• Nenhum resultado encontrado

Lat. Am. j. solids struct. vol.11 número6

N/A
N/A
Protected

Academic year: 2018

Share "Lat. Am. j. solids struct. vol.11 número6"

Copied!
19
0
0

Texto

(1)
(2)
(3)

Determining Fatigue Load Parameters (Flowchart A)

Reliability Analysis based on S-N curves model-Miner Rule

a) FORM Method b) MCS Method

(4)

1- Simulation of traffic flow based on Railway data of

Iran 2- Crossing simulated loads over the finite element

model

3-Determining time history of Displacement applied to spring clips type vossloh Skl14

4- Applied time history of displacement to spring clips type vossloh Skl14

5- Applying obtained time history of displacement to

finite element model of spring clips 6- Determination time history of stress in critical element of spring clips

8- Cycle counting with "rain flow" method

7-Time history of stress in critical element of spring clips

Calculate Sre Is the number of analyzes enough?

NO

Yes

Selection 20 wagons

F orm Train Random Speed

Train passing over finite element model

Selection Random Axial load

Determining equivalent stress range per Crossing every train and repeat the steps above to determining the probability distribution function

9 6 0 9 8 0 1 0 0 0 1 0 2 0 1 0 4 0 1 0 6 0 1 0 8 0 1 1 0 0 1 1 2 0

0 .0 2 0 .3 8 0 .7 4 1 .1 1 .4 6 1 .8 2 2 .1 8 2 .5 4 2 .9 3 .2 6 3 .6 2 3 .9 8 4 .3 4 4 .7 5 .0 6 5 .4 2 5 .7 8 6 .1 4 6 .5 6 .8 6

St

re

ss

(M

pa

)

T i m e ( S )

S tr e s s -T i m e

(5)
(6)
(7)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

2

4

6

8

10

C

o

n

ta

c

t

fo

rc

e

f

a

c

to

r

Time (ms)

(8)

Start

t < Tend

t = t + dt

End

No

Yes

Stop process

No

Insert the following parameters and information: - Track

- Train

- Rail-wheelset contact

- Ending process time (Tend)

- Time rate (dt)

Determine the track roughness function Start process

t=0

Form matrixes of mass, stiffness and damping of track,

train and force vectors

Determinate the train position

Assuming the quantity of linear Hertzian spring stiffness based

on latest step

Form a new stiffness matrix

Form new forces vector

Calculation of displacement based of Newmark method

Is wheel set separate from rail?

Are the all wheel sets separated? The Hertzian stiffness in separated wheelsets = 0

Yes

The system is unstable Calculate the quantity of linear

Hertzian spring stiffness

No

Is convergence in amount of Hertzian spring

stiffness?

Yes

Yes No

Save the results of displacement

(9)

0 100 200 300 400 500 600 700 800 900 1000

0 2 4 6 8 10 12

F

o

rc

e

(

k

g

)

Displacement (mm)

(10)

 

( )

g Z

R

L

( )

( ( )

0)

P f

P g Z

 

1

(11)

m f

A

N S

1

i fi

D

N

1 1

1

m

n n

i

i fi i

S

D

N

A

 

1 n

m i i

S

1

n m

i i

S

 

 

1 n

m m

i i

i

E

S

E n E S

0 100 200 300 400 500 600 700 800 900 1000

14 16 19 22 24 27 30 33 35 38 41 43 46 49 52 54 57 60 62 65

N

u

m

b

er

(12)

 

 

1

m

i

D

E n E S

A

( , )

g X t

  

eD

( , )

m r e

n S

g X t

e

A

  

1 1

0

( )

)

m m

i T otal

n m m

r e N r i r e s

S

S

or S

S f s ds

 

1

,

2

X

 

X

A

X

4

S

r e

3 4

1

2

( )

m

X X

g X

X

n

X

(13)
(14)

2 2.5 3 3.5 4 4.5 5 5.5 6

0 5 10 15 20 25 30 35 40 45

R e li a b il it y i n d e x Time (year) 1827 3827 5827 7827 9827 13827 17827 21827 23827 N u m b e r o f d a il y c y c le

0

1

2

3

4

5

6

7

8

1

5

10

15

20

25

30

35

40

R

e

li

a

b

il

it

y

I

n

d

e

x

Time (year)

(15)
(16)
(17)

 

M

 

X

 

C

 

X

 

K

 

X

 

F t

( )

 

1 2 1 2

& & & &

[

]

[

]

[

]

[

]

[

]

(

,

,

,

,

,

,

,

,

,

)

[

]

(

,

, ...,

)

[

]

(

,

, ...,

)

NS NS

C a r body Bogie W heel

R a il

Sleeper

Ba lla st

T DO F T DO F C a r body Bogie W heel c c t t t t w w w w

Sleeper s s s Ba lla st b b b

M

M

M

M

M

M

dia g M

J

M J

M J

M

M

M

M

M

dia g M

M

M

M

dia g M

M

M

 

2 2 1 2

156

22

54

13

4

13

3

[

]

[

]

[

]

156

22

420

.

4

i i

NE i i i

i i r i

R a il R a il R a il

i i

i

L

L

L

L

L

m L

M

M

M

L

sy

L

 

& & /

/ & /

/ / / / /

[

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

Ca r body Bogie C B W

W C B W heel W R

R W R a il R S

S R Sleeper S B

B S Ba lla st

T DOF T DOF

K

K

K

K

K

K

K

K

K

K

K

K

K

K

 

2 & 2 2

2

0

0

0

2

0

0

2

0

0

0

[

]

2

0

0

2

0

2

t t t

t c t c t c

t w

C a r body Bogie

w t

t w

w t

k

k

k

k L

k L

k L

(18)

1 2 3 4

& /

0

0

0

0

0

0

0

0

0

0

[

]

0

0

0

0

0

0

[

]

(

,

,

,

)

(

,

,

,

)

1

0

0

j j j

j

w w

C B W

w t w t

w w

w t w t

W heel w w w w w H w H w H w H

x x w

w

k

k

K

k L

k L

k

k

k L

k L

K

dia g k

k

k

k

dia g I

k

I

k

I

k

I

k

if X

R

X

I

else

 



 



1 1 2 2 1 1 2 2

1 2 1 / 2

[ ]

(

,

,...,

) [ ]

(

,

,...,

)

0

0

0

0

0

0

0

0

0

0

0

0

NS NS NS NS

NS

NS

Sleeper b p b p b p Ba lla st b f b f b f

p p S R p p NS NJ

K

dia g k

k

k

k

k

k

K

dia g k

k k

k

k

k

k

k

K

k

k

 

 

1 2 1 1 / /

0

0

2

2

0

0

0

0

0

0

0

NS NS i NS

b f sh sh

sh b f sh sh

Ba lla st

sh b f sh sh

sh b f sh

NS NS

b

b

S B B S

b

NS NS

k

k

k

k

k

k

k

k

k

K

k

k

k

k

k

k

k

k

k

k

k

K

K

k

  

 

 

2 2 3 1 2

12

6

12

6

4

6

2

[ ]

[ ]

[ ]

12

6

.

4

i i

NE i i i

i i

R a il R a il R a il

i

i i

i

L

L

L

L

L

EI

K

K

K

(19)

،

 

& & /

/ & / / / /

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

C a r body Bogie C B W

W C B W heel

R a il R S

S R Sleeper S B

B S Ba lla st

T DOF T DOF

C

C

C

C

C

C

C

C

C

C

C

C

 

 

 

[ ]

C

R a il

M

R a il

K

R a il

 

 

10 1 2 1 2 1

( )

( )

( )

0

W a gon

R a il NJ

NS

F

t

F t

F

t

  

 

1 1 2 2 3 3 4 4

0

0

0

0

0

0

0

( )

0

0

c b b W a gon

H x w H x w H x w H x w

M g

M g

M g

F

t

K

R

M g

K

R

M g

K

R

M g

K

R

M g

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

 

 

i

1 j

i

NW NE

2 j

i i i

Rail j H j i Rail Rail j

j 1 i 1

3 j

i

4 j

(a )

(a )

F

(t)

k IR(a )

F

F

(a )

(a )

 

 



3 / 2

1/ 2

(

)

(

)

(

)

(

)

j j j j j

j j j j j j j j j j j

Contact H x x w

H x x w x x w H x x w

F

C

X

R

X

Referências

Documentos relacionados

Regarding the final vertical displacement of point A, the results of the present cubic and fourth-order elements converge better than the reference finite

The object of the present study is to simulate ballistic impact and improving the strength of the coast guard boat hull while reducing its total weight, by employing shaped

The procedure to calculate impedance functions for foundation embedded in layered medium can be extended to calculate that for the case of half-space medium by using large

The first part gives deep insight about the vibration characteristics of various forms of functionally graded skew shells (cylindrical, spherical and hypar)

Even though a GFEM code could be developed in any other programming language, the main Python characteristic that defined it as the programming language to develop the

[r]

[r]

[r]