickening 2 1 2 2 2

Caliber 1 2 1 2 1

Length 1 1 1 1 1

Distribution rb rb rb rb rb

Sieveplate oc oc oc oc oc

Sieveareas

Quantity 1 1 1 1 2

Diameter 1 1 1 1 1

(9)

L.J.Matiasetal./RevistaBrasileiradeFarmacognosia26(2016)147–160 155

Table3(Continued)

Features Solanumspecies

ag ly pl pn st

Axialparenchyma

Volume 2 1 1 1 1

Caliber 2 2 2 2 2

Crystalsand 1 1 2 1 2

Ray

Width 1 1–2 1–2 1–2 1–2

Height 10–15 14–20 3–7 5–30 6–16

Crystalsand 1 1 0 1 0

Sclerenchyma 0 2 1 2 2

(ag)S.agrarium,(bi)bicolateral,(br)brown,(bs)blackspots,(co)cortex,(cu)cuboid,(db)darkbrown,(ep)epidermis,(gl)globoid,(gr)green,(ly)S.lycocarpum,(mc) multicellular,(oc)obliquecompound,(ov)ovoid,(pl)S.palinacanthum,(pn)S.paniculatum,(rb)radialbands,(ro)rough(sh)short,(sm)smooth,(ta)tabular,(st)S.stipulaceum, (wr)wrinkled,(0)absent,(1)moderate,(2)pronounced.

cortexoftherootbark;thephloempresentednumeroussievetube elementsandrayswithlargeheight(Fig.4A–DandTables1and2).

Thestembarkpresentedalkaloidaccumulationatthecortexand

voluminoussclereids;thebicollateralvascularbundlespresented

internal phloempenetrating deeply into the medulla,and rays

of large heightat thephloem (Fig.4E–K and Tables 3 and 4).

Heterophylly was pronounced; the mesophyll had voluminous

intercellularspaces,andtemporarycellularaccumulationofstarch andflavonoids(Fig.4L–RandTables5and6).Accumulationof sol-ublesugarswasobservedinthefruit,whichconferredasweettaste tothepericarp(Tables7and8).

S.stipulaceumisthemostdistantlyspeciestotheother

stud-iedspecies.Therootbarkdevelopedavoluminouspseudocortex

withevenlyspacedrays,itwasrich insolubleproteinreserves, andwasorientedadjacenttothephloemaxialelements.Theaxial parenchymawasvoluminous(Fig.5A–EandTables1and2).The

stembarkhadnospiniformtrichomes,andtheinternalsurface

wascorrugated.Thephloempresentedaccumulationofterpenoids, well-definedannualrings,andsievetubeelementswithplates pre-sentingnumeroussieveareas(Fig.5F–JandTables3and4).The leavespresentedlargemembranaceousstipulesthatwere distinc-tivemorphologicalfeatureseasilyobservable,andaccumulationof terpenoids(Fig.5K–MandTables5and6).Thefruitwasnotable fortheaccumulationoftannins(Tables7and8).

ThedatapresentedinFigs.1–5andTables1–8showstructural charactersusefulforidentificationandadaptationofthestudied

speciestotheenvironmentwheretheyoccur,andchemical

com-pounds relatedto theirtherapeuticuse:(a)in S.agrarium, low

concentrationofcrystalsandintherootandstem,thepresence ofterpeneresinintheroot,andabsenceofhypodermisintheleaf; (b)inS.lycocarpum,brightspots(groupofsclereids)intheroot, iso-bilateralmesophyll,thickenedcellwallswithhemicellulosesand strongaromainthefruit;(c)inS.palinacanthum,highconcentration ofcrystalsandintherootandstem,oval-shapedlimb,and pres-enceofisolatedcrystalsintheexocarp;(d)inS.paniculatum,strong sclerificationintherootandstem,andrayswithgreatheight;and (e)inS.stipulaceum,accumulationofsolubleproteinintheroot

andstem,presenceofconspicuousmembranaceousstipules,and

absenceofspiniformtrichomes.

Discussion

Structural dataon medicinalplant aresecure characters for

speciesidentificationandqualitycontrolofplantdrugandreveal theirrelationshipwiththeenvironment.Roots,stems,leavesand fruits,dehydratedandfragmentedarewidelyusedasherbaldrugs. Theymaybesubstitutedforeachotherresultinginfraudinthe preparationofherbalmedicines(Adamsetal.,2013).

Thephellogenestablishmentattherootandstem constitute

animportantdistinctivefeaturefortheseorgans.Attheroots,the formationofperidermalwaysstartsatthemoreperipheral corti-callayers(MetcalfeandChalk,1957).Thevascularbundlesinall studiedspeciesinthisworkwerebicollateral,thatisa

character-isticofSolanaceaeandtheoccurrenceofintramedullaryphloem

bundles,situated deeply inthepith,inS.paniculatum hasbeen reportedforspeciesofothergeneraofSolanaceae(Metcalfeand

Table4

HistochemicalfeaturesofstemSolanumagrariumSendtn.,SolanumlycocarpumA.St.-Hil.,SolanumpalinacanthumDunal,SolanumpaniculatumL.,andSolanumstipulaceum Roem.&Schult.

Test Suber Feloderm/cortex Phloem ag ly pl pn st ag ly pl pn st ag ly pl pn st

Primarymetabolites

Starch Lugol 0 0 0 0 0 2 1 1 1 1 2 1 1 1 1 Acidicpolysaccharides Tannicacid 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 Rutheniumred 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Proteins XP 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Coomassieblue 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 Generallipid SudanVI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Sudanblack 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Neutrallipids Nileblue 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Acidslipids 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0

Secondarymetabolites

(10)

Table5

LeafstructuralfeaturesofSolanumagrariumSendtn.,SolanumlycocarpumA.St.-Hil.,SolanumpalinacanthumDunal,SolanumpaniculatumL.,andSolanumstipulaceumRoem. &Schult.

Features Solanumspecies

ag ly pl pn st

Morphology

Phyllotaxis at at at at at

Stipule 0 0 0 0 1

Heterophylly 1 1 1 2 1

Petiole 1 1 1 1 1

Limb si si si si si

Shape el el ov el el

Margin pi pi pi wh wh

Apex ac ac ac am am

Base ol ol cd ol cn

Consistency hb hb hb hb hb

Surface sm sm sm sm sm

Pilosity 1 2 1 2 2

Nervation pn pn pn pn pn

Anatomy

Interveinregion Trichomes

Spiniform 2 1 2 1 0

Tectors

Quantity 1 2 1 2 2

Ramification 0 1 0 1 1

Glandular Shorterect

Quantity 0 0 2 2 2

Head 0 0 mu mu mu

Longerect

Quantity 1 0 1 0 0

Head un 0 un 0 0

Bent

Quantity 2 0 2 1 2

Head mu 0 un mu mu

Epidermis

Cellshape t t t t t

Undulationofanticlinalwalls 1 1 0 2 0

Mesophyll dv is dv dv dv

Crystalsand 0 1 1 1 1

Palisadeparenchyma

Numberoflayers 1 1 1 1 1

Celllength he he ho ho ho

Spongyparenchyma

Intercellularspaces 1 1 1 2 1

Vascularbundle bi bi bi bi bi

Medianvein Epidermis

Cellshape po cb cb cb cb

Undulationofanticlinalwalls 2 0 1 2 1

Hypodermis 0 1 1 1 1

Collenchyma 1 2 2 2 2

Type an an al an an

Crystalsand 0 1 1 1 0

Sclereids 0 1 0 0 0

Parenchyma

Crystalsand 0 2 1 1 1

Sclereids 0 1 0 0 0

Vascularbundle bi bi bi bi bi

Pericyclicfibers 2 2 1 0 0

Crystalsand 0 1 1 1 1

Petiole Epidermis

Cellshape cb cb cb cb cb

Undulationofanticlinalwalls 1 0 1 0 0

Collenchyma 1 2 2 2 2

Wallthickening an an al an an

Parenchyma

Crystalsand 1 2 2 2 1

Intercellularspaces 1 2 2 1 1

Sclereids 0 1 0 0 0

Vascularsystemshape hm hm hm hm hm

Pericyclicfibers 0 2 0 0 0

Crystalsand 0 1 1 1 1

Lowercaliberbundles co bi bi bi bi

(11)

L.J.Matiasetal./RevistaBrasileiradeFarmacognosia26(2016)147–160 157

Table6

HistochemicalleaffeaturesofSolanumagrariumSendtn.,SolanumlycocarpumA.St.-Hil.,SolanumpalinacanthumDunal,SolanumpaniculatumL.,andSolanumstipulaceum

Roem.&Schult.

Test Interveinregion Medianvein

ag ly pl pn st ag ly pl pn st

Primarymetabolites

Starch Lugol 0 0 1 1 0 0 0 1 1 0

Acidicpolysaccharides Tannicacid 1 1 1 1 1 1 1 1 1 1

Rutheniumred 1 1 1 1 1 1 1 1 1 1

Proteins XP 0 1 0 0 1 0 0 1 1 1

Coomassieblue 0 1 0 0 1 0 1 1 1 1 Generallipid SudanVI 1 1 1 1 1 1 1 1 1 1

Sudanblack 1 1 1 1 1 1 1 1 1 1

Neutrallipids Nileblue 1 1 1 1 1 1 1 1 1 1

Acidslipids 1 1 1 1 1 1 1 1 1 1

Secondarymetabolites

Terpenoids NADI 1 1 1 1 1 1 1 1 1 1

Alcaloids Ellram 2 2 2 2 2 1 1 1 1 1

Dittmar 2 2 2 2 2 1 1 1 1 1

Phenoliccompounds Dichromate 2 2 2 2 2 1 1 1 1 1

Tannins Vanillin 2 2 2 2 2 1 1 1 1 1

Flavonoids DMACA 2 2 2 2 2 1 1 1 1 1

(ag)S.agrarium,(ly)S.lycocarpum,(pl)S.palinacanthum,(pn)S.paniculatum,(st)S.stipulaceum,(0)absent,(1)moderate,(2)pronounced.

Chalk,1957).Awidevariationofsievetubeelementsandpores diameterswasobserved,andindicatesthatthesefeaturescanbe reliably used todistinguishspecies of this genus.A wide vari-ation of the characteristicsof theseconducting cells, including theinclinationandnumberofsieveareas,hasbeenreportedfor thegenusSolanum(Chavanetal.,2000).Speciespresentingsieve tubesoflargediameterandespeciallywideporescanbenefitfrom

higher nutrient flow rates into developing organs (Mullendore

etal.,2010).

Thefoliarfeaturespresentedinthisstudyareusefulfor diag-nosticpurposes,especiallytheepidermalfeatureswhicharewell preservedintherawmaterial.Thetypesoftrichomesandstomata, andoutlineofcellwallsarewelldescribedonSolanum(Araújoetal., 2010;Nurit-Silvaetal.,2012;Sampaioetal.,2014).Theleavesare widelyusedasdrugs,andaredesirabletoreplacestemandroot

barksperleaves,becausetheharvestofbarksisdamagingforthe individual.

Thefruitsofallthestudiedspecies wereberrieswhich isin accordancewithpreviousreports forSolanumspecies(Feliciano andSalimena,2011),andthepresenceofcalciumoxalatecrystals, andvoluminousintercellularspaceswererelatedbyChiariniand Barboza(2009).Verythickwalls,richinacidsandbasic polysac-charides,asobservedforS.lycocarpummesocarp,constitutewater andnutrientreservemechanisms(Nevesetal.,2013).

AnalyzingthedataobtainedforS.stipulaceum,somefeatures inparticular,suchastheabsenceofspiniformtrichomes,presence of stipules,sclerificationof thevascular systemand medullaof

thestemprimarystructure,andpronouncedaccumulationof

ter-penoidsinalmostallorgans,indicateitslargerstructuraldifference fromtheremainingstudiedspecies. Infact,accordingtorecent

Table7

StructuralfeaturesofpericarpsofSolanumagrariumSendtn.,SolanumlycocarpumA.St.-Hil.,SolanumpalinacanthumDunal,SolanumpaniculatumL.,andSolanumstipulaceum Roem.&Schult.

Features Solanumspecies

ag ly pl pn st

Morphology

Typeoffruit be be be be be

Aroma 0 2 0 0 0

Exocarp

Color pu gr yl gr gr

Consistency 1 2 2 1 2

Mesocarp

Color yl yl wh gr gr

Thickness 1 2 1 1 1

Anatomy

Exocarp Cuticle

Undulation 2 1 2 1 1

Thickness 1 2 1 1 2

Epidermis

Cellshape po ab ab ab po

Singlecrystals 0 0 1 0 0

Collenchyma 1 2 1 0 1

Mesocarp

Cellshape gl po wh wh t

Wallthickening 1 2 1 1 2

Intercellularspaces 1 1 2 1 1

(12)

Table8

HistochemicalfeaturesofpericarpsofSolanumagrariumSendtn.,SolanumlycocarpumA.St.-Hil.,SolanumpalinacanthumDunal,SolanumpaniculatumL.,andSolanum stipulaceumRoem.&Schult.

Test Exocarp Mesocarp

ag ly pl pn st ag ly pl pn st

Primarymetabolites

Starch Lugol 1 0 0 0 1 1 1 1 1 1

Acidicpolysaccharides Tannicacid 1 1 1 1 1 1 1 1 1 1

Rhuteniumred 1 1 1 1 1 1 1 1 1 1

Proteins XP 1 1 1 1 1 1 1 1 1 1

Coomassieblue 1 1 1 1 1 1 1 1 1 1 Generallipids SudanVI 1 1 1 1 1 1 1 1 1 1

Sudanblack 1 1 1 1 1 1 1 1 1 1

Neutrallipids Nileblue 1 1 1 1 1 1 0 1 1 1

Acidslipids 0 1 1 0 1 0 1 0 0 1

Secondarymetabolites

Terpenoids NADI 1 1 1 1 1 1 1 1 1 1

Alcaloids Ellram 1 1 1 1 1 1 1 1 1 1

Dittmar 1 1 1 1 1 1 1 1 1 1

Phenoliccompounds Dichromate 1 1 1 1 1 1 1 1 1 1 Ferricchloride 1 1 1 1 1 1 1 1 1 1

Tanniss Vanillin 1 1 1 1 1 1 1 1 1 1

Flavonoids DMACA 1 1 1 1 1 1 1 1 1 1

(ag)S.agrarium,(ly)S.lycocarpum,(pl)S.palinacanthum,(pn)S.paniculatum,(st)S.stipulaceum,(0)absent,(1)moderate,(2)pronounced.

taxonomyrevisions,S.agrarium,S.lycocarpum,S.palinacanthum, andS.paniculatumareincludedinthesubgenusLeptostemonum (Dunal)Bitter(Levinetal.,2006),whereasS.stipulaceumisincluded inthesubgenusBrevantherumSeithe(Roe,1972;Bohs,2005).

Someanatomical features can revealthe species adaptation

mechanismsforthesehabitats.Aspectsofleafanatomyare

infor-mativeof theenvironment where theindividuals live(Rossatto

andKolbm,2012).Thepresenceoftectorandglandulartrichomes withavarietyofshapeshasbeenreportedforSolanum(Nurit-Silva etal.,2011).Ahighdensityofbothtypesoftrichomesindicated adaptationtohighlight,lowwateravailability,andhighherbivory rate,typicaloftheCerrado.Thesameoccurredforthe hypoder-misobservedinallstudiedspecies,whichconstitutesanadditional

xeromorphicfeature (Rossattoand Kolbm, 2012).The presence

of isobilateral mesophyll in S. lycocarpum has been previously

reportedforSolanumspeciesgrowinginhabitatswithhighlight butisnotinaccordancewiththedorsiventralmesophyllusually observedforthisfamily(MetcalfeandChalk,1957).Strong scleri-ficationwasobservedinS.lycocarpum.Sclerophyllyresultsinthe increaseofmechanicalresistance,asanadaptationto environmen-talstresses.Highlevelsofsclerophyllycanbeinducedbylowwater availability,highlightintensity,andlowconcentrationof macronu-trients,whicharecommonconditionsintheCerrado(Costaetal., 2012;RossattoandKolbm,2012).

S.agrariumistheonlyannualspeciesofthefivestudiedspecies. Thepresenceoflooseparenchymaattherootsmayberelatedtoits shortlifecycle,whichoccursduringtheshortrainfallperiodthat occursintheCerrado,whenthesoilpresentshighwatersaturation.

Voluminousintercellular spaces favor aerationin organs

devel-oping inwater saturated soils(Somavillaand Graciano-Ribeiro,

2012).Decreased intercellularspaces minimizeexcessive water

loss,whichisrelevantinspeciesgrowingunderthepredominantly dryCerradoclimateconditions(Milaneze-Gutierreetal.,2003).The investmentinstarchandproteinreservesattherootandstemmay beassociatedwiththefactthatthisspeciesisannual,withtheneed forfastmetabolismduetotheemissionofalargenumberofsprouts inashortperiodoftimeduringtherainyseason(Nurit-Silvaetal., 2011).

Thepresenceofcrystalsandisaunifyingfeatureofthegenus Solanum(MetcalfeandChalk,1957),remainingidentifiableeven incalcinedmaterials(FurrandMalhberg,1981).Calciumoxalate crystalsaresynthesizedfromendogenousoxalicacidandcalcium originatingfromtheenvironment(FranceschiandNakata,2005).

In additiontoaccumulatingatthe vacuoles,theycanbe found

attheapoplast,inductsresultingfromlysisofcrystalidioblasts (Liangetal.,2006).Themainfunctionoftheirformation, espe-ciallyindevelopingtissues,seemstobetheregulationofcalcium concentration,whichisneededfortheexpansionofcells under-goingdivision(FranceschiandNakata,2005;PaivaandMachado, 2005).Theycanalsobeinvolvedinprotectionagainstherbivores

and aluminumdetoxification (Nakata,2003),which are

charac-teristicoftheCerradobiome.The developmentof crystalducts

frombreakingidioblasts,whichhavecellwallscomposedmainly

ofpectin,inrecentlyformedphloemcellsclosetothecambium

layer,wasobservedinthepresentstudywasnotrelatedbeforefor thegenus.

Themedicinal properties mentioned for thespecies maybe

associatedwiththedistributionofsecondary compoundsinthe

different organs. Histochemical techniques are fast and cheap

methods thatcan beusedto identifybioactiveclasses of

com-pounds in tissues, and cell compartments (Coelho et al., 2012;

Demarco et al., 2013; Bedetti et al., 2014). The location of

compounds of interest facilitates studies of domestication or

obtainmentofactiveprinciplesthroughbiotechnologybecauseit allowstheidentificationoftargetcompartmentsforplant

improve-ment. The interpretation of histochemical results allows us to

compare organs, species, or materials originating from

differ-entenvironmentsorseasons (Coelho etal.,2012; Adamsetal., 2013).Previoushistochemicalscreeningcanminimizethesearch for interestingcompounds in relatedplant species,resulting in decreasedcostsfor pharmaceuticalresearch(Saslis-Lagoudakisa etal.,2012).

(13)

L.J.Matiasetal./RevistaBrasileiradeFarmacognosia26(2016)147–160 159

acidinhibitsmaltaseactivityinS.palinacanthum,decreasingthe releaseofglucoseintotheblood(Pereiraetal.,2008;Kumaretal., 2011).Thisindicatesa possibleuseof thisspecies forthe con-trolofdiabetes,whichhasnotbeentraditionallyexplored.Rutin, aflavonoidwithanti-microbialaction,hasbeenisolatedfromits leaves(Pereiraetal.,2008).TheaccumulationofflavonoidsinS. paniculatumseemstoberelatedtoitsantioxidantaction(Ribeiro etal.,2007).ThehypotensiveactionofS.stipulaceummayberelated tothepresenceofterpenoids,saponins,andalkaloids(Ribeiroetal., 2002).

Conclusions

Theidentificationofstructuraldiagnosticfeaturesandclasses

of chemical compounds withknownbiological activity present

indifferentorgans ofthestudiedspecies increasesthe reliabil-ityofpreparationsofpharmaceuticalformulations,andrevealsa vastareaofresearchinthechemicalcharacterizationofmolecules relatedtotheirtraditionalmedicinaluse.Studiesrelatingthe

struc-turalfeatureswiththeenvironmentalpressureonthemedicinal

species,andstudiestotestthepopularlybelieved propertiesof nativemedicinalplantsstrengtheninitiativestopreservethe

envi-ronments where those species occur naturally, many of them

alreadystronglymenacedevenbeforetheirpotentialtohumankind

isknown.

Authors’contributions

LJM,ACS,andJMSFcontributedincollectingtheplantsamples, runningthelaboratorywork,andanalysisofthedata.MOMS,VAR, andLMRdesignedthestudyandsupervisedthelaboratorywork.All theauthorshavecontributedindraftedthepaper,criticalreading, writingofthemanuscript,andapprovedthesubmission.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare

thatnoexperimentswereperformedonhumansoranimalsfor

thisstudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat nopatientdataappearinthisarticle.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

The authors wish to thank the FAPEMIG for the Research

and Technological Development Incentive Scholarship to M.O.

Mercadante-Simões(CRA-BIPID-00152-12)andL.M.Ribeiro

(CRA-BIPIT-00137-11);theCNPqandFINEPfortheIndustrialTechnology

DevelopmentscholarshiptoL.J.Matias (DTI-III-381914/2012-7);

theResearchPro-RectoryoftheStateUniversityofMontesClaros fortheScientificInitiationScholarshiptoAriadnaConceic¸ãodos

Santos; and Waldimar Ferreira Ruas for collecting the plant

material.

References

Adams,S.J.,Kuruvilla,G.R.,Krishnamurthy,K.V.,Nagarajan,M., Venkatasubrama-nian,P.,2013.PharmacognosticandphytochemicalstudiesonAyurvedicdrugs AtivishaandMusta.Rev.Bras.Farmacogn.23,398–409.

Agra,M.F.,Baracho,G.S.,Basílio,I.J.D.,Nurit,K.,Coelho,V.P.,Barbosa,D.A.,2007. SinopsedafloramedicinaldoCaririparaibano.Oecol.Bras.11,323–330. Araújo,N.D.,Coelho,V.P.M.,Agra,M.F.,2010.Thepharmacobotanicalcomparative

studyofleavesofSolanumcrinitumLam.,SolanumgomphodesDunalandSolanum lycocarpumA.St-Hil(Solanaceae).Rev.Bras.Farmacogn.20,666–674. Araújo,N.,Coelho,V.P.M.,Ventrella,M.C.,Agra,M.F.,2014.Leafanatomyand

his-tochemistryofthreespeciesofFicussect.Americanaesupportedbylightand electronmicroscopy.Microsc.Microanal.20,296–304.

Argyropoulou,C.,Akoumianaki-Ioannidou,A., Christodoulakis,N.S.,Fasseas, C., 2010.LeafanatomyandhistochemistryofLippiacitriodora(Verbenaceae).Aust. J.Bot.58,398–409.

Bedetti,C.S.,Modolo,L.V.,Isaias,R.M.S.,2014.Theroleofphenolicsinthecontrolof auxiningallsofPiptadeniagonoacantha(Mart.)MacBr(Fabaceae:Mimosoideae). Biochem.Syst.Ecol.55,53–59.

Bohs,L.,2005.MajorcladesinSolanumbasedinndhFsequences.In:Keating,R.C., Hollowwell,V.C.,Croat,T.B.(org.).AfestschriftforWilliamG.D’Arcy:TheLegacy ofaTaxonomist.MonographsinSystematicBotanyfromtheMissouriBotanical Garden.MissouriBotanicalGardenPress,St.Louis,pp.27–49.

Cain,A.J.,1947.TheuseofNileBlueintheexaminationoflipoids.Q.J.Microsc.Sci. 88,383–392.

Castro, J.A.,Brasileiro,B.P.,Lyra, D.H.,Pereira,D.A.,Chaves,J.J.,Amaral, C.L.F., 2011.Ethnobotanicalstudyoftraditionalusesofmedicinalplants:theflora ofcaatingainthecommunityofCravolândia-BA,Brazil.J.Med.PlantRes.5, 1905–1917.

Chavan,R.R.,Braggins,J.E.,Harris,P.J.,2000.Companioncellsinthesecondary phloemofIndiandicotyledonousspecies:aquantitativestudy.NewPhytol.146, 107–118.

Chiarini,F.E.,Barboza,G.E.,2009.FruitanatomyofspeciesofSolanumsect. Acan-thophora(Solanaceae).Flora204,146–156.

Coelho,V.P.M.,Leite,J.P.V.,Nunes,L.G.,Ventrella,M.C.,2012.Anatomy, histoche-mistryandphytochemicalprofileofleafandstembarkofBathysacuspidata (Rubiaceae).Aust.J.Bot.60,49–60.

Costa,V.P.,Hayashi,A.H.,Carvalho,M.A.M.,Silva,E.A.,2012.Aspectosfisiológicos anatômicoseultra-estruturaisdorizomadeCostusarabicusL.(Costaceae)sob condic¸õesdedéficithídrico.Hoehnea39,125–137.

David,R.,Carde,J.P.,1964.Colorationdifférentielledesinclusionslipidiqueet ter-péniquesdespseudophyllesduPinmaritimeaumoyendureactifNadi.C.R.H. Acad.Sci.Paris258,1338–1340.

Demarco.,D.,Castro,M.M.,Ascensão,L.,2013.TwolaticifersystemsinSapium haematospermum–newrecordsforEuphorbiaceae.Botany91,545–554. Endringer,D.C.,Valadares,Y.M., Campana,P.R.V.,Campos,J.J.,Guimarães,K.G.,

Pezzuto,J.M.,Braga,F.C.,2010.EvaluationofBrazilianplantsoncancer chemo-preventiontargetsinvitro.Phytother.Res.24,928–933.

Fahn,A.,1990.PlantAnatomy.Butterworth-HeinemannLtd,Oxford.

Farina,F.,Piassi,F.G.,Moysés,M.R.,Bazzolli,D.M.S.,Bissoli,N.S.,2010.Glycemic andurinaryvolumeresponsesindiabeticmellitusratstreatedwithSolanum lycocarpum.Appl.Physiol.Nutr.Metab.35,40–44.

Feliciano,E.A.,Salimena,F.R.G.,2011.SolanaceaeintheSerraNegra,RioPreto,Minas Gerais.Rodriguésia62,55–76.

Ferreira,P.R.F.,Mendes,C.S.O.,Reis,S.B.,Rodrigues,C.G.,Oliveira,D.A., Mercadante-Simões,M.O.,2011.Morphoanatomy,histochemistryandphytochemistryof PsidiumguineenseSw.(Myrtaceae)leaves.J.Pharm.Res.4,942–944. Feucht,W.,Schmid,P.P.S.,Christ,E.,1986.Distributionofflavonolsinmeristematic

andmaturetissuesofPrunusaviumshoots.J.PlantPhysiol.125,1–8. Fisher,D.B.,1968.Proteinstainingofribbonedeponsectionsforlightmicroscopy.

Histochemie16,92–96.

Franceschi,V.R.,Nakata,P.A.,2005.Calciumoxalateinplants:formationand func-tion.Ann.Rev.PlantBiol.56,41–71.

Furr,M.,Malhberg,P.G.,1981.Histochemicalanalysesoflaticifersandglandular trichomesinCannabissativa.J.Nat.Prod.44,53–159.

Gabe,M.,1968.Techniqueshistologiques.MassonandCie,Paris.

García-Mediavilla,V.,Crespo,I.,Collado,P.S.,Esteller,A.,Sánchez-Campos,S.,Tu ˜nón, M.J.,González-Gallego,J.,2007.Theanti-inflammatoryflavonesquercetinand kaempferolcauseinhibitionofinduciblenitricoxidesynthase cyclooxygenase-2andreactiveC-protein,anddown-regulationofthenuclearfactorkappaB pathwayinChanglivercells.Eur.J.Pharmacol.557,221–229.

Goswami,A.,Kotoky,R.,Rastogi,R.C.,Ghosh,A.C.,2003.Aone-potefficientprocess for16-dehydropregnenoloneacetate.Org.Proc.Res.Dev.7,306–308. Jensen,W.A.,1962.BotanicalHistochemistry:PrinciplesandPractices.W.H.

Free-manandCompany,SanFrancisco.

Johansen,D.A.,1940.PlantMicrotechnique.McGraw-HillBook,NewYork. Junikka,L.,1994.SurveyofEnglishmacroscopicbarkterminology.IAWAJ.15,3–45. Karnovsky,M.J.,1965.Aformaldehyde–glutaraldehydefixativeofhighosmolality

foruseinelectronmicroscopy.J.CellBiol.27,137–138.

Kumar,S.,Narwal,S.,Kumar,V.,Prakash,O.,2011.␣-Glucosidaseinhibitorsfrom plants:anaturalapproachtotreatdiabetes.Pharmacogn.Rev.5,19–29. Levin,R.A.,Myers,N.R.,Bohs,L.,2006.Phylogeneticrelationshipsamongthe“spiny

solanums”(Solanum subgenusLeptostemonum, Solanaceae).Am.J. Bot.93, 157–169.

(14)

CitrusmedicaL. var.sarcodactylis(Noot.)Swingle.J. Integr.Plant Biol.48, 573–583.

Mace,M.E.,Howell,C.R.,1974.Histochemistryandidentificationofcondensed tan-ninprecursorinrootsofcottonseedlings.Can.J.Bot.52,2423–2426. Metcalfe,C.R.,Chalk,L.,1957.AnatomyoftheDicotyledons.OxfordUniversityPress,

Oxford.

Mercadante-Simões, M.O., Mazzottini-Dos-Santos, H.C., Nery, L.A., Ferreira, P.R.B.,Ribeiro,L.M.,Royo,V.A.,Oliveira,D.A.,2014.Structure, histochemis-try and phytochemical profile of the sobol and aerial stem of Tontelea micrantha (Celastraceae – Hippocrateoideae). An. Acad. Bras. Cienc. 83, 1167–1179.

Milaneze-Gutierre,M.A.,Mello,J.C.P.,Delaporte,R.H.,2003.Efeitodaintensidade luminosasobreamorfo-anatomiafoliardeBoucheafluminensis(Vell)Mold. (Verbenaceae)esuaimportâncianocontroledequalidadedadrogavegetal. Rev.Bras.Farmacogn.13,23–33.

Moreira,A.S.F.,LemosFilho,J.P.,Isaias,R.M.S.,2013.Structuraladaptationsoftwo sympatricepiphyticorchids(Orchidaceae)toacloudyforestenvironmentin rockyoutcropsofSoutheastBrazil.Rev.Biol.Trop.61,1053–1065.

Mullendore,D.L.,Windt,C.W.,VanAs,H.,Knoblauch,M.,2010.Sievetubegeometry inrelationtophloemflow.PlantCell22,579–593.

Nakata,P.A.,2003.Advancesinourunderstandingofcalciumoxalatecrystal forma-tionandfunctioninplants.PlantSci.164,901–909.

Neves,S.C.,Ribeiro,L.M.,Cunha,I.R.G.,Pimenta,M.A.S.,Mercadante-Simões,M.O., Lopes,P.S.N.,2013.Diasporestructureandgerminationecophysiologyofthe babassupalm(Attaleavitrivir).Flora208,68–78.

Nurit-Silva,K.,Costa-Silva,R.,Coelho,V.P.M.,Agra,M.F.,2011.Pharmacobotanical studyofvegetativeorgansofSolanumtorvumKiriaki.Rev.Bras.Farmacogn.21, 568–574.

Nurit-Silva,K.,Costa-Silva,R.,Basílio,I.J.L.D.,Agra,M.F.,2012.Leafepidermal char-actersofBrazilianspeciesofSolanumsectionTorvaastaxonomicevidence.Can. J.Microbiol.58,806–814.

O’Brien,T.P.,Feder,N.,Mccully,M.E.,1964.Polychromaticstainingofplantcellwalls bytoluidineblueO.Protoplasma59,368–373.

Paiva,E.A.S.,Machado,S.R.,2005.RoleofintermediarycellsinPeltodonradicans (Lamiaceae)inthetransferofcalciumandformationofcalciumoxalatecrystals. Braz.Arch.Biol.Technol.48,147–153.

Paiva,E.A.S.,Pinho,S.Z.,Oliveira,D.M.T.,2011.Largeplantsamples:howto pro-cessforGMAembedding?In:Chiarini-Garcia,H.,Melo,R.C.N.(orgs.).Light Microscopy:MethodsandProtocols.SpringerHumanaPress,NewYork,pp. 37–49.

Pearse,A.G.E.,1980.HistochemistryTheoreticalandApplied.ChurchillLivingston, Edinburgh.

Pereira,A.C.,Oliveira,D.F.,Silva,G.H.,Figueiredo,H.C.P.,Cavalheiro,A.J.,Carvalho, D.A.,Souza,L.P.,Chalfoun,S.M.,2008.Identificationoftheantimicrobial sub-stancesproducedbySolanumpalinacanthum(Solanaceae).An.Acad.Bras.Cienc. 80,427–432.

Picoli,E.A.T.,Isaias,R.M.S.,Ventrella,M.C.,Miranda,R.M.,2013.Anatomy, histoche-mistryandmicromorphologyofleavesofSolanumgranuloso-leprosumDunal. Biosci.J.29,655–666.

Pizzolato,T.D.,Lillie,R.D.,1973.Mayer’stannicacid-ferricchloridestainformucins. J.Histochem.Cytochem.21,56–64.

Ribeiro,E.A.N.,Batitucci,M.C.P.,Lima,J.A.T.,Araújo,I.A.G.,Mauad,H.,Medeiros,I.A., 2002.Cardiovasculareffectsinducedbytheaqueousfractionoftheethanol extractofthestemofSolanumstipulaceuminrats.Rev.Bras.Farmacogn.12, 34–35.

Ribeiro,S.R.,Fortes,C.C.,Oliveira,S.C.C.,Castro,C.F.S.,2007.Avaliac¸ãodaatividade antioxidantedeSolanumpaniculatum(Solanaceae).A.Cien.S.Univ.Paran.11, 179–183.

Rocha,D.A.,Abreu,C.M.P.,Sousa,R.V.,Corrêa,A.D.,2012.Métododeobtenc¸ãoe análisedacomposic¸ãocentesimaldopolvilhodafruta-de-lobo(Solanum lyco-carpumSt.Hil).Rev.Bras.Frut.34,248–254.

Roe,K.E.,1972.ArevisionofSolanumsectionBrevantherum(Solanaceae).Brittonia 24,239–278.

Rossatto,D.R.,Kolbm,R.M.,2012.Structuralandfunctionalleaftraitsoftwo Gochna-tiaspeciesfromdistinctgrowthformsinasclerophyllforestsiteinSoutheastern Brazil.ActaBot.Bras.26,849–856.

Sampaio,V.S.,Araújo,N.D.,Agra,M.F.,2014.CharactersofleafepidermisinSolanum (cladeBrevantherum)speciesfromAtlanticforestofNortheasternBrazil.S.Afr. J.Bot.94,108–113.

Santos,A.V., Defavieri,A.C.V., Bizzo, H.R.,Gil,R.A.S.S., Sato,A., 2013. Invitro propagation,histochemistry,andanalysisofessentialoilfromconventionally propagatedandinvitro-propagatedplantsofVarroniacurassavicaJacq.InVitro CellDev.Biol.Plant49,405–413.

Saslis-Lagoudakisa,C.H.,Savolainen,V.,Williamsond,E.M.,Forestc,F.,Wagstaffe, S.J.,Baralf,S.R.,Watsong,M.F.,Pendryg,C.A.,Hawkinsa,J.A.,2012.Phylogenies revealpredictivepoweroftraditionalmedicineinbioprospecting.Proc.Natl. Acad.Sci.U.S.A.25,15835–15840.

Silva,T.M.S.,Nascimento,R.J.B.,Câmara,C.A.,Castro,R.N.,Braz-Filho, R.,Agra, M.F., Carvalho,M.G.,2004. Distribution offlavonoids and N-transcaffeoyl-tyramine in Solanum subg. Leptostemonum. Biochem. Syst. Ecol. 32, 513–516.

Somavilla, N.S., Graciano-Ribeiro, D., 2012. Ontogeny and characterization of aerenchymatoustissuesofMelastomataceaeinthefloodedandwell-drained soilsofaNeotropicalsavanna.Flora207,212–222.

Stehmann, J.R., Mentz, L.A., Agra, M.F., Vignoli-Silva, M., Giacomin, L., Rodrigues, I.M.C., 2014. Solanaceae. Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro, Available from: http:// floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB14716(accessed19.10.15). Svendsen,A.B.,Verpoorte,R.,1983.ChromatographyofAlkaloids.ElsevierScientific

PublishingCompany,NewYork.

Vidal,B.C.,1970.Dichroismincollagenbundlesstainedwithxylidine-Ponceau2R. Ann.Histochem.15,289–296.

VieiraJr.,G.,Ferreira,P.M.,Matos,L.G.,Ferreira,E.C.,Rodovalho,W.,Ferri,P.H., Fer-reira,H.D.,Costa,E.A.,2003.Anti-inflammatoryeffectofSolanumlycocarpum fruits.Phytother.Res.17,892–896.

WorldHealthOrganization,2013.WHOTraditionalMedicineStrategy2014–2023. WHOLibraryCataloguing-in-PublicationData,Geneva.

Referências

Documentos relacionados

All compounds have been reported previously, but this is the first report of the isolation of a cyclopentenone fatty acid ( 1 ) and flavanones ( 2 and 3 ) from a Lantana species..

4 , treatment of C2C12 cells with EEPM induced the expression of the HO-1 protein in a dose- and time-dependent manner, but that other antioxidant enzymes, NADPH-quinone

In the methanol extract of acerola bagasse flour, the following phenolic compounds were identified: gallic acid, syringic and p -coumaric acid, catechin, epigallocatechin

The antiviral activity was evaluated using a rotavirus infection model in MA-104 cells treated with the maximum non-cytotoxic concentration of the crude extract and its fractions..

The antinociceptive properties of EtOAc fraction were tested on mice following orofacial nocicep- tion induced by formalin, capsaicin and glutamate, three algogens agents that

Influence of the ethanolic extract of Sida acuta (SA) at doses of 50, 100, 300 and 500 mg/kg, diazepam 1 mg/kg and control (vehicle), expressed by percentage of entries in open arm

Effects of intraperitoneal administration of different doses of EB719, the organic extract obtained from Laetia suaveolens , in male mice in the open field in stage 1 of

Effect of hydroalcoholic extract of the aero parts of the Herissantia tiubae (HtE) on cytokine TNF- ␣ (A) IL-1 ␤ (B) and IL-6 (C) levels in peritoneal lavage.. The data represent