• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número1"

Copied!
5
0
0

Texto

(1)

The Inuene of an External Magneti Field

on the Fermioni Casimir Eet

M.V. Cougo-Pinto

, C. Farina y

,A.C. Tort z

InstitutodeFsia,Universidade FederaldoRiodeJaneiro

CP68528,Riode Janeiro, RJ21945-970,Brazil

Reeivedon3July,2000. Revisedversionreeivedon8September,2000

TheinueneofanexternalonstantuniformmagnetieldontheCasimirenergyassoiatedwith

a Diraeld underantiperiodi boundaryonditionis omputedusingShwinger'smethod. The

obtained resultshows thatthemagnetieldenhanesthefermioniCasimirenergy,inoposition

tothebosoniCasimirenergywhihisinhibitedbythemagnetield.

H. B.G.Casimir showedin 1948 [1℄thatthe

pres-eneoftwoloselyspaedparallelmetalli plateswith

no harge on them would shift the vauum energy of

theeletromagnetieldbyanamountE

(a) givenby:

E

(a)

` 2

=

2

720a 3

; (1)

where` 2

istheareaofeahplate,aistheseparation

be-tweenthemandtherelationa`isassumedinorder

to implement the onditionof small separation. As a

onsequeneofthisshiftthereisanattrativeforeon

theplateswhihwasmeasuredbySparnaayin1958[2℄

andmorereentlywithhighauraybyLamoreaux[3℄

andbyMohideenandRoy[4,5℄. Thisshiftinenergyis

knownastheCasimirenergyandbelongstogetherwith

its onsequenes and related phenomena to the realm

of thesoalled Casimireet [6, ?, 8℄. Generally,the

Casimireetanbedenedastheeetofnon-trivial

spae topologyonthe vauum utuationsof any

rel-ativistiquantum eld (f., e.g.,[6, 7℄). Thesoureof

thenon-trivialityofthespae topologyisprovidedby

severalkindsofboundaryonditions,bakgroundelds

andonstraints. Underthisgeneraldenitiontheeet

disoveredbyCasimirandgivenbytheenergy(1)an

be viewed as a onsequene of passing from the

triv-ialtopologyof lR 3

to the topology oflR 2

[0;a℄, due

totheboundaryonditionsimposedonthe

eletromag-netieldbythemetalliplateswithseparationa. The

fermioniCasimireetisofpartiularimportanedue

tothefundamentalroleplayedbytheeletroninQED

andthequarksin QCD.Intheaseofquarkswehave

aboundaryonditionof onnementgivenby nature,

whihmakestheCasimirenergyanaturalingredientin

thehadronstruture.

ThefermioniCasimirenergywasrstomputedby

Johnson [9℄ in the ontext of the MIT-bag model [10℄

for a massless Dira quantum eld onned between

parallel planeswithseparationa. Amorerealisti

de-sriptionofquarksandgluonsinsideahadronrequires

theonning boundaryonditionsto beimposed ona

spherial surfae. The Casimir eet in spherial

ge-ometry for massive elds is amuh moreompliated

problem and hasonlyreentlybeenompletelysolved

formassivefermioni [11℄and salar[12℄ elds. Inthe

ase of onning planes the fermioni Casimir energy

E(a) obtainedbyJohnson[9℄isgivenby:

E(a)

` 2

=

2

720a 3

; (2)

where =7=4. As in the original Casimir eet this

energyomes fromashiftfrom theusual spaelR 3

to

the spae lR 2

[0;a℄. If instead of ompatifying one

dimension lR into [0;a℄ weompatify it into airle

S 1

[13, 14℄ of radius a=2 we obtain for the Casimir

energyassoiatedwiththemasslessDiraeld the

ex-pression(2), where now is equalto74or 84,

aordingto ahoieoftwistedoruntwistedspin

on-netion, whih orresponds to antiperiodi orperiodi

boundary onditions with period a, respetively. We

should notie the similarityof those three results, for

the Casimir energy of the Dira massless eld under

MIT, periodi and antiperiodi boundary onditions.

Theyshowthatalltheseboundaryonditionsgiverise

tothesamedependeneonaanddieronlyonthe

mul-tipliativenumerialfator. Wemaytakeadvantage

of this fat by hoosing the simplest boundary

ondi-tion in arstinvestigation ofaCasimir eet. In the

aseofafermionield theompatiationinto[0;a℄

e-mail:marusif.ufrj.br

y

e-mail:farinaif.ufrj.br

(2)

providedbytheMITboundaryondition[10℄givesrise

to themostompliatedalulations,espeiallyin the

massivease [15℄. The periodi and antiperiodi

on-ditions are muh simplerin the masslessand massive

ase. Let us also notie that, as shown by Ford [14℄,

intheaseoftheDiraeldtheantiperiodiboundary

ondition avoids the ausality problems whih ours

forperiodiboundaryondition.

The results that we shall presenthere stems from

theideathatvauumutuationsofahargedquantum

eld are aetednotonlyby boundaryonditionsbut

alsobyexternalelds. Therefore,intheaseofharged

quantumeldsitisnaturalandimportanttoaskwhat

kindofinterplayoursbetweentheCasimireetand

thevauumpolarizationeets,whenboundary

ondi-tions and external eld are both present. This

ques-tionanbeexaminedfromtwophysiallyverydistint

pointsof view. Fromonepointofviewweaskwhatis

theinueneofboundaryonditionsonthepolarization

eets of an external eld and from the other weask

whatistheinueneofanexternaleldontheCasimir

energyofahargedeld. Weshouldexpetonphysial

groundstheexisteneofsuhinuenesanditis

nees-sarytoalulatetheirfeaturesandmagnitudesto

lar-ifytheirrole onandto obtainadeeperunderstanding

of the Casimirand vaumpolarization eets. For a

Diraeldtherstpointofviewisonvenientlytreated

byalulatinganEuler-HeisenbergeetiveLagrangian

[16℄withboundaryonditions[17℄. Wepresentherethe

seond pointof view,in whih welookfor thepreise

inuene of anexternaleld on theCasimirenergyof

a Dira eld. The obtained results omplement the

ones obtained for the bosoni Casimir eet in

exter-nal magneti eld [18℄. We ompute the inuene of

an external magnetield onthe Casimir energyof a

harged Dira eld under antiperiodi boundary

on-ditions and nd that the energy is enhaned by the

magneti eld. This result appears in opposition to

the behaviourof ahargedsalareld under Dirihlet

boundaryonditions,whihhasits Casimirenergy

in-hibited by theexternal magneti eld. It is tempting

to advaneanexplanationofthisoppositebehaviorin

terms ofthespinorialharaterof theelds. After all

the permanent magneti dipoles of spin-half quantum

eld utuations should tend to paramagneti

align-mentwith theappliedexternaleld whiletheindued

diamagnetidipolesofthesalarquantumeldtendto

antialignment. However, ithas beenveried [19℄ that

themagnetipropertiesofquantumvauumdependnot

onlyonthespinorialharaterofthequantumeldbut

also onthe kindofboundaryonditionsto whih itis

submitted. Therefore,further investigationsare

nees-saryinordertoformulateasoundphysialexplanation

of the harater of the hange in the Casimir energy

due toappliedexternalmagnetields.

We will take as external eld a onstant uniform

magnetieldandasboundaryonditionontheDira

eld the antiperiodiity along the diretion of the

ex-ternal magneti eld. The hoie of a pure magneti

eldexludesthepossibilityofpairreationatanyeld

strength. Thesimpliityofantiperiodiboundary

on-dition was remarked above and the other hoies are

obvious simplifying assumptions. These assumptions

leadustoaonvenientformalismtostudythephysial

inueneofanexternaleld ontheCasimireet.

The inuene of external eld on vaum

u-tuations of quantum elds have been onsidered by

AmbjrnandWolfram[20℄andbyElizaldeandRomeo

[21℄ for the ase of quantum salar eld in (1+

1)-dimensional spae-time. Ambjrn and Wolfram have

onsideredtheaseofahargedsalareldinthe

pres-ene of an external eletri eld while Elizalde and

Romeo onsider the ase of a neutral salar eld in

a stati external eld with the aim of addressing the

problem of the gravitational inuene on the Casimir

eet. Letus also note that in the Sharnhorsteet

[22℄wehavetheinterationofaneletromagneti

exter-naleldwith theeletromagneti vauumutuations

aetedbyboundaryonditions. However,inthisase

theboundaryonditionsare imposed onthe quantum

eletromagnetieldandnotontheDiraeld. The

ef-fetisthenatwo-loopeet,sinetheouplingbetween

theexternaleldandthequantumeletromagneti

va-uumeldrequirestheintermediationofafermionloop.

Heretheboundaryonditionis ontheDiraeld,the

quantum eletromagneti eld need not to be

onsid-eredand theexternaleletromagneti eld isnot

sub-jetedto boundary onditions. Inthis waytheeets

thatwedesribeappearattheonelooplevel,although

higher orders orretions an be obtained with more

loops.

Letusproeedtothealulationoftheinueneof

theexternalmagnetieldontheCasimirenergyofthe

Diraeld. We onsider aDira eld of massm and

hargee under antiperiodi boundaryondition along

the OZ axis. We implement the ondition on planes

perpendiular to OZ and separated by a distane a.

Weonsiderthoseplanesaslargesquaresofside`and

the limit ` ! 1 an be taken at the end of the

al-ulations. The onstant uniform magneti eld B is

takenalongtheOZaxiswithpositivediretionhosen

tomakepositivetheproduteB,where B isthe

om-ponentofBontheOZ axis. Inordertoalulate the

CasimirenergyoftheDiraeldinthepreseneofthe

magnetieldweuseamethodproposedbyShwinger

[23℄andbasedonhisproper-timerepresentationforthe

eetiveation [24℄. The method hasbeenapplied to

several situations (f. [18℄ for further referenes) and

herealso itwill leadusquiklyto theCasimirenergy.

We start with the proper-time representation for the

eetiveationW (1)

[24℄:

W (1)

= i

2 Z

1

s ds

s Tre

isH

(3)

wheres

o

isautointheproper-times,Tristhetotal

traeinludingsummationinoordinatesandspinor

in-diesand H is theproper-timeHamiltonian givenby:

H =(p eA) 2 (e=2) F +m 2

, wherephas

om-ponents p

= i

, A is the eletromagneti

poten-tialand F is theeletromagneti eld,whih is being

ontrated with the ombination of gamma matries

=i[ ;

℄=2. Theantiperiodiboundaryondition

gives for the omponent of p whih is along the OZ

axistheeingenvaluesn=a(n22lN 1),wherebylN

we denote the set of positive integers. The other two

spaeomponentsofpareonstrainedintotheLandau

levels generated by the magneti eld while the time

omponent p 0

has as eigenvalues any real number !.

Therefore, we obtain for the trae in (3) the

expres-sion:

Tre isH =e ism 2 X =1 2 X

n22lN 1 2e is(n=a) 2 X n 0

2lN 1 eB` 2 2 e iseB(2n 0 +1 ) Z dtd! 2 e is! 2 ; (4)

where therstsum takesareof thefour omponents

of theDira spinor, theseond sum is over the

eigen-valuesobtainedfromtheantiperiodiboundary

ondi-tion,thethirdsumisovertheLandaulevelswiththeir

degeneray fator eB` 2

=2, and the integral range of

t and ! are the measurement time T and the

ontin-uum of real numbers, respetively. Proeeding with

Shwinger's method we use Poisson's summation

for-mula [25℄ to invert the exponent in the seond sum

whihappearsin (4). We alsowrite thesum overthe

Landau levels n 0

whih appears in (4) in terms ofthe

Langevinfuntion L()=oth 1

and substitute

the trae obtained by these modiations into (3) to

obtain: W (1) =L (1) (B)a` 2

T E(a;B)T ; (5)

where L (1)

(B)isanexpressionwhih doesnotdepend

onaand

E(a;B)= a` 2 4 2 1 X n=1 ( 1) n Z 1 so ds s 3 e ism 2 +i(an=2) 2 =s

[1+iseBL(iseB)℄ (6)

istheutodependentexpressionwhihwillgiveusthe

Casimir energythat weare looking for. The quantity

L (1)

(B) given in (5) is atually the (unrenormalized)

Euler-HeisenbergLagrangian[16℄. In(5), itrepresents

adensityofenergyuniformthroughoutspaethatgives

no ontribution to theCasimir energy, whih by

de-nitionisset tozeroatinniteseparationoftheplates.

A term proportionalto the area` 2

, whih is usual in

vauumenergyalulations,doesnotappearhere,due

to the alternatingharaterof the seriesin (6). After

the elimination of the uto in (6) we ontinue with

Shwinger's method [23℄ by using Cauhy theorem in

theomplexs planeto makea=2lokwise rotation

oftheintegrationpathin(6). Letusnotiethatin(3)

and(6)itisimpliitthattheintegrationpathisslightly

below the real axis, beause s must have a negative

imaginary partin order to render the trae

ontribu-tionsin(3),(4)and(6)welldened. Consequently,the

polesoftheLangevinfuntionin(6), whihareonthe

real axis,are not sweptby the=2 lokwise rotation

of theintegrationpath. Weareled bytherotationto

anexpression in whih the partoftheCasimir energy

whih exists in the absene of the external magneti

eld an be expressed in termsof the modiedBessel

funtion K

2

(formula3.471,9in [26℄). Inthis waywe

obtainfrom(6)theexpression:

E(a;B) ` 2 = 2(am) 2 2 a 3 1 X n=1 ( 1) n 1 n 2 K 2 (amn) eB 4 2 a 1 X n=1 ( 1) n 1 Z 1 0 de (n=2) 2 (am) 2 = L(eBa 2

=); (7)

d

whihgivestheexatexpressionfortheCasimirenergy

of theDiraeld in thepresene oftheexternal

mag-netield B. Whenthereisnoexternalmagnetield

the Casimir energy is given by the rst term on the

=74inthelimitofzeromass,asitshouldbe

ex-peted. Theseond termon ther.h.s. of equation(7)

measurestheinueneoftheexternalmagnetieldin

(4)

itive, dereases monotoniallyas ninreases and goes

to zero in the limit n ! 1. Consequently, we have

byLeibnitz riterionaonvergentalternatingseriesin

(7) and we may onlude that the external magneti

eldinreasesthefermioniCasimirenergy. Thisisthe

mainresultofthiswork,whiheluidatespartofthe

in-terplaybetweentwoofthemostfundamental

phenom-ena in relativisti quantum eld theory, namely: the

Casimir eet and thevauum polarization properties

due toanexternaleld. Theobtainedenhanementof

thefermioni Casimirenergy byanexternal magneti

eldmaybeompared withtheopposite behaviourof

thebosoni Casimirenergy ofansalareld,whih is

inhibited by the external magneti eld. To see this

weturnfromspinorialQEDtosalarQEDkeepingthe

sameboundaryonditions and externalelds that we

havebeenusing. Weobtain by alulationssimilar to

theonesperformedin[18℄thefollowingbosoniCasimir

energyin theexternalmagnetield:

E

s (a;B)

` 2

= +

(am) 2

2

a 3

1

X

n=1 ( 1)

n 1

n 2

K

2 (amn)

+ eB

8 2

a 1

X

n=1 ( 1)

n 1 Z

1

0 de

(n=2) 2

(am) 2

=

M(eBa 2

=); (8)

d

where thefuntion M()= ose() 1

was

intro-dued in [18℄ and plays in salar QED the samerole

playedbytheLangevinfuntioninspinorialQED.The

inhibitionofthebosoniCasimirenergybytheexternal

eld anthen beseenin (8)by just notingthat Mis

stritlynegative. Atually,thisbosoniCasimirenergy

isompletely suppressedinthelimitB !1.

For strong magneti elds regime hanges in the

harged vauum may be easier to our [27℄. In this

ase the integralin equation (7) is dominated by the

exponential funtion, whose maximum is exp( amn)

and ours at = 2am=n. Therefore, we are justied

insubstitutingtheLangevinfuntionby1 1

inthe

strongmagnetieldregime,whihintheasesam1

andam1isdesribed,respetively,byjBjj

o j=a

2

and jBj(j

o j=a

2

)(a=

),where

o

isthe

fundamen-tal ux 1=e and

is the Compton wavelength 1=m.

In the strong eld regime also the seond term in (7)

anbeexpressedintermsofamodiedBesselfuntion

(formula 3.471,9in [26℄), andthe Casimirenergyan

bewrittenas:

E(a;B)

` 2

= eBm

2

1

X

n=1 ( 1)

n 1

n K

1

(amn): (9)

Byusing in thisexpressiontheleadingtermin the

asending expansion and then in the assymptoti

ex-pansionoftheBesselfuntion(seeformulas8.446and

8.451,6in[26℄)weobtainthefollowingexpressionsfor

smalland largemasslimits,respetively:

E(a;B)

2 =

eB

(am1)

E(a;B)

` 2

=

(am=2) 1=2

eB

3=2

a e

2am

(am1): (10)

Wehaveobtained in (7) thegeneralexpression of the

fermioniCasimir energyunder the eet ofan

exter-nalmagnetield. Theresultshowsthat theexternal

eldinreasestheCasimirenergyandrevealsthe

inter-playbetweentwofundamentalagentswhihareknown

toaettheDiravauumutuations,namely:

exter-nal elds and boundary onditions. We havederived

expressionsfortheenergyintheregimeofstrong

mag-netieldandinthisregimewehavealsoobtainedthe

small and large mass limits. The approah we have

followedherehas anaturalextension tomore

ompli-atedgaugegroupsandonsequentlymaybeusefulalso

intheinvestigationoftheQCDvauum.

Theauthors areindebted to JanRafelskiand Ioav

Wagafor manyenlighteningonversationsonthe

sub-jetofthis work. M.V. C.-P.and C.F. would like to

aknowledgeCNPq(TheNationalResearhCounilof

Brazil)forpartialnanialsupport.

Referenes

[1℄ H.B.G.Casimir,Pro.Kon.Nederl.Akad.Wetensh.51,793

(1948).

[2℄ M.J.Sparnaay,Physia24,751(1958).

[3℄ S.K.Lamoreaux,Phys.Lett.78,5(1997).

[4℄ U.MohideenUandA.Roy,Phys.Rev.Lett.81,4549(1998).

[5℄ A.RoyandU.Mohideen,Phys.Rev.Lett.,82,4380(1999).

[6℄ V.M.MostepanenkoandN. N.Trunov,TheCasimir Eet

anditsAppliations(Clarendon,Oxford,1997).

V.M.MostepanenkoandN.N.Trunov,Sov.Phys. Usp.31,

(5)

[7℄ E.Elizalde,S.D.Odintsov,A.RomeoA,A.A.Bytsenkoand

S.Zerbini,ZetaRegularizationTehniqueswith Appliations

(WorldSienti,Singapore,1994).

[8℄ G.Plunien, B.Muller and W. Greiner, Phys. Rep.134, 89

(1986).

[9℄ K.Johnson,AtaPhys.PoloniaB6,865(1975).

[10℄ A. Chodos,R. L.Jae, K.Johnson,C. B.Thorn andV. F.

Weisskopf,Phys.Rev.D9,3471(1974).

A. Chodos,R. L.Jae,K.Johnsonand C.B.Thorn, Phys.

Rev.,D102559(1974).

T.DeGrand,R.L.Jae,K.JohnsonandJ.Kiskis,Phys.Rev.

D12,2060(1975).

J.F.Donoghue, E.GolowihandB.R.Holstein, Phys. Rev.

D12,2875(1975).

[11℄ E.Elizalde, M.BordagandK.Kirsten,J. Phys. A31,1743

(1998).

[12℄ M.Bordag, E.Elizalde,K.KirstenandS.Leseduarte, Phys.

Rev.D56,4896(1997).

[13℄ B.S.DeWitt,C.F.HartandC.J.Isham,itPhysia96A,197

(1979).

[14℄ L.H.Ford,Phys.Rev.D21,933(1980).

[15℄ S.G.MamaevandN.N.Trunov,Sov.Phys.J.23,551(1980).

[16℄ W.Heisenberg,Z.Phys.90,209(1935).

H.EulerandB.Kokel,1935Naturwissensh.23,246(1935).

W.HeisenbergandH.Euler,Z.Phys.98,714(1936).

V.S.Weisskopf,K.Dan.Vidensk.Selsk.Mat.Fys.Medd.14,

3(1936).reprintedinJ.Shwinger,QuantumEletrodynamis

(Dover,NewYork,1958).andtranslatedintoEnglishinA. I.

Miller,EarlyQuantumEletrodynamis: asourebook

(Uni-versityPress,Cambridge,1994).

[17℄ M.V.Cougo-Pinto, C.Farina, A.C.Tort andJ.Rafelski,it

Phys.Lett.B434,388(1998).

[18℄ M.V.Cougo-Pinto,C.Farina,M.R.Negr~aoandA.C.Tort,

J.PhysisA,4457(1999).

[19℄ M.V.Cougo-Pinto,C.Farina,M.R.Negr~aoandA.C.Tort,

Phys.Lett.B483(2000)144.

[20℄ J.AmbjrnandS.Wolfram,Ann.Phys.NY147,33(1983).

[21℄ E.ElizaldeandA.Romeo,J.Phys.A30,5393(1997).

[22℄ K.Sharnhorst,Phys.Lett.B236,354(1990).

G.Barton,Phys.Lett.B237,559(1990).

G.BartonandK.Sharnhorst,J.Phys.A26,2037(1993).

M. V.Cougo-Pinto,C.Farina,F. C.Santosand A.C.Tort,

Phys.Lett.B446,170(1999);J.PhysisA32,4463(1999).

[23℄ J.Shwinger,Lett.Math.Phys.24,59(1992).

[24℄ J.Shwinger,Phys.Rev.82,664(1951).

[25℄ E.T.WhittakerandG.N.Watson,ACourseofModern

Anal-ysis(UniversityPress,Cambridge,1945).

[26℄ I.S.GradshteijnandI.M.Ryzhik,TablesofIntegrals,Series,

andProduts(Aademi,NewYork,1965).

[27℄ W.Greiner,B.MullerandJ.Rafelski,Quantum

Referências

Documentos relacionados

published ross setions, and an easily be ompared to future experimental data and other new3.

It is also a databasis inluding tables of previously published rotationally resolved ross setions.. for CH4, SiH4, GeH4, SnH4, PbH4, NH3, PH3, AsH3, SbH3, CF4 , CCl4 , SiCl4 SiBr4,

deposition ooling is ritial and the high pressure of oxygen during ooling is favorable..

toroidal ows indued by Alfv en waves on transport proesses in the edge of elongated tokamak..

we nd innitely many more new growing modes for open and losed universes.. The large sale struture of the universe

We onsider that one of the uids is a ferrouid and that an external magneti eld is applied.. The interfaial instabilities whih arise between the uids are studied for various

We obtain exat solutions for the Shr odinger-Pauli matrix equation for a neutral partile of spin.. 1/2 in a magneti eld with a

Current and magneti eld proles of bent strips in external magneti elds and with applied.. urrents are