• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número6

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número6"

Copied!
5
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Short

communication

Chrysosplenetin,

in

the

absence

and

presence

of

artemsininin,

alters

breast

cancer

resistance

protein-mediated

transport

activity

in

Caco-2

cell

monolayers

using

aristolochic

acid

I

as

a

specific

probe

substrate

Yuanyuan

Zhang

a,1

,

Chenxu

Zhang

a,1

,

Jie

Chen

a

,

Liping

Ma

a

,

Bei

Yang

a

,

Jianhuan

Wang

a

,

Xiuli

Wu

a,b,c,∗

,

Jing

Chen

a,b,c,∗

aCollegeofPharmacy,NingxiaMedicalUniversity,Yinchuan,China

bNingxiaEngineeringandTechnologyResearchCenterforModernizationofHuiMedicine,Yinchuan,China

cKeyLaboratoryofHuiEthnicMedicineModernization,MinistryofEducation,NingxiaMedicalUniversity,Yinchuan,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12July2017 Accepted16October2017 Availableonline16November2017

Keywords:

Chrysosplenetin Artemisinin AristolochicacidI

Breastcancerresistanceprotein Caco-2cellsmonolayers

a

b

s

t

r

a

c

t

Thepresentstudydescribestheimpactofchrysosplenetin,intheabsenceandpresenceofartemisinin, oninvitrobreastcancerresistanceprotein-mediatedtransportactivityinCaco-2cellmonolayersusing aristolochicacidIasaspecificprobesubstrate.Weobservedthatnovobiocin,aknownbreastcancer resistanceproteinactiveinhibitor,increasedPapp(AP-BL)ofaristolochicacidI3.13fold(p<0.05)buthad

noeffectonPapp(BL-AP).Effluxratio(PBA/PAB)declined4.44fold(p<0.05).Novobiocin,consequently,

showedadirectfacilitationontheuptakeofAAIinsteadofitsexcretion.Oppositely,bothartemisininand chrysosplenetinaloneatdoseof10␮MsignificantlydecreasedPapp(BL-AP)insteadofPapp(AP-BL).

Chrysos-plenetinaloneattenuatedtheeffluxratio,whichwassuggestiveofbeingasapotentialbreastcancer resistanceproteinsuppressant.Oddly,Papp(BL-AP)aswellaseffluxratiowererespectivelyenhanced2.52

and2.58fold(p<0.05),whenco-usedwithartemisininandchrysosplenetininratioof1:2.Thepotential reasonremainsunclear;itmightberelativetobindingsitescompetitionbetweenartemisininand chrysosplenetinorthehomodimer/oligomerformationofbreastcancerresistanceproteinbridgedby disulfidebonds,leadingtoanalteredinvitrobreastcancerresistanceprotein-mediatedeffluxtransport function.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

ArtemisininresistanceinPlasmodiumfalciparum,characterized byslowparasitesclearanceinpatientsreceivingartemisininoran artemisinin-basedcombinationtherapy(ACT),wasfirstdetected along the Thai–Cambodian border and has been spread across mainlandSoutheastAsia(Noedletal.,2008;Dondorpetal.,2009; Amaratungaetal.,2012;Ashleyetal.,2014;Imwongetal.,2017). The resistantmechanism to artemisinin is still ambiguous and manymultidrugresistanceproteinsprobablyinvolvedin,suchas P-glycoprotein(P-gp),breastcancerresistanceprotein(BCRP),bile

Correspondingauthors.

E-mails:xiuli2005@163.com(X.Wu),chenjing@nxmu.edu.cn(J.Chen).

1Theseauthorscontributedequallytothiswork.

saltexportpump(BSEP),andmultidrugresistance-associated pro-teins(MRP)1–4(Alcantaraetal.,2013;Rijpmaetal.,2014).

BCRPbelongs totheABCtransporterfamily(Allikmetsetal., 1998;DoyleandRoss,2003)withaC-terminaltransmembrance domain and an N-terminal ATP-binding domain(Litman et al., 2000),consistingof655aminoacids(72-kDa).Therefore,BCRPisa halftransporterthattransformstoafunctionaleffluxpumpwhen homodimerizedbyadisulfidebridgeatCys603oftwoproteins (Lecerf-Schmidtetal.,2013;Noguchietal.,2014;MaoandUnadkat, 2015)andconfersanatypicalMDRphenotype.

Inourpreviouswork,wefoundchrysosplenetin,aknown poly-methoxylatedflavonoidsinArtemisiaannuaL.,incombinationwith artemisinin(2:1)decreasedBcrp/ABCG2mRNAexpressionlevels inmicesmallintestine(datanotshown).Therefore,wehereaimed tofurtherinvestigatetheeffectofchrysosplenetinintheabsence orpresence of artemisininoninvitroBCRP-mediated transport

https://doi.org/10.1016/j.bjp.2017.10.006

(2)

activitybyusingAAIasaspecificprobesubstrateinCaco-2cell monolayers.

Materialsandmethods

Artemisinin was purchased from Chongqing Huali Konggu Co.,Ltd.(Chongqing,China)withpurity≥99.0%.Chrysosplenetin (purity ≥98.0%) waspurified in our lab from an acetone layer ofwastematerialsinartemisininindustrialproductionbyusing multiple column chromatography methods as described in the literature(Weietal.,2015).Thewastematerialswerekindly sup-pliedbyChongqingHualiKongguCo.,Ltd.Thevoucherspecimen (20100102)hasbeendepositedwithCollegeofPharmacy,Ningxia Medical University,for furtherreferences.Novobiocin was pur-chasedfromHefeiBomeiBiotechnologyCo.,Ltd.(CAS:1476-53-5, purity≥90%,China).BotharistolochicacidI(AAI,110746-201510, purity≥98%)andindomethacin(I.S.,100258-200904,purity≥99%) werepurchasedfromNationalInstitutesforFoodandDrugControl (China).

Methanoland acetonitrile(HPLC-grade)waspurchasedfrom Tedia(Ohio,USA).MTT(thiazolyl blue)andLuciferyellowwere purchasedfromSigma–AldrichCo. Ltd.(USA).HBSS(Hanks Bal-ancedSaltSolution)wasprovidedbyKangweiShijibiotechnology Co.Ltd.(H1020,China).

AnAgilentHPLC1200systemwasusedforthedetermination of AAI. Samples wereseparated with a Zorbax SB-C18 column (4.6×250mm,5␮m,AgilentTechnologies,USA).AAI concentra-tionwasanalyzedbyRP-HPLC-UVassayaccordingtothereported methodwithsomemodification(Kimura etal.,2014;Maetal., 2015).Mobilephaseconsistedof45%ofacetonitrileand55%of1% aceticacidinwater.Columntemperaturewassetat30◦Candflow ratewassetat1.0ml/min.AAIwasdetectedatthewavelengthof 250nm.Theinjectionvolumewas20␮l.

Standard stock solutions of AAI and indometacin (I.S.) were individuallypreparedinmethanolatconcentrationof40␮Mand 2.80␮M,andstoredat4◦Cbeforeuse.Standardworkingsolutions werepreparedbydilutingthestocksolutioninmethanoltoobtain aserialofdesiredconcentrations.Chrysosplenetinandartemisinin wererespectivelydissolvedinDMSO(dimethylsulfoxide)inthe strengthof100mM.Allthesolutionswerestoredat−20◦Cand broughttoroomtemperaturebeforeuse.

The chromatographic method was validated for specificity, linearity,sensitivity, precisionand accuracy.All validation runs wereperformedin five replicatesonthree consecutivedaysto assessinter-dayandintra-dayvariation.Calibrationcurvewas con-structedfortherange0,1,2,5,10,20,50,100␮M.BlankCaco-2 monolayerbuffersamples(n=5)wereinjectedforspecificitytest. Precisionandaccuracywasassessedatthreeconcentrations,i.e. low (LQC,5␮M), medium(MQC,20␮M) and highquality con-trols(HQC,100␮M).Itwasfurthersubdividedintointra-dayand inter-dayprecision.Thelowestlimitofquantification(LLOQ)was determinedbyserialdilutionofworkingstandards.

Stability experiments were performed under different con-ditionsbysimulatingconditions occurringduringstudysample analysis.Experimentsweremanipulatedtodeterminethestability at37◦Cfor3h,ambienttemperaturefor4h,and−20Cfor7days. Caco-2cells(Fig.1)wereseededinthetranswell polycarbo-nateinsertsatadensityof106cellsperwellandweregrownina culturemediumconsistingofDulbecco’smodifiedEagle’smedium (DMEM/F-12)supplemented with10%fetal bovineserum(FBS), 1%nonessentialaminoacids,1%l-glutamine,100U/ml penicillin-Gand100␮g/mlstreptomycin.Theculturemediumwasreplaced everyalternatedayandthecellsweremaintainedat37◦C,95% rel-ativehumidityand5%CO2.Permeabilitystudieswereconducted withthemonolayersculturedfor19–21days.

Fig.1.Caco-2cellsgrowthsituation.

Toensure themonolayerintegrity throughout thecourseof transportexperiment, transepithelialelectricalresistance-values (TEERvalues)weremeasuredwithaMillicell-ERSVolt-ohmmeter. Apparentpermeabilitycoefficient(Papp)ofLuciferyellow,which alwaysusedasamarkerofparacellulartransport,wasalso deter-mined.TheintegrityofmonolayerswasconfirmedwhentheTEER values ofCaco-2cells exceeded400/cm2,and theP

app values of Lucifer yellow were less than 0.5×10−6cm/s ( Aspenström-Fagerlundetal.,2012).

ToensuretheproperconcentrationsofAAIusedintheuptake andtranscellulartransportstudy,thecytotoxicityeffectwas eval-uatedbyMTTassay.Caco-2cellswereseededinto96-wellplate atadensityof1.0×104cells/well.AAIwereaddedatdesignated concentrationsfollowedby4hincubationat37◦C.After remov-ingthemedium,theserum-freemediumcontaining15␮lofMTT (5.0mg/ml)wasaddedandincubatedforanother4h.Intheend, 200␮lofDMSOreplacedtheMTTmediumtodissolveformazan, andthentheabsorbanceatawavelengthof490nmwasmeasured bySpectraMaxM2microplatereader.

Before the experiments, Caco-2 cells were divided into five groups including negative control (HBSS), artemisinin alone (10␮M),novobiocin(positivecontrol, 100␮M),chrysosplenetin (10␮M),andartemisinin–chrysosplenetin(1:2).Cellmonolayers werewashedtwicewithwarmHBSSandequilibratedwithHBSS for30minat37◦C.Thetransportstudieswereinitiatedby load-ingtheindividualHBSSsolutionofAAI(90␮M) ontothedonor compartment.Theothersidewastermedthereceiver compart-ment,and thefinal volumeineachof thechamberswas2.5ml ontheapicalside(AP)and2.5mlonthebasolateralside(BL).A 200␮laliquotofsampleswasseparatelytakenoutfromthedonor and receiver chambers each 30min till 2hand fresh transport mediumwasimmediatelycomplemented.Transportexperiments wereconductedinanincubatormaintainedat37◦Candshaken withaspeedof50rpm.A200␮laliquotofcelllysateswasused forextractionat0,30,60,90,and120min.Total100␮lofthe har-vestedsamplewasaddedinto1mlethylacetatecontaining2␮g/ml ofindomethacin(I.S.),vortex-mixedfor3minandthencentrifuged at13,800×gfor10min.Andthen850␮lofsupernatantwas evapo-ratedtodrynessundervacuumandtheresiduewasresuspendedin 200␮lofmobilephase.Afterbeingvortex-mixedandcentrifuged at13,800×gfor10min,thesupernatantwasusedtodetermine AAIconcentrationbyanestablishedRP-HPLC-UVmethod.

(3)

Table1

ApparentpermeabilitycoefficientofLucieryellow.

No. Fluorescenceintensity Concentration (␮g/ml)

Papp (cm/s)

1 103.26 0.012 4.04×10−7

2 102.68 0.009 3.03×10−7

3 101.97 0.005 1.68×10−7

-5 0 5 10 15

DMSO 10 30 60 90 120 150

Inh

ibit

ion r

a

ti

o

(%

)

AAI concentration (µmol/l)

Fig.2. ThecytotoxicityeffectofAAIontheviabilityofCaco-2cells.

Significantdifferenceswereatp<0.05orp<0.01levelbetweenthe groups.Turkey’stestwasusedtoidentifyanydifferencebetween meansusingasignificancelevelofp<0.05.

Resultsanddiscussion

TheTEERvaluesofCaco-2celllinesweredeterminedtobeover 420×cm2(454,430,and476×cm2).Apparentpermeability coefficientsofLucieryellowdisplayedinTable1revealeda nor-maltransportpathwayinestablishedCaco-2cellmonolayermode, withoutaleakageofLucieryellow.Meanwhile,MTTcytotoxicity test(showedinFig.2)indicatedthatnoremarkablepoisonouswas observedunder90␮MofAAIwithin3h.

Fig.3showstherepresentativechromatogramsofblankHBSS buffer,standardsubstancesspikedinHBSSbuffer,andsample har-vestedafter1h.InjectionofblanktransportbufferontotheHPLC columnshowednointerference.

ThecalibrationcurveofAAIpresentedawelllinearityinthe range0–100␮Mwhenspikedin blankHBSSbuffer.The regres-sionequationforcalibrationcurveswasY=1.01X(r=0.99996).The

intra-andinter-dayprecisions(%CV)werelessthan3.10%and accu-racies(%RE)werewithin-0.32%and3.20%(Table2).TheLLOQofAAI wasfoundtobe1␮M.Thisindicatedthatthemethodwasfeasible fortheanalysisofAAI.

StabilityresultsweredescribedinTable3.Itshowedthatthe analyteswerestableafterbeingplacedat37◦Cfor3h, ambient temperaturefor4h,and−20◦Cstoredfor7days.

AsshowninTable4,theeffluxratioofAAIinCaco-2cell mono-layersin negativecontrolgroupwas6.80, whichindicated that effluxtransportersmightbeinvolvedinthetransportofAAI.Itis inaccordancewiththeliterature(Maetal.,2015).Papp(AP-BL)value ofAAIsignificantlyincreased3.13foldswhenco-usedwith posi-tivecontrolnovobiocin(p<0.05).Nosignificancewasobservedin Papp(BL-AP)value(p>0.05)buttheeffluxratio(PBA/PAB)was drasti-callydecreased4.44folds(p<0.05).Novobiocin,therefore,mainly showedadirect promotionontheuptake ofAAIinsteadofthe inhibitionofBCRP-mediatedAAIefflux.

BothchrysosplenetinandartemisininalonedeclinedPapp(BL-AP) whilehavenoimpactonPapp(AP-BL) relativetonegativecontrol (p<0.05).Moreover,chrysosplenetinsignificantlyattenuatedthe effluxratio.Itimpliedthatchrysosplenetininhibitedtheinvitro BCRP-mediatedeffluxofAAIinCaco-2cellmonolayerswhen inde-pendentlyused.However,whencombinedwithartemisininand chrysosplenetininratioof1:2,Papp(BL-AP)andeffluxratiowere significantlyincreased2.52-and2.58-fold(p<0.05)alongwithan unchangedPapp(AP-BL).

Inconclusion, BCRP-mediatedeffluxof AAIwasinhibitedby chrysosplenetinalonewhileremarkablypromotedwhenco-used withartemisinin.Thepotentialreasonhasnotbeenfully under-stood.BCRPpossessesmultipledrugbindingsitesinalargepocket formedbyTM˛-helices.SomeinhibitorsasBCRPsubstratescanact ascompetitiveinhibitors.Inthisregard,itispossiblethat chrysos-plenetinandartemisinininteractwithBCRPonbindingsitesand induceconformationalchangesin thelargebindingpocket, and thusallostericallyaffecttheeffluxtransportofAAIasaspecificBCRP substrate.Secondly,BCRPisassumedtoactasafunctional homod-imerbridgedbydisulfidebonds(Kageet al.,2002)or oligomer (Kage et al.,2005).This deservesa further worktoinvestigate whetherchrysosplenetin in thepresenceof artemisinin altered

25 mAU

A

C

B

mAU

mAU

25

140

30

120

100

80

60

40

20

0 20

20 15

15 10

10 5

5 0

0

0 0

0

1

1

2

2

2 2

2

4 4

4

Time (min) Time (min)

Time (min)

6 6

6

8 8

8

(4)

Table2

MethodvalidationfortheanalysisofAAI(Mean±SD,n=5).

Theoreticalconcentrationa(mol/l) Accuracyandprecision Averageextractionrecoveries(%)

Intra-day Inter-day

Measured concentration (␮g/l)

Precision (%CV)

Accuracy (%RE)

Measured concentration (␮g/l)

Precision (%CV)

Accuracy (%RE)

5 5.04±0.03 0.60 0.80 5.16±0.16 3.10 3.20 70.80±0.32 20 20.13±0.21 1.04 0.65 20.33±0.43 2.12 1.65 72.40±0.07 100 99.68±0.90 0.90 −0.32 100.15±1.90 1.90 1.50 78.30±0.13

aSelectedconcentrationsrepresentthelow,mediumandhigh(LQC,MQC,andHQC,respectively)concentrations.

Intra-dayandinterdayaccuracyandprecisionweredeterminedwithn=5foreachconcentration.

%RE(%relativeerror)=[(Measuredconcentration−theoreticalconcentration)/theoreticalconcentration]×100. %CV(%coefficientofvariation)=(SD/mean)×100.

Table3

StabilitystudiesforAAIunderdifferentstorageconditions(n=5).

Condition Qualitycontrola

(␮M)

Measuredconcentration (ng/ml)

Precision (%CV)

Accuracy (%RE)

37◦Cfor3h 5 5.08±0.24 4.72 1.60

20 20.40±1.35 6.62 2.00

100 110.35±3.56 3.23 10.35

Roomtemperaturefor4h 5 5.19±0.32 6.17 3.80

20 20.35±2.02 9.93 1.75

100 111.45±4.15 3.72 11.45

−20◦Cfor7days 5 4.78±0.22 4.60 4.40

20 18.43±0.35 1.90 −7.85

100 89.18±3.23 3.62 −10.82

aSelectedconcentrationsrepresentthelow,mediumandhigh(LQC,MQC,andHQC,respectively)concentrations.

Datawereexpressedasmean±SD(n=5).

%RE(%relativeerror)=[(Measuredconcentration−theoreticalconcentration)/theoreticalconcentration]×100. %CV(%coefficientofvariation)=(SD/mean)×100.

Table4

ChrysosplenetinalterspermeabilityofAAIacrossCaco-2cellmonolayersintheabsenceorpresenceofartemisinin(mean±SD,n=3).

Drugs Dosage

(␮M)

Papp (×10−5cm/s)

PBA/PAB (effluxratio)

AP-BL BL-AP

Negativecontrol – 3.35±0.11 22.78±0.00 6.80±0.21

Novobiocin(positivecontrol) 100 10.5±1.46a 16.6±0.28 1.53±0.19a

Artemisininalone 10 2.49±0.12 15.2±1.41a 6.09±0.87

Chrysosplenetinalone 10 3.08±0.06 15.5±0.28a 5.04±0.01a

Artemisinin:Chrysosplenetin(1:2) 10:20 3.28±0.03 57.5±8.62a 17.52±2.58a

ap<0.05vsnegativecontrol.

BCRPhomodimer/oligomerlevelswhichmightleadtotheadverse resultinthisstudy.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare

thattheproceduresfollowedwereinaccordancewiththe regula-tionsoftherelevantclinicalresearchethicscommitteeandwith thoseoftheCodeofEthicsoftheWorldMedicalAssociation (Dec-larationofHelsinki).

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat nopatientdataappearinthisarticle.

Author’scontributions

YZandCZcontributedinrunningthelaboratorywork.JCand LManalyzedthedata.BYandJWrevisedthemanuscriptcritically.

XWandJCdesignedthestudy,supervisedthelaboratoryworkand contributedtomodifythemanuscript.Alltheauthorshaveread thefinalmanuscriptandapproveditssubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

ThisworkwasfinanciallysupportedbytheNationalNatural Sci-enceFoundationofChina(81560580)andNingxiaKeyResearch Projects(2015BN24).

References

Alcantara,L.M.,Kim,J.,Moraes,C.B.,Franco,C.H.,Franzoi,K.D.,Lee,S.,Freitas-Junior, L.H.,Ayong,L.S.,2013.ChemosensitizationpotentialofP-glycoproteininhibitors inmalariaparasites.Exp.Parasitol.134,235–243.

(5)

Amaratunga,C.,Sreng,S.,Suon,S.,Phelps,E.S.,Stepniewska,K.,Lim,P.,Zhou,C., Mao,S.,Anderson,J.M.,Lindegardh,N.,Jiang,H.,Song,J.,Su,X.Z.,White,N.J., Dondorp,A.M.,Anderson,T.J.,Fay,M.P.,Mu,J.,Duong,S.,Fairhurst,R.M.,2012.

Artemisinin-resistantPlasmodiumfalciparuminPursatprovince,western Cam-bodia:aparasiteclearanceratestudy.LancetInfect.Dis.12,851–858.

Ashley,E.A.,Dhorda,M.,Fairhurst,R.M.,Amaratunga,C.,Lim,P.,Suon,S.,Sreng,S., Anderson,J.M.,Mao,S.,Sam,B.,Sopha,C.,Chuor,C.M.,Nguon,C.,Sovannaroth, S.,Pukrittayakamee,S.,Jittamala,P.,Chotivanich,K.,Chutasmit,K., Suchatsoon-thorn,C.,Runcharoen,R.,Hien,T.T.,Thuy-Nhien,N.T.,Thanh,N.V.,Phu,N.H., Htut,Y.,Han,K-T.T.,Aye,K.H.,Mokuolu,O.A.,Olaosebikan,R.R.,Folaranmi,O.O., Mayxay,M.,Khanthavong,M.,Hongvanthong,B.,Newton,P.N.,Onyamboko, M.A.,Fanello,C.I.,Tshefu,A.K.,Mishra,N.,Valecha,N.,Phyo,A.P.,Nosten,F., Yi,P.,Tripura,R.,Borrmann,S.,Bashraheil,M.,Peshu,J.,Faiz,M.A.,Ghose,A., Hossain,A.,Samad,R.,Rahman,R.,Hasan,M.M.,Islam,A.,Miotto,O.,Amato, R.,MacInnis,B.,Stalker,J.,Kwiatkowski,D.P.,Bozdech,Z.,Jeeyapant,A.,Cheah, P.Y.,Sakulthaew,T.,Chalk,J.,Intharabut,B.,Silamut,K.,Lee,S.J.,Vihokhern,B., Kunasol,C.,Imwong,M.,Tarning,J.,Taylor,W.J.,Yeung,S.,Woodrow,C.J.,Flegg, J.A.,Das,D.,Smith,J.,Venkatesan,M.,Plowe,C.V.,Stepniewska,K.,Guerin,P.J., Dondorp,A.M.,Day,N.P.,White,N.J.,2014.Spreadofartemisininresistancein Plasmodiumfalciparummalaria.N.Engl.J.Med.371,411–423.

Aspenström-Fagerlund,B.,Tallkvist,J.,Ilbäck,N.G.,Glynn,A.W.,2012.Oleicacid decreasesBCRPmediatedeffluxofmitoxantroneinCaco-2cellmonolayers.Food Chem.Toxicol.50,3635–3645.

Dondorp,A.M.,Nosten,F.,Yi,P.,Das,D.,Phyo,A.P.,Tarning,J.,Lwin,K.M.,Ariey,F., Hanpithakpong,W.,Lee,S.J.,Ringwald,P.,Silamut,K.,Imwong,M.,Chotivanich, K.,Lim,P.,Herdman,T.,An,S.S.,Yeung,S.,Singhasivanon,P.,Day,N.P., Linde-gardh,N.,Socheat,D.,White,N.J.,2009.ArtemisininresistanceinPlasmodium falciparummalaria.N.Engl.J.Med.361,455–467.

Doyle,L.,Ross,D.D.,2003.Multidrugresistancemediatedbythebreastcancer resis-tanceproteinBCRP(ABCG2).Oncogene22,7340–7358.

Imwong,M.,Suwannasin,K.,Kunasol,C.,Sutawong,K.,Mayxay,M.,Rekol,H., Smithuis,F.M.,Hlaing,T.M.,Tun,K.M.,vanderPluijm,R.W.,Tripura,R.,Miotto, O.,Menard,D.,Dhorda,M.,Day,N.P.J.,White,N.J.,Dondorp,A.M.,2017.The spreadofartemisinin-resistantPlasmodiumfalciparumintheGreaterMekong subregion:amolecularepidemiologyobservationalstudy.LancetInfect.Dis.17, 491–497.

Kage,K.,Tsukahara,S.,Sugiyama,T.,Asada,S.,Ishikawa,E.,Tsuruo,T.,Sugimoto,Y., 2002.Dominant-negativeinhibitionofbreastcancerresistanceproteinasdrug effluxpumpthroughtheinhibitionofS-Sdependenthomodimerization.Int.J. Cancer.97,626–630.

Kage,K.,Fujita,T.,Sugimoto,Y.,2005.RoleofCys-603indimer/oligomer for-mationofthebreastcancerresistanceproteinBCRP/ABCG2.CancerSci.96, 866–877.

Kimura,O.,Haraguchi,K.,Ohta,C.,Koga,N.,Kato,Y.,Endo,T.,2014.Uptakeof aris-tolochicacidIintoCaco-2cellsbymonocarboxylicacidtransporters.Biol.Pharm. Bull.37,1475–1479.

Lecerf-Schmidt,F.,Peres,B.,Valdameri,G.,Gauthier,C.,Winter,E.,Payen,L.,DiPietro, A.,Boumendjel,A.,2013.ABCG2:recentdiscoveryofpotentandhighlyselective inhibitors.FutureMed.Chem.5,1037–1045.

Litman,T.,Brangi,M.,Hudson,E.,Fetsch,P.,Abati,A.,Ross,D.D.,Miyake,K.,Resau, J.H.,Bates,S.E.,2000.Themultidrug-resistantphenotypeassociatedwith over-expressionofthenewABChalf-transporter,MXR(ABCG2).J.Cell.Sci.113, 2011–2021.

Ma,L.P.,Qin,Y.H.,Shen,Z.W.,Bi,H.C.,Hu,H.Y.,Huang,M.,Zhou,H.,Yu,L.S.,Jiang,H.D., Zeng,S.,2015.AristolochicacidIisasubstrateofBCRPbutnotP-glycoprotein orMRP2.J.Ethnopharmacol.172,430–435.

Mao, Q., Unadkat, J.D., 2015. Role of the breast cancer resistance protein (BCRP/ABCG2)indrugtransport–anupdate.AAPSJ.17,65–82.

Noedl,H.,Se,Y.,Schaecher,K.,Smith,B.L.,Socheat,D.,Fukuda,M.M.,2008. Evi-denceofartemisinin-resistantmalariainwesternCambodia.N.Engl.J.Med. 359,2619–2620.

Noguchi,K.,Katayama,K.,Sugimoto,Y.,2014.HumanABCtransporterABCG2/BCRP expressioninchemoresistance:basicandclinicalperspectivesformolecular cancertherapeutics.PharmgenomicsPers.Med.7,53–64.

Rijpma,S.R.,vandenHeuvel,J.J.,vanderVelden,M.,Sauerwein,R.W.,Russel,F.G., Koenderink,J.B.,2014.Atovaquoneandquinineanti-malarialsinhibitATP bind-ingcassettetransporteractivity.Malar.J.13,359–366.

Imagem

Fig. 1. Caco-2 cells growth situation.
Fig. 2. The cytotoxicity effect of AAI on the viability of Caco-2 cells.

Referências

Documentos relacionados

Since previous reports described the cytotoxic properties for species of the Bauhinia genus, our expectative was that some of the isolated compounds could display this effect,

In this context, and following our interest on the study of the chemical composition and valorization of CPL leaves, the aim of this study is to evaluate the potential of CPL as a

The methanolic extract showed significant in vitro cytotoxic activity against four human cancer cell lines such as colon (DLD-1, SW-620), breast (MCF-7), head and neck (FaDu)..

trimera aqueous extract promoted an increase in Nrf2 transcrip- tional activity, promoting antioxidant protection against the stress by the ethanol. Lívero

JNE (PhD student) contributed running the laboratory work, and drafted the paper; EFMN, PHBD and MAN contributed to biologi- cal studies, running the laboratory work, analysis of

To analyze the hypoglycemic and hypolipidemic effects, we used rats with streptozotocin–nicotinamide- induced hyperglycemia; the rats were classified into four groups (six rats

It is noteworthy that 83.97% of the documented medicinal plant species were not reported in the previous studies used for comparative analysis which was calcu- lated by dividing

The results will be helpful to some extent understand the mechanism of chrysosplenetin as a potent inhibitor on artemisinin resistance at P-gp/Mdr1 mRNA and ABCG2 mRNA (encoding