• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número4

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número4"

Copied!
6
0
0

Texto

(1)

Time Dependent Transverse Correlations in the

Ising Model in D Dimensions

Jo~aoFlorenio 1

, Surajit Sen 2

, and M. Howard Lee 3;4

1

Departamento deFsia,UniversidadeFederaldeMinasGerais,

30.123-970 BeloHorizonte,MG, Brazil

2

PhysisDepartment,State UniversityofNewYorkatBualo,NewYork14260,USA

3

PhysisDepartment, UniversityofGeorgia,Athens,Georgia30602, USA

4

KoreaInstitute forAdvaned Study,Seoul130-012,Korea

Reeivedon10August,2000

TheIsingmodelisknownwidelyforstudyingequilibriumbehavior. Weshowthatthemodelisalso

usefulfor studyingnonequilibriumbehaviorinsomespeialsituations. Themethodofreurrene

relations has beenapplied to obtainthe time evolution ofa non-ommutingspin operator. Also

obtained are the struture funtions and their time dependent behavior. It is shown that the

transverseomponentofthestatisuseptibilityanbeobtainedfromthedynamiresults.

I Introdution

Asiswellknown,theIsingmodelhasbeentraditionally

studied for avarietyof equilibrium properties. Can it

beusedtostudynonequilibriumpropertiesalso? Isthe

Ising model asusefulperhapsforstudying

nonequilib-riumbehavior?

Ourmodel onsistsofspin-1/2 operators,loalized

at D dimensional lattie sites. The internal energyis

limitedtopairwiseouplingofthez-omponentsofthe

spins whih are nns. This is a quantum mehanial

versionofthestandardIsing model.

Sinethezomponentsofspinsommutewithone

another,allthespinstatesoftheenergyarestationary.

Thustheydonotevolveintime. Thisiswellknownas

abasipropertyoftheIsingmodel.

Ifatransverseexternaleld (betteryet just in the

x-diretion) is turned on momentarily, it will ouple

withthex-omponentsofthespinsimpartingan

exter-nal energy to the system. If theeld is turned o, it

is as ifa state of thex-omponents of spins hasbeen

\reated"arryinganextraenergy.

Thesituation that hasbeenreatedis muh likea

dynamial piturethat isdesribedbylinearresponse

theory [1℄. Sine there is no longer an external eld,

the averagingis done with respet to theinternal

en-ergyonly.

What happens now to this state of the x

ompo-nentsofthespins? Letusonsiderthespinatjustone

lattiepoint(sayat 0)sinetheyareallequivalentby

translationalinvariane. Evidently[H;S x

0

℄6=0. Hene

the state of this spin is nonstationary and must now

evolvein timeunlikethestateofS z

0 .

Thetimeevolutionheremeansthat thisspinstate

isattempting to restore itself to a stationary stateby

givingothe aquiredenergy to itsneighboring spins

towhihitis oupledbytheexhangeinterations. It

attemptstodosobypushingtheneighboringspinsinto

anonstationarystate. Sinetheneighboring spinsare

alreadyin astationarystate,theyresistaeptingthis

energyandreturnittothesoureatsite0. Thisproess

goesonindenitely. What happensis aloalization of

theenergy,trappedaboutsite0. Thisisuniquetothe

Isingmodel. IntheXY model,forexample,theenergy

wouldbeomedeloalized.

The time dependent spin-spin orrelation funtion

willthusbeperiodi, neverdeaying. Thetrajetories

(seeSe. II)willbelosed. Thenonequilibrium

behav-iorwill notbeergodiin thesense ofthe usual

mean-ingofthatterm. Theloalizationmaybedesribedin

termsofdynami modesofdierentfrequenies,muh

likethenormalmodesofvibration. Theomplexityof

thesemodesevidently willinreasewith the

oordina-tionnumber.

Howanonestudythetimedependentbehaviorin

thisquantum Ising model? Clearlywemust solvethe

Heisenbergequationofmotion. Sinethemodelis

Her-mitian,thisanbedonemostsimplybythereurrene

relationsmethod [2-4℄.

Ordinarily one requires stati properties to obtain

dynami behavior. It is thus of interest to note that

(2)

forloalizedproblemssuhasinthisIsingmodelsome

statipropertiesare impliedbydynami propertiesas

weshalldemonstrate. Weshallonentrateonthe1D

model. Thedynamisisbasiallysimilartothatin1D.

II Reurrene relations method

Inthissetionweshallbrieyreviewthereurrene

re-lations method for solving theHeisenberg equation of

motionifasystemisHermitian. This generalmethod

wasintroduedintheearly1980sandtherehavebeen

anumberofappliationsmadesinetostudythetime

evolution in avarietyof Hermitian many-partile

sys-tems[5-16℄.

We are interested in obtaining the time

depen-dentbehaviorofatransversespin-spinorrelation

fun-tion < S x

0 (t)S

x

0

(0) >, where S

i

is the omponent

( = x, y, or z) of the spin-1/2 operator at the i th

lattie site, the brakets denote the anonial

ensem-bleaveragewithrespettotheIsingHamiltonianH =

J P

(ij) S

z

i S

z

j

,where(ij)denotesnnpairsinalattie.

A moregeneraltime dependentorrelationfuntion is

therelaxationfuntion(S x

0 (t);S

x

0

(0)),where theinner

produt meansthe Kubosalar produt. Notethat if

t=0, thisinner produt denesthe xxomponentof

the suseptibility. As notedin Setion I,[H;S x

0 ℄ 6= 0.

Hene S x

0

(t)=exp(iHt)S x

0

(t=0)exp( iHt)6=S x

0 (t=

0),wherewehaveset ~=1. Thetimeevolutionofthe

operatorS x

0

angiveaompletepitureofthetime

de-pendent behavior. Hene weshall onentrate onthis

quantityratherthanthestruturefuntions.

LetusdenotebyAthedynamialvariableatt=0,

i.e., S x

0

(t =0) =A. Sine weare interested in t 0

only, we an dene A(t) = 0 if t < 0. Aording to

thereurrenerelations method A(t) att 0maybe

regardedasavetorinarealized Hilbertspaeofd

di-mensions provided that H is Hermitian (as is for the

Ising Hamiltonian). Thus, A(t) may be given an

or-thogonalexpansionsinthisspaeas

A(t)= d 1

X

k =0 a

k (t)f

k

: (1)

Hereff

k

gisaompletesetofbasisvetorswhihspan

therealizedspae. That is,

(f

k ;f

k 0

)=0 if k 0

6=k; (2)

where theinner produtmeanstheKubosalar

prod-ut[3℄. Alsofa

k

(t)gisaompleteset oflinearly

inde-pendent funtions oftime. Theyrepresentthe

magni-tudes oftheprojetionof A(t) onto thebasisvetors

at time t. The Hermitiity requirement implies that

jjA(t)jj = jjA(0)jj for all t > 0, known as the Bessel

equality. It meansthatthemagnitudeorthelengthof

thevetorisaonstantofmotion. Thisisauseful

prop-onwhihweareoperatingisnotabstratbutrealized.

Hene dmaybeniteas weshallseeinthisproblem.

Sinethereisalwaysonedegreeoffreedomin

hoos-ing one basis vetorinitially, wehoosef

0

=A. This

hoie yieldsboundaryonditionsona

k (t)'s:

a

k

(t=0)=

1 ifk=0

0 ifk=1;2;:::

(3)

Observealsothattheorthogonalitypropertygives

a

0 (t)=

(A(t);A)

(A;A)

; (4)

sometimes known astherelaxationfuntion, themost

basitimedependentfuntion asweshallsee.

GivenEqs. (1),(2)and(3),thereurrenerelations

methodrestsonthefollowingfat: Iftheinnerprodut

meanstheKubosalarprodut,bothf

k anda

k satisfy

ertain unique reurrene relations. They are

three-termreurrenerelationsexeptthebasalones(k=0)

whihhaveonlytwoterms. Theyaregivenbelow: For

k=0;1;:::;d 1,

f

k +1 =

_

f

k +

k f

k

; (5)

k +1 a

k +1

(t)= a_

k (t)+a

k 1

(t); (6)

where

k = jjf

k jj=jjf

k 1 jj, f

1 = a

1

0,

0 1.

Herejjfjj=(f;f). Theseratiosofsuessivenormsare

alled reurrants. Notiethatourdenition ofanorm

is nonstandard but moreonvenient for ourpurposes.

Therewillbenoonfusionbythisusage. Equations(5)

and(6)arereferredtointheliteratureastheRR1and

RR2,respetively.

Observethat givenf

0

, theother orhigherf

k 'san

beobtainedquitesystematially. Thebasisvetorsare

thushierarhi,suessivelyrepresentinginreasing

di-mensions of the realized spae. The projetion

oeÆ-ients annot enjoy this property sine the basal one

a

0

(t)isnotknown.

Thereurrenerelations methods meansthat Eqs.

(5)and(6),orRR1and2,aretobesolved. Their

solu-tionsarethenthesolutionsforEq. (1). Thishasbeen

alreadydemonstratedinnumerousexamples[5-15℄.

Thereisonepartiularlyimportantrelation, whih

followsfrom Eq. (6),

1 a

1

(t)= a_

0

(t): (7)

This is one of the basal relations, whih follows from

Eq. (6)bysetting k=0. Therighthand side(rhs)of

Eq. (7) denotes therelaxationfuntion (see Eq. (4)).

Theleft-hand-side(lhs)ofEq. (7)denotestheresponse

funtion orutuations,e.g.,<A(t)A>. The

onne-tionbetweenthesetwophysialquantitiesisentralto

(3)

Letusdenea~

k

(z)=La

k

(t),whereListheLaplae

transform operator. If Lis appliedto Eq. (6),we

ob-tain

~ a

0

(z)=1=z+

1 =z+

2

=z+:::+

d 1

=z1=z+

1 ~ b 1 (z); (8)

a ontinued fration of order d 1. The seond term

on the rhs of Eq. (8), a ontinued fration of order

d 2,is knownas the memory funtion in the

gener-alized Langevinequation [18℄. There is a onvolution

relationbetweena

1 andb

1 .

III Appliation to the Ising

model

Heneforth weshall adoptthenotationS x i =x i ,S y i = y i , and S

z

i =z

i

, whih will simplify ourpresentation.

We aution that thesubsripts on f

k

(k =0;1;2;:::)

arenottobeonfusedwiththesubsriptson,e.g.,x

j .

There arenorelationsbetweenthetwo.

In this setion we will onsider theIsing model in

1D (linear hain) with periodi boundary onditions

imposed. This1D modelisfound toontainthebasi

struture of the Ising dynamis. Hene we will show

expliit details of our alulation. Afterward we will

remarkhowtheonlusionisgeneralizedtohigherD's.

III.1Reurrenerelationsanalysisfor1D

Ising model

Intermsofournewnotation,for1D

H= J X i S z i S z i+1 = J X i z i z i+1 ; (9) f 0

=A=S x

0 =x

0

: (10)

UsingtheRR1(Eq. (5)),

f

1 =J(y

0 z 1 +z 1 y 0 ): (11) Hene, jjf 1 jj= J 2 2 [(x 0 ;x 0 )+4(x

0 ;z 1 x 0 z 1 )℄; (12) 1 = jjf 1 jj jjf 0 jj = J 2 2

(1+4 ); (13)

where = (x 0 ;z 1 x 0 z 1 ) (x 0 ;x 0 ) : (14)

Notethatthexxomponentofthesuseptibility xx

=N(x

0 ;x

0

),whereNisthetotalnumberofspinsin

thesystem. Weanalsoalulate Eq. (13)byKubo's

theorem [1℄,

jjf

1 jj=(f

1 ;f

1 )=i

1 <[f 1 ;f 0 ℄>= 2J <z 0 z 1 >; (15) where <z 0 z 1 >= 1 4

tanhK ; (16)

where K =J=4and =1=k

B

T [19℄. Weshall later

exploit the equality betweenEqs.(12) and (15) to

ob-tainanexpliitform for ,animportant quantityfor

thedynami analysis.

Given

1

byEq. (13), we arenowin the position

toobtainf

2

bytheRR1,

f 2 = _ f 1 + 1 f 0 : (17)

UsingEqs. (11)and(13)inEq. (17),weobtain

f 2 =2J 2 ( x 0 z 1 x 0 z 1 ); (18) jjf 2 jj= J 2 4 (1 16 2 ); (19) and 2 = J 2 2 (1 4 2 ): (20)

Continuingthiswaywenextlookat f

3

bytheRR1

f 3 = _ f 2 + 2 f 1 : (21)

UsingEqs. (11),(18),and(20)inEq. (21)wendthat

f

3

=0; (22)

henealso

3 =0..

Thuswehavearrivedatanessentialresultthatthe

realizedHilbertspaeforA(t)=x

0

(t)hasbutthree

di-mensions,spannedbyf

0 ,f

1 ,andf

2

only. Theshapeof

thespaeis determinedby thetworeurrants

1 and

2

. Thetrajetoryofthisvetor,whihisonstrained

tothesurfaeofthisspae,islosed.

Giventhetworeurrants,weannowobtaina

0 ,a

1

anda

2

bytheRR2(Eq. (6))oralso~a

0

byEq. (8)and

thenbyinversetransformL 1

. Theyare

a 0 (t)= 1 ! 2 ( 2 + 1

os!t); (23)

a 1 (t)= sin!t ! ; (24) a 2 (t)= 1 ! 2

(1 os!t); (25)

where! =J=~(but ~=1), and

1 and

2

givenup

tothe funtion by Eqs. (13)and (20),respetively.

Observe that Eqs. (23) to (25) satisfy the boundary

onditions(see Eq. (3)). In addition, Eqs. (23) and

(25)satisfythebasalRR2(seeEq. (7)).

Finallyweanwrite downthetotaltime evolution

(4)

where for eah term on therhs wehavefound an

ex-pliit expression. The validity of Eq. (26) anbe

fur-thertestedthroughtheBesselequalityjjx

0

(t)jj=jjx

0 jj.

Notingtheorthogonality,weobtain

jjx

0 (t)jj

jjx

0 jj

=(a

0 )

2

+(a

1 )

2

1 +(a

2 )

2

1

2

=1; (27)

where thenal resultis obtainedbysubstituting

vari-ousidentitiesalreadyobtainedabove.

III.2 Dynamial impliations

UsingEq. (26)weanobtainanumberof

dynami-alresults. Forexample,weanimmediatelydetermine

thedynamistruturefuntion<x

0 (t)x

0

>asfollows:

FromEq. (26)

S(t)

N =<x

0 (t)x

0 >=

1

4 a

0

(t) iJ<z

0 z

1 >a

1 (t)+

J 2

2

( <z

1 z

2 >)a

2

(t); (28)

where we have used < f

1 x

0

>= iJ < z

0 z

1 > and

<f

2 x

0 >=J

2

=2( <z

0 z

2

>). Ifwedene

~

S(z)=LS(t)= ~

R(z)+i ~

I(z); (29)

the real and imaginary parts ~

R and ~

I (whih an be

read o from Eq. (28)) are related through

Kramers-Kronigrelations[1℄.

Asasatteringproblem,theterm ~

I(z)woulddenote

the absorptive part. Thus the dynami suseptibility

~

(z) is ontained in ~

I(z) whih weshall prove below:

Fromthereurrenerelationstheory[10℄

1 ~ a

1 (z)=

~ (z)

; (30)

where=N(x

0 ;x

0 ). Now

1 =

J 2

2

(1+4 )= 2J

<z

0 z

1 >

(x

0 ;x

0 )

; (31)

where theseond equalityis obtainedbyapplyingthe

Kubotheoremto jjf

1

jj(seeEq. (15)). Hene,

2J<z

0 z

1

>=

1 (x

0 ;x

0

): (32)

Observethatthelhsoftheaboveisthestatiterm

on-jugatetoa

1

(t),theseond termintherhsofEq. (28),

thustogetherorrespondingto(t)=L 1

~ (z).

Oneanalso obtainthedynami suseptibility

us-ingEq. (26)in thedenition[1℄: Fort>0,

(t)=i<[x

0 (t);x

0 ℄>=ia

1 (t)<[f

1 ;x

0

℄>=jjf

1 jja

1 (t);

(33)

where jjf

1

jj = (2J=) < z

0 z

1

>= (J=2)tanhK.

Hene,

~

(z=0)=

jjf

1

jj: (34)

Weshall seein Setion IVthat (z~ =0)<

T , where

T

meanstheisothermal suseptibility.

III.3 Higher dimensions [20℄

Thetime evolutionof x

0

in higherdimensionsmay

beobtainedin asimilarmannerasfor1D. The

essen-tialaspetin 1DisthattherealizedHilbert spaehas

d=3. AsalludedinSetionI,theHilbertspae

dimen-sionsturnouttobesimplyrelatedtotheoordination

number. For the Ising model in D lattie dimensions

theHilbertspaedimensionsare:

d=q+1; (35)

where qistheoordination number[20℄. Thus, for

ex-ample, inthehoneyomblattiethere isbutone more

basis vetorthan in the linear hain. The orrelation

funtions that enter depend onthe lattie dimensions

D. Otherwise the dynami strutures are determined

solelybyqalone.

Ifq !1, themodel is known asthe spinvan der

Waals model [21℄. Atthis limitthedynamial piture

hanges drastially. As d ! 1, the time orrelation

funtions are no longer periodi. It has already been

found through a reurrene relations analysis that if

T >T

a

k (t)=

t k

k! e

t 2

; (36)

where>0isaonstant.

IV Statis from Dynamis

To obtain dynami properties one ordinarily needs

stati properties as for example Eq. (26). Thus to

think that stati properties an be dedued from

dy-namipropertieswouldseemquiteunusualifnotlikely.

ButiftheHilbert spaedimensionalitydisnite asin

theIsingmodel(seeSetionIII),weanin fatobtain

ertainstatipropertiesfromdynamiresultsaswewill

illustratehere.

Considerthe xx omponent of the stati

susepti-bility,

=( X

x

i ;

X

x

j

)=N(x

0 ;x

0

): (37)

(Notethat= 1

T

,where

T

istheisothermal

sus-eptibility.) The suseptibility hasthis form,dierent

from the zz omponent, sine[H;x

0

℄6= 0. Theinner

produtappearinginEq. (37)isakindoftemperature

integral,i.e.,

(x

0 ;x

0 )=

1 Z

0 <x

0 ()x

0

>d; (38)

where

x

0

()=exp(H)x

0

(5)

Hene if we know the \temperature" evolution of x

0 ,

the rhs of Eq. (38) may be evaluated. But we

al-ready know the time evolution of x

0

(see Eq. (26)).

Ift! itherein,

x

0 ()=a

0 ( i)f

0 +a

1 ( i)f

1 +a

2 ( i)f

3 ; (40)

wherea

0 ,a

1 anda

2

anbeimmediatelyobtainedfrom

Eqs. (23),(24)and (25). If Eq. (40)issubstituted in

Eq. (38),weobtain

(x

0 ;x

0 )=

1

4 I

0

+i<f

1 x

0 >I

1 +<f

2 x

0 >I

2 ; (41)

where I

0 , I

1 and I

2

are \temperature" integrals,

eas-ily evaluated. Using < f

1 x

0

>= iJ < z

0 z

1 > and

< f

2 x

0 >= J

2

=2( <z

0 z

2

>) (see Setion III), we

obtain

(x

0 ;x

0 )=

1

8 [(1+

sinhu

u +8

(1 oshu)

u

<z

0 z

1 >

(1

sinhu

u )<z

0 z

2

>℄; (42)

where u = J. Observe that the rhs does not

on-tain . Using the results < z

0 z

1

>= 1=4tanhu=4,

<z

0 z

2

>=(1=4tanhu=4) 2

, and after some

rearrange-mentsweobtain

8(x

0 ;x

0

)=seh 2

K+ tanhK

K

; (43)

where K =u=4. Wehavereoveredthe known result

[22℄.

Theaboveresultmaybeusedto obtainan

expres-sionfor . Fromthedenition,Eq. (13)or(32),

1+4 =

2tanhK =K

tanhK =K+seh 2

K

: (44)

Hene,

=(x

0 ;z

1 x

0 z

1 )=

1

4

1 2Ksh2K

1+2Ksh2K

: (45)

Finallyomparing withthezero-frequenylimitofthe

dynamisuseptibility(z~ =0)(seeEq. (34)),wenote

theinequality[23℄

T

>(z~ =0): (46)

Inhigherdimensions oneanobtain,e.g., the

sus-eptibility. But sine the stati orrelation funtions

arenotknownexeptin2D,thesenewresultsmaynot

be as interesting as in 1D. However they an yield,

e.g., high temperature expansions muh more simply

thanthestandardmethod [20℄.

We oughtto mentionthat the stati suseptibility

(K) (see Eq. (43)) satises the bounds due to Falk

andBruh[24℄,

tanhp=p (K)

1; (47)

where

Y(K)=N <x 2

2

>=N=4 (48)

and

p 0

tanhp 0

j

p

=2KtanhK : (49)

ThelhsofEq. (47)isknownasastrongerlowerbound.

Oursolution,Eq. (43),suggeststhatthestrongerlower

bound ofFalk-Bruhmaynotbestrongenough.

V Disussion

That the time evolution of x

0 = S

x

0

requires a nite

number of the basis vetors is perhaps most

remark-able. It impliesdynamiallythat ifenergyisimparted

tothisspinbysomeexternalperturbation, itdoesnot

beome deloalized. This energy goesbakand forth

between its neighbors, desribing in eet a periodi

motion. From the perspetive of theHilbert spae, it

delineatesalosedtrajetory. Wemustonlude

there-forethat the timeevolutionin thisaseis notergodi

inthesenseoftheusualmeaningofthisword.

Iftheinterationsontainedotherterms(e.g.,XX

interations), the dynamis would hange [25℄. The

energy would beome deloalized as there are

numer-ousothernonstationaryspinstates. Thedimensionsof

therealizedHilbertspaewouldbeomeinnitelylarge

andthetrajetorywouldbenolongerlosed,butopen.

Inertainstatilimitssomeexatsolutionshavebeen

foundbythereurrenerelationsmethod [5-16℄.

We havedemonstrated in somedetail for 1D that

thereurrenerelationsmethod isapowerfulyet

sim-pletehniqueforobtainingveryprofounddesriptions

of dynamis for Hermitian systems. There are other

propertiessuhasthememoryfuntion,subspaes,not

exploredinthispaper,whihareofspeialsigniane

todynamialproesses[26℄.

Referenes

[1℄ W.MarshallandR.D.Lowde,Rep.Prog.Phys.31,705

(1968).

[2℄ M.H.Lee,Phys.Rev.B26,2547(1982).

[3℄ M.H.Lee,Phys.Rev.Lett.49,1072(1982).

[4℄ M.H.Lee,J.Math.Phys.24,2512 (1983).

[5℄ J.FlorenioandF.C.SaBarreto,Phys.Rev.B60,9555

(1999).

[6℄ R.S. Sinkovits and S. Sen, Phys. Rev. Lett. 74, 2686

(1995).

[7℄ I.Sawada,Phys.Rev.Lett.83,1668(1999).

[8℄ S.G.Jo,K.H.Lee,S.C.Kim,andS.D.Choi,Phys.Rev.

E55,3676(1997).

(6)

[10℄ J. Hong and M.H. Lee, Phys. Rev. Lett. 70, 1972

(1993).

[11℄ J.KimandI.Sawada,Phys.Rev.E61,R2172(2000).

[12℄ V.S. Viswanath and G. Muller, Reursion Method

(Springer-Verlag,Berlin,1994).

[13℄ E.B.Brown, Phys.Rev.B45,10809 (1992);49,4305

(1994).

[14℄ D. Vitali and P. Grigolini, Phys. Rev. A 39, 1486

(1989).

[15℄ A.S.T. Pires, Helv.Phys.Ata61, 988(1988); Phys.

St.Sol.b129,136(1985).

[16℄ J.F. Annett et al., J. Phys. Cond. Matter 6, 6455

(1994).

[17℄ R.Kubo,Rep.Prog.Phys.29,235(1966).

[18℄ U.Baluani,V.Tognetti,andR.Valluauri,Phys.Rev.

A19,177(1979).

[19℄ H.E. Stanley, Introdution to Phase Transitions and

CritialPhenomena(OxfordUniv.Press,Oxford,1971).

[20℄ S.Sen,Ph.D. Thesis,UniversityofGeorgia, 1990.

[21℄ M.H.Lee,I.M.Kim,andR.Dekeyser,Phys.Rev.Lett.

52,1579(1984).

[22℄ M.E.Fisher,J.Math.Phys.4,124(1963).

[23℄ H.Falk,Phys.Rev.165,602(1968).

[24℄ H.FalkandL.W. Bruh,Phys.Rev.180,442(1969).

[25℄ J. Florenio and M.H. Lee, Phys. Rev. B 35, 1835

(1987).

Referências

Documentos relacionados

ritial behavior is haraterized at high magneti onentrations..

body transverse Ising model with random bonds and elds. The ouplings and the magneti elds are

transition in suh a model, and study the orresponding ritial temperature as the spin value ande. the

the master equation on the phase spae, and the evolution of loal and global spin autoorrelation.. funtions, in terms of independent relaxation modes, whih are eigenvetors of the

We propose an improvement of a Monte Carlo method designed to treat the Ising model in a

universality lass at the ritial point marking

We alulate the spatial and temperature dependenes of various spin orre-.. lation funtions, as well as the wave-vetor dependene of the spin suseptibility for

The kineti Ising model on an n-isotopi hain is onsidered in the framework of Glauber dynamis.. The hain is omposed of N segments with n sites, eah one oupied by a