• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número3"

Copied!
9
0
0

Texto

(1)

Mossbauer Spetrosopy,

Superparamagnetism and Ferrouids

H.-D. Pfannes, J. H. Dias Filho,R. Magalh~aes-Paniago,

J. L. Lopez, and R. Paniago

LaboratoryforHyperneSpetrosopyandSurfae Physis

Departamento deFsia,UniversidadeFederaldeMinasGerais,BeloHorizonte,Brazil

Reeivedon21Deember,2000

SomefundamentalsofMossbauer spetrosopyand ofutuatingmagnetihyperneinterations

are reviewed. Anexpression for alulationof spin-phononinterationtransition probabilities on

thegroundofaDebyemodelisgiven. Basiideasofsuperparamagnetismandlassial resultsfor

low-temperature relaxationrates are presented. A theoryof superparamagnetismbased on

spin-phononinterationisintrodued. ItisshownhowtoalulatefromthisMossbauerspetrataking

allspin-levelsintoaount. Experimentalspetraofferrouidsareomparedwithsimulatedspetra

andfoundingoodaordane.

I Introdution

The Mossbauer eet is based on the \reoilless"

ab-sorption and emission of low energy (E

0

=10-100keV)

-photonsin solids[1,2℄. Asimpleexplanationforthis

eetreliesontheHeisenbergunertaintyrelation: the

unertaintyin momentump~=xofboundatoms

isoftheorderof10 23

kgms 1

(x=0:1

A)butthe

re-oilmomentofe.g. a-photonwithenergyE

0

=10keV

is smaller(~510 24

kgms 1

),i.e. thereoilwhih

eventuallyanexitevibrations(phonons)ofthe

emit-ting atomsometimesmaynotbemeasurable. The

re-oil is then transmittedto the rystal asawhole and

sinethe massof therystalis muh greaterthan the

atomi mass it does not alter the -energy

(\reoil-less"emission). TheMossbauerradiationemittedfrom

a Mossbauer soure has thereforethe exatresonane

energyneessaryforabsorptioninanabsorber

ontain-ing the same material as the soure. Moreover,when

the lifetime of the exited Mossbauer energy level

is longer (e.g. = 10 7

s) than the inverse vibration

(phonon) frequenyoftheemittingor absorbingatom

(e.g. 10 13

s)theatom arriesoutmanyylesduring

thelifetimeandtheDopplerbroadeningoftheemitted

radiation averages out. As a result a sharp line with

the natural linewidth = ~= at the position E

0 is

emittedfromthesoureandnulearresonane

absorp-tion with an energeti resolution =E = 10 13

,

suf-ient toresolvehyperne interations,is possible[2℄.

Theabovementionedonditionsforreoillessemission

limitsthe Mossbauer isotopesto those isotopeswhih

possess low energy nulear -transitions (small reoil

moment),longlifetimes oftheexitedstate(hyperne

resolution), high Debye temperature (small x) and

solidsouresand absorbers. These onditionsare

ide-allyfullled for 57

Fewhihisindeed themostpopular

Mossbauerisotope. Fig. 1showsshematiallythe

de-ayshemeof 57

Co,whihisused asparentfora 57

Fe

Mossbauersoure. TheMossbauerresonantabsorption

andvarios re-emissionsare alsoindiated in Fig.1. In

order to vary the energy of the Mossbauer radiation

emitted by the soure in the rangeof hyperne

ener-gies and thus renderpossibleMossbauer spetrosopy

itissuÆienttomovethesourewithsomemm/s. The

intensityoftheMossbauerphotonsbehindtheabsorber

asfuntion oftherelativeveloitybetweensoureand

absorber represents a Mossbauer (transmission) sp

e-trumasshownshematiallyintheinsertofFig.1.

I.2 Hyperne Interations

Theinterationoftheextendednulearhargewith

eletronspresentinthenulearvolumeleadsto ashift

of the enter of the spetrum (isomer shift) and

pro-videsinformationonthevalenestateoftheMossbauer

(2)

Figure1. Deayshemeof 57

CoandMossbauerresonaneabsorptionandre-emissionof 57

Fe. Insert:Mossbauertransmission

spetrum.

An eletri eld gradient present at the nuleus'

siteinteratswith thenuleareletriquadrupole

mo-mentandresultsina(quadrupole)splittingofasingle

Mossbauer line (into two lines for nulei with nulear

spinof theground and exitedstates, I

g;e

=1=2;3=2;

respetively). This nulear quadrupole interation

al-lowsonlusionsonthevalene,bondingpropertiesand

symmetryoftheviinityoftheMossbaueratom.

Themagnetihyperneinterationisespeially

im-portantin ourontext. Themainpartofitstemsfrom

the Fermi ontatinteration whih is the interation

ofthenulearmagnetidipolemomentwithanet

spin-upordowns-eletrondensityatthenuleus. Itanbe

representedbyaspin-Hamiltonian[2℄

H

mhf =

~

S $

A ~

I; (1)

where $

A

is the hyperne tensor. Whenthe hyperne

tensor is isotropi, i.e. H

mhf = AS

z I

z

with the

hy-perneinterationonstantA,wean interpretitasa

nulearZeemaneetduetotheeldB

n

atthenuleus'

site(innereld)

H

mhf

= gn

B B

n

I: (2)

ForaMossbauerisotopewithI

g;e

=1=2;3=2a

six-linespetrumwithrelativeintensitiesdependingonthe

angle between the -diretion and the z-axis results.

Thepreseneofsixlinesina 57

FeMossbauerspetrum

thusindiates thepreseneof a(stati) magnetield

atthenuleuswhihmaybeausedbylongrangeorder

magnetism.

I.3 Flutuating hyperne elds

Flutuationsofthehyperneinterations analter

thespetra. E.g. whenB

n

hangesit'sdiretionmany

times during the lifetime of the exited state the

nu-leus\sees"onlyanaveragezeroeldandthesplitting

It an be shown that the Mossbauer absorption

spetrumI(!)observedin theenergy(frequeny)

do-main, i. e. the numberof ounts in transmission

di-retion behind the absorber asfuntion of the soure

veloityv,is givenbythereal partofthetraeof the

spetrum of the temporal orrelation funtion of the

Mossbauerradiation operatorA (e.g. magneti dipole

radiation)as[3,4℄

I(!)= 2

Re Z

1

0 dte

pt

Tr(A(t)A +

(0)); (3)

wherep= =2 i!(E

0

=~!=E

0

v=)andisthe

den-sityoperator of thewhole system. It is advantageous

here to use superoperators and Hamilton

superopera-tors H x

(Liouville operators) in order to avoid time

ordering problems when H(t) is not ommuting with

itself at dierent times as is the ase when ombined

nulearquadrupoleand(non-diagonal)magneti

hyper-neinterationispresent. AsuperoperatorA x

atson

another operator B in the form A x

B = A +

B BA

whihis equalto theommutator[A;B℄whenthe

op-erator A is hermitian. TheLiouville operators anbe

represented in aprojetor base jij)=ji >< jj of the

Hamiltonianeigenstatesji>andjj>andthe

eigenval-ues of H x

are the spetrosopi important dierenes

(E

i E

j

). The produt (BjA) is given by (BjA) =

Tr(B+A)andthetimeevolutionA(t)ofanoperatorA

anbewrittenexp(iHt)Aexp( iAt)=exp(iH x

t)A(0):

Weanthenwrite [4℄

I(!)= 2

ReTr

A 1

p iH x

A +

= 2

ReTr Z

1

0 dte

pt

e iH

x

t

A(0)A +

(0); (4)

HereapratialdiÆultyarises: H x

omprisesthe

(3)

in-fyingapproaheshavebeenused: thestohastiandab

initiomodels. Wepresentheresomeideasonthelatter

model.

TheHamiltonian ofthesystemissubdivided

H =H

Ion +H Bath +H Ion Bath : (5)

One shows then that under the assumptions

H x Bath Ion << H Ion ;H Bath

(onvergeny of

approx-imation solution) and =

Ion

Bath

(irreversible

Bath-Ioninteration)theMossbauerspetrumisgiven

by[4,5℄

I(!)/ReTr

Ion ( Ion A[p iH x Ion R(p)℄ 1 A + ); (6)

wheretherelaxationsuperoperator Rontainsmatrix

elements of thespin-operator S

q

and bath orrelation

spetraldensities whih dependon bath-operatorsF

q .

Here the ion-bath interation was desribed by a

dy-namial spinHamiltonian H

Ion Bath = P q S q F q :E:g: in 2 nd

order of H x

Ion Bath

after some tedious

alu-lation one obtains asrelaxation supermatrix elements

[5℄ (ge)jR jg 0 e 0 ) = X q;q 0 " Æ gg 0 X e" <e 0 jS q 0

je"><e"jS

q je>I

0 q 0 q (! g ! e +ip) + Æ ee 0 X g" <g 0 jS q

jg"><g"jS

q 0jg

>I"

q 0 q (! g" ! e +ip) <e 0 jS q

je><gjS

q jg

0

>I"

q 0 q (! g 0 ! e +ip) <gjS q 0 jg 0 ><e 0 jS q je>I"

q 0 q (! g ! e 0

+ip)℄ (7)

d

withthereservoirorrelationspetraldensities

I 0 q 0 q ()= Z 1 0 e it Tr Bath [ Bath F I q 0(t)F I q (0)℄dt I 00 q 0 q ()= Z 1 0 e it Tr Bath [ Bath F I q (0)F I q 0(t)℄dt (8)

where the bath operators F I

q;q℄

are in the interation

representation. WhenI 0

q 0

q andI"

q 0

q

areindependentof

! (\whitenoiseapproximation",normallyvalid in the

ase of spin-phonon relaxation), the matrix elements

(egjR jeg) are transition probabilitiesW e

g

between the

statesje>andjg>:

I.4 Spin-phonon interation

Simplifying, we start with a dynamial

spin-Hamiltonianwhihrepresentsthespin-phonon

intera-tionin2 nd

orderperturbationtheory(B q 2 areoupling onstants)[6,7℄ H Bath Ion = 2 X O q 2 B q 2 ( av + 2 av

+:::) (9)

withtheaveragedstrainoperator

av = X j ~ 2M! j 1=2 k j (a + j e i ~ k j ~r +a j e i ~ k j ~r ): (10)

TheequivalentoperatorsO q

2

ontaintheladder

op-eratorsS 2

. Wetakeonlydiretproessesintoaount

(seeFig.2)wheretheabsorption(annihilation)or

emis-sion(reation)ofaphononleadsto aspintransition.

Figure2. Spinexitation by absorption of aphonon ina

diretproess.

The spetral bath orrelation density an then be

alulatedintheharmoniapproximationby

introdu-ing the Debye model. In the long-wavelength limit

(! = vk) we obtain ( = M=V = density, v =

(4)

I 0

(2)

q 0

q =I

"(2)

q 0

q =

3(!

m 0

!

m )

3

B q

0

2 B

q

2

4~v 5

1

e ~(!

m 0

!

m )=k

B T

1

(11)

andthespin-phonontransition probabilities(f. Fig.2)are

W m

0

m =

3(B p

1 )

2

j<m 0

jO p

1 jm>j

2

2~v 5

(E

m 0

E

m )

3

exp((E

m 0

E

m )=k

B T) 1

: (12)

d

Withthese relationsparamagneti spin-phonon

re-laxation spetra of e.g. Fe(III) impurities (S = 5=2)

anbe alulated,eventuallyusing eetivespins-[5℄

beause the supermatrix for S = 5=2 has already a

rankof(2I

g

+1)(2I

e

+1)(2S+1) 2

=288for 57

Feand

is not hermitian. An example for Fe(III) impurities

in monorystals of LiNbO

3

is given in [8℄. For

big-gerspinslikethatorrespondingtothetotalmagneti

moment of magneti nanopartiles (S = 1000-10000)

the rankof thesupermatrix involved would be of the

orderof10 8

,withoutanypossibilityofnumerial

treat-ment. But itis yet possible to realizealulationsfor

bigspinswhenonlydiagonalinterationispresentand

thusnosuperoperatorformalismisneededforthe

om-binedstohasti-quantum mehanialproblem (see be

belowin setionII.4).

II Superparamagnetism

Superparamagnetismhasto do withthethermally

in-dued inversion of the magnetization of small

(nano-sized) magneti partiles. This is an important

phe-nomenonsineultra-nemagnetipartilesare

impor-tant in many systems, e.g. in soils, roks, argiles,

e-ramis, paintings, living organisms (ferritin, magneti

bateria, magnetially based navigation of animals),

reording media (what is the ultimate magneti

stor-agedensity?),atalysts,et. andferrouids.

II.1 Basi ideas of superparamagnetism

Whenthe dimensionsof asmall magneti partile

are of theorder of the width of aBloh wall the

par-tile willbeasingledomainpartile. Atlow

tempera-turesthe spinwavesare frozenandthus the

magneti-zation is equalto thespontaneous magnetization M

s .

Sine the exhange (or superexhange) interation is

predominant ompared to anisotropyinterations jMj

mayberegardedasonstantsothattheonlydegreeof

freedom ofthe magnetization would beitsorientation

relative to some (uniaxial) anisotropy axis. When

measuring aproperty related to the magnetization at

T > 0 it may happen that the magnetization

utu-ates(thermallyativated)betweeneasydiretions and

theharateristitime ofmeasurementisgreaterthan

the(overbarrier)utuationtimeofthemagnetization.

In this ase we say that superparamagneti behavior

ismeasured(themeasurementmethod \sees"onlythe

time-averagedvalue). Fromnowonwewillusethe

fol-lowing simpliations: only an uniaxial symmetry of

theform[9-12℄

E()=KVsin 2

M

s

VBos (13)

is present (K = anisotropy onstant, V = volume of

thepartile),theexternaleldB isparalleltothe

pos-itivez-diretion,allpartilesare identialin material,

form and spatial orientationand are uniform (no

sur-fae eets) and isolated (no partile-partile

intera-tion)andtherotationofthemagnetizationhappensby

oherentrotationofthespins(\unison"). Underthese

irumstanesvarious authorsdedued expressionsfor

therelaxationtime ofreversionsofthemagnetization

betweentheeasyz-diretions.

Neel[11℄relatesthevibrationalstrainenergyofthe

partilestoitsthermalenergyandalulatesthe

mag-neti energy aused by thedeformation. Atlow

tem-peratureheobtains

1

Neel

=(2K =G) 1=2

0 M

1

s

j3G+DM 2

s j

1=2

(1 h 2

) 1=2

(1h)exp( (1h) 2

(5)

is the gyromagneti ratio, = KV=k

B

T and h =

BM

s

=2K isthereduedexternaleld (0h1):

Brown[12℄ onsidersarandom walkofthe

magne-tization on a sphere similar to Brownian motion. In

the lassial equation of motion of the magnetization

(Gilbert'sequation)adissipativeandrandomeldterm

h(t) is introdued. A Fokker-Plank equation is

ob-tained whih is approximately solved. The result for

lowtemperature(<<1)is

1

Br

(

0 K =

1=2

M

S

)(1 h 2

)(1h)exp( (1h) 2

):

(15)

Thisexpressioniswidely usedintheliteraturebut

it'snotvalidforhightemperaturesandh1.

Bessais, Ben-Jael, Dormann [13℄ nd more

ex-at solutions of the Fokker-Plank equation by using

FourierandChebyshevseriesand dedue

1

BBD

=K

0 M

S

(1+=4) 5=2

1

exp( ): (16)

Villain et al. [14℄ analyzeparamagneti like

relax-ation in magnetimoleules withS =10 due to

spin-phononinteration. Theorrespondingrelaxationrate

wasalulatedto

1

V 3B

2

(KV) 3

(2~ 4

v 5

S 4

) 1

exp( ): (17)

Jones, Srivastava [15℄ introdue the \many states

model"inordertoalulateMossbauerspetra(see

be-lowinsetionII.4). Foralarge(lassial)spin

(ontin-uumlimit)theyalsodeduefromthismodelaF

okker-Planklikeequationandsolveitinthelowtemperature

regime andobtain(R/squareofarandomeld)

JS

1 R 1=2

3=2

(1 h 2

)(1h)exp( (1h) 2

):

(18)

One observes that all these expressions ontain

the same Arrhenius-like exponential fator but

vari-ous prefators. In priniple they are only valid in

the low temperature regime. No mirosopi,

non-phenomenologial explanation of the

superparamag-netimehanismisgivenbytheaboveauthors.

II.2 Superparamagnetism by

spin-phonon relaxation

Reentlyamehanismforsuperparamagneti

relax-ation based on spin-phononinteration was suggested

[16℄. Weshortlyrepeatherethemainideasandresults

ofthiswork.

The supposed unison rotation of the spins

sug-gests the attribution of a large spin to the

magneti-zation dened by M

s

V = g

B

S. Relating Sos to

the spinoperator S

z

and suppressing aonstant term

KV,theanisotropyenergy(13)orrespondsto a

spin-H

sp

= AS 2

z g

B BS

z

; (19)

wheregistheeletronig-fator,

B

theBohr

magne-tonandAS 2

=KV (heightofthebarrier for B =0).

Thesuperparamagnetirelaxationofthepartilesis

as-sumedtobeinduedbyinterationofthelargespinS

withthephononsof thepartile(or ofabath). In

or-der to turn overbetween opposite easy diretions the

spin S must pass through intermediate levels

hara-terizedby S

z

. Eigenvetorsof (19)are jS

z

>=jm >,

with eigenvalues E

m

= AS

2

z

2AhSS

z for S

z =

S; S+1;:::;S 1;S: Fig. 3 shows a graphof E

m

vs. m and a possible phonon indued spintransition

betweenthelowestlevelsofbothsidesofthebarrier.

Figure3. Anisotropy energyvs. eigenvalueswith applied

magnetield. Spintransitionsfromj S >to jS>with

m=n=2areindiated.

II.3 Calulation of a relaxation time for

jS>$j S >

Thespintransitionrateinduedbyphononsisgiven

in(12). ConsideringonlytherelaxationjS>$j S>

under the ondition that the oupation of all

in-termediate levels remains onstant (pseudo two level

system) and assuming detailed balane, a rate

equa-tionssystem(masterequations)anbeestablishedand

solved for a relaxation time

[16℄. In the ase of

spin jumps with m = n = 2 we obtain (C 0

=

(3(B

1 p)

2

=2~ 4

v 5

)(AS 2

) 3

;

=(1h) 2

)

1

=C

0

1

exp(

)(S=2)

6

(6)

(h)= S 2 (1h) 1 X i=0 exp 2 S 2 i 2 1 exp 2 S 2

(1+2i)

(1+2i) 3

(S(1h 2i)(S(1h) 2i 1)D)1h)+2i+2(S(h)+2i+1)

: (20)

Agoodapproximationuptoh0:95is

1 5C 0 1 (1 h 2 ) 2 exp(

)210 13 s 1 1 (1 h 2 ) 2 exp( ): (21) d

HereS =3222,=5000kgm 3

, v=3000ms 1

and

KV =AS 2

=2:6710 20

J wasassumed,whihare

typ-ialvaluesfora90

AMnFe

2 O

4

-partilewith5spinsper

unit ellof 8.4

A lattieonstant[16,17℄. Fortheonly

freeparameter, theouplingparameterB 2

2

, avalueof

13m 1

washosen,whihresultsinrelaxationratesin

aordanewiththeexperiments.

The funtional dependene on the anisotropy

en-ergyKV, temperatureT and external eld (h)in the

expressions(14)-(18)and(21)issimilar. Theyontain

the sameArrhenius-like fatorand dieronly slightly

in theelddependeneof thepre-fator,whihis

pro-portionalto(1 h 2

)(1h) in(15)and(18)insteadof

(1 h 2

)(1+h)(1 h)in(21). Inviewoftheompletely

dierent physial approah used this may be

remark-able. Of ourse all the expressions dier in the other

fators whih appear in the pre-fator sine they

de-pendontheparametersinvolvedinthespei model.

We onludethat our model adequately desribes

su-perparamagnetism.

Onthebasisof(21)Mossbauerspetraanbe

al-ulated using an eetive spin. At low temperature

experimental spetraan bereprodued [17℄. Spetra

atsomewhathighertemperatureanapproximately

re-produedtakingolletiveexitations,i. e. athermally

averagedinner eld, intoaount. Howeverforhigher

temperatures this method fails andalulations based

onthemethodpresentedinthefollowingareindiated.

II.4 Multi-levelalulation of Mossbauer

spetra

In the ase of isotropi magneti hyperne

in-teration and diagonal nulear Hamiltonian (nulear

quadrupoleinteration<<magnetihyperne

intera-tion)theexpression(6)and(7)anbesimpliedsothat

no superoperators are needed. Furthermore one an

simulate a Mossbauer spetrumby summing upthree

separately alulatedspetraonsisting ofthepairsof

lines (1-6), (2-5),(3-4) in thesix-lines spetrum. The

simpliedexpression[15℄ foronepairoflinesreads

I(!)/2Re( ~ W $ M 1 ~

I)whit $

M=(i(! !

i )+ ) $ 1 $ R; (22) where $ W

is a row vetor onsisting of probabilities

(Boltzmannfators)ofthe(2S+1)statesandM

on-tainsthestatiline positions!

i

,givenbythesplitting

(1-6),whihis assumedtobeproportionalto S

z . The

relaxationmatrix $

R

hasaselementstransition

proba-bilitiesr

ij =W

ij

betweenthestatesji>!jj >(i6=j)

andr ii = P j W j I

(i6=j). ThetotalMossbauer

spe-trum is obtainedby summingup the three alulated

two-lines spetra (1-6), (2-5) and (3-4), where in the

alulationofthe!

i

adequatelyreduedsplittings(2-5)

and(3-4),stillproportionaltoS

z

,andthesame

transi-tionprobabilitiesasinthealulationof(1-6)areused.

Asbefore, for thespin-transitions S

z

=2is

pre-sumed. We taketherefore only spin-matrix elements,

that ontainS 2

, into aount,whih resultsin

transi-tionprobabilities W Sz2 S z =C(B=m 1 ) 2 S 4 1 S z S 1 S z S 1 S 1 S z S + 1 S 1 S z S + 2 S (4AS) 3 1 S Sz S h 3 e 4AS k B T ( 1 S S z S h) 1 : (23) S z

(7)

W

x /exp

KV

k

B T

(1+h) 2

S

z

S +h

2 !!

: (24)

Introduingtheseexpressionsin (22)onean

simu-late Mossbauer spetra. The inverse of $

M

is required

foreahvalueof!(256Mossbauerveloities),involving

aorderof256timesN 3

operationsforamatrixofrank

N. Inourase $

M

istridiagonalandthusonlyofthe

or-der of256N 2

operationsareneessaryforinversion. A

further signiantsavinginomputertimeisobtained

by observing that in (22)in fat not theinverse $

M 1

$

M ~

V =1problemisreduedto solveaset of

simulta-neouslinearequationsforwhihrequiresonlyanorder

of256Noperations[15,18℄. This methodallowsone to

simulatespetraforspinsSuptoseveralthousand,

or-respondingtospinsfoundinrealsystems,onamodest

omputerinafewminutes.

Fig. 4showssomesimulationsofspetrausingthis

multi-level relaxation method for a spin S = 3222 at

dierent temperatures and several external magneti

elds. The parametersused in the alulationsof the

transitionprobabilitiesarethat ofeq. (21).

Figure 4. SimulatedMossbauer spetraatdierenttemperaturesandzero externaleld (left)and dierent eldsat600K

(right). Seetext.

Despitetheabovedesribedpossibilityofrapid

sim-ulationofspetraforalargespinitmaysometimesbe

neessary to use a smaller (redued) spin in order to

alulate real spetra. E. g.,if thesimulationof

pow-derspetraisdesired,onehastoeetanaverageover

the dierent orientations ofthe rystallitesrelativeto

theexternaleld- and-diretion. Thisimpliesin the

presene of a eld omponentperpendiular to the

z-axis, whih results in amixture of the spin levels, so

that $

M

is no longer tridiagonal. Furthermore, when

size-dispersionis present, asis alwaysthe asein real

samples,onehasalsotosumupsuÆientlyspetra

or-responding to dierent volumes (and anisotropy

on-stantvalues K, whih often depend on the rystallite

size).

Figure5. VariationofS;S=3222,322,32(simulationtime

(8)

Weomparedthereforespetrasimulationsfor

dif-ferentvaluesS

red

of reduedspinsatdierent

temper-atures. The resultis shownin Fig. 5. It an be seen

thatpratiallyidentialspetraareobtainedfor

dier-entspinswhenthetemperatureisreduedbyafatorof

approximatelyS=S

red

. Oneanthereforeuseasmaller

spinS

red

inpratialsimulations.

III Appliation to ferrouids

Many ferrouids are based on nano-sized partiles of

ferrites. Stati Mossbauer spetraof ferritesan

nor-mally be satisfatorilyttedby twosextetswith

rela-tivetotalareaorrespondingtotheratioof 57

Featoms

onotahedralandtetrahedralsubstitutionalsites(Neel

model[19℄). However,forsimpliationof the

alula-tions,weuseinthefollowingsimulationsonlyonesingle

sextetwithlarger(0.4mms 1

)linewidthandsuppress

also thequadrupole splitting. Inthe alulationsalso

thesizedistribution(log-normaldistributionwithmean

diameterd

0

andwidth )asdeduedfromthesample

synthesisandeletronmirosopyhasbeentakeninto

aount by summing up spetra (sample synthesisby

F.A. Tourinho, UnB, Brasilia). The random

orienta-tionofthenanopartileshasbeenountedforbyusing

relativeline intensities in the sextetsof 3:2:1. Fig. 6

showsexperimental spetraofaNiFe

2 O

4

basedfrozen

ferrouid in the temperature range T = 90...4.2K.In

theorrespondingsimulationsaredued spinS

red

de-pendingontherystallitediameterd(sizedistribution)

denedbyS

red

(d)=S(d

0 )(d=d

0 )

3

withS(d

0

)=32and

reduedtemperaturesT

red =T(S

red

=3222)wereused.

Similarly, Fig.7 shows experimental spetra and

simulations of a powder of CoFe

2 O

4

, preursor of a

obaltferrite based ferrouid. The simulations have

been doneanalogouslyto those of Fig.6. Considering

thevarioussimpliations madetheoinideneof

ex-perimentalandsimulatedspetraissatisfatory.

IV Conlusion

Experimental superparamagneti Mossbauer line

pat-ternsarereproduedbyab-initiosimulationsbasedon

aspin-phononinterationmodelandtaking

intermedi-atespinlevelsintoaount,withoutusingathermallly

averaged hyperne eld due to olletive exitations.

We use spin-transitionsprobabilities pertime W j

i

de-rived from a dynami spin-Hamiltonian (weak

spin-bath interation) that indues transitions in the spin

andphononsubsystemsandadopt theDebyemodelin

thelongwavelength limit.

WiththismethodoneisabletoalulateMossbauer

spetra for S=3222 within several minutes (provided

thattherelaxationmatrixRistridiagonal)onasmall

personal omputer. Comparison of spetra alulated

with a smaller spin exhibit similar shapes than that

of the\real" spinS, providedthe temperatureis

ade-quately redued. Simulations ofMossbauer spetraof

ferrouids-ferrites areompared with real spetraand

showgoodorrespondene.

Figure6. SpetraoffrozenNiFe2O4-ferrouid,d0=10nm(left)andsimulationswithSred(d0)=32andreduedtemperatures,

log-normalsizedistribution(=0.1, d06=10nm),K=410 4

Jm 3

(9)

Figure7. CoFe

2 O

4

-powderspetra,d

0

=4.3nm(left). CoFe

2 O

4

-simulations,d

0

=5nm,=0.1,S(d

0

)=32,K=1:610 5

Jm 3

,

(right).

Referenes

[1℄ R.L.Mossbauer, Z.Physik151,124(1958);

Naturwis-senshaften 45, 538 (1958); Z. Naturforsh. 14a, 211

(1959).

[2℄ V.I. Goldanskii, R.H. Heber, Chemial appliations of

Mossbauer Spetrosopy, Aademi Press, New York,

1968.

[3℄ S.Dattagupta,G.K.Shenoy,B.D.DunlapandL.Ash,

Phys.Rev.B16, 3893(1977).

[4℄ L.Cianhi,P.Moretti,M.ManiniandG.Spina,Rep.

Progr.Phys.49,1243 (1986).

[5℄ H.D.Pfannes,Hyp.Interat.110,127(1997).

[6℄ R.Orbah, H.J. Stapleton, in: Eletron Paramagneti

Resonane,ed.S.Geshwind(PlenumPress,NewYork,

1972).

[7℄ K.K.P.Srivastava,S.N.Mishra,Phys.Stat.Sol.(b)100,

65(1980).

[8℄ H.-D Pfannes, R. Magalh~aes-Paniago, E. Bill, A. X.

Trautwein,Hyp.Interat.94,2005 (1994).

[9℄ S.Mrup,J.A.Dumesi,H.Topse,in:Appliationsof

Mossbauer Spetrosopy, Vol. II,ed.R.L.Cohen

(Aa-demiPress,NewYork,1980).

[10℄ J.L.Dormann,RevuePhys.Appl.16,275(1981).

[11℄ L.Neel,Ann.Geophys.5,99(1949).

[12℄ W.F.Brown,Jr.,Phys.Rev.130,1677(1963).

[13℄ L. Bessais, L. BenJael, J. L. Dormann,Phys.Rev.

B45,7805(1992).

[14℄ J.Villain, F. Hartmann-Boutron, R. Sessoli, A.

Ret-tori,Europhys.Lett.27,159(1994).

[15℄ D.H.Jones,K.K.P.Srivastava,J.Mag.Magn.Mat.78,

320(1989).

[16℄ H.-D.Pfannes,A.Mijovilovih,R.Magalh~aes-Paniago

andR.Paniago,Phys.Rev.B62,3372 (2000).

[17℄ H.D.Pfannes,J.H.DiasFilho,J.L.Lopez,S.L.Pereira,

P.C. Morais, F.A. Tourinho, Hyp. Interat. 113, 507

(1998).

[18℄ H.-D.Pfannes,J.H.DiasFilho,R.Magalh~aes-Paniago

andR.Paniago,J.Mag.Magn.Mat.(2001)inthepress.

Imagem

Figure 1. Deay sheme of 57
Figure 2. Spin exitation by absorption of a phonon in a
Figure 3. Anisotropy energy vs. eigenvalues with applied
Fig. 4 shows some simulations of spetra using this
+3

Referências

Documentos relacionados

Knowledge of partile size distribution is very important for the study of magneti uids, magneti.. powders and other

hemial speies are present on the maghemite surfae by hanging the laser exitation energy.. Maghemites modied by the adsorption of asparti and glutami aids as well as those

Thermal diusivity results obtained with the ollinear mirage tehnique, are reported for dierent.. onentrations surfated ferrouid and for a set of aid ferrouids with variable

We onsider that one of the uids is a ferrouid and that an external magneti eld is applied.. The interfaial instabilities whih arise between the uids are studied for various

Ferrouid drops are freely suspended in air by using magneti elds to.. reate an attrative fore

The phase diagram of a magneti olloid in a Hele-Shaw ell is alulated.. As a funtion

the dispersion equation is then used to analyse the apillary-wave resistane, that is the drag fore.. assoiated to the emission of waves by a moving disturbane at a free

urv ature salar vanishes and the salar eld hanges from real to purely imaginary..