• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número6

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número6"

Copied!
7
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Simultaneous

HPLC

analysis

of

crebanine,

dicentrine,

stephanine

and

tetrahydropalmatine

in

Stephania

venosa

Sumet

Kongkiatpaiboon

a,∗

,

Nongnaphat

Duangdee

a

,

Saisuree

Prateeptongkum

b

,

Ngampuk

Tayana

a

,

Wichayasith

Inthakusol

a

aDrugDiscoveryandDevelopmentCenter,ThammasatUniversity,RangsitCampus,Pathumthani,Thailand

bDepartmentofChemistry,FacultyofScienceandTechnology,ThammasatUniversity,RangsitCampus,Pathumthani,Thailand

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received5September2017 Accepted24October2017 Availableonline15November2017

Keywords: Alkaloids Standardization Menispermaceae HPLC

Quantitativeanalysis

a

b

s

t

r

a

c

t

Stephaniavenosa(Blume)Spreng.,Menispermaceae,hasbeentraditionallyusedastonicdrugand

treat-mentofvariousdiseasesinSouthEastAsiancountries.Inordertoevaluatethequalityandstandardization

ofS.venosaroots,theHPLCmethodforquantificationofthecontentofmajorcomponentsinS.venosa

wasdevelopedandvalidated.ThechromatographicseparationwasperformedonaHypersilBDSC18

columnusinggradientsystemof100mMammoniumacetateinwaterandmethanolwithflowrate

1ml/min.Detectionwavelengthwassetat210nmfortetrahydropalmatine,280nmfordicentrineand

crebanine,and270nmforstephanine.Thevalidatedmethodshowedgoodsensitivity,linearity,

pre-cision,andaccuracy.Thesuitablesolventthatyieldedhighestalkaloidscontentsfromthematrixwas

optimized.S.venosasamplescollectedfromvariouslocationswereanalyzed.Thepresentstudyprovided

comprehensiveoverviewofmajorcomponentsinS.venosa.Aremarkablevariationintheaccumulation

ofalkaloidsineachpopulationandthebetweenindividualinthesamepopulationcouldbeobserved.Our

resultsshowedtheheterogeneityofS.venosainThailandwhichwouldneedafurtherstudyforspecies

delimitations.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen

accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Stephaniavenosa(Blume)Spreng.,vernacularlynamedinThai as“Sa-Bu-Leud”,belongstotheMenispermaceaefamily(Forman, 1991).Thisplantisavineindigenousmedicinalherbdistributed inSouthEastAsiancountries.Theprominentredsapinitsstem isa characteristic keyfor thespeciesidentification.It hasbeen traditionallyusedasatonicdrug,fortreatmentofcancerand dia-betes,aphrodisiac,andforvariousindications(Ingkaninanetal., 2006;Kongkiatpaiboonetal.,2016).Importantbiological activi-tieshavebeenreportedincludingantimalarial(Likhitwitayawuid et al., 1999), cytotoxicity against cancer cell lines (Makarasen etal.,2011), antimicrobial(Makarasenetal.,2011),and acetyl-cholinesteraseinhibition(Ingkaninanetal.,2006;Kongkiatpaiboon etal.,2016).Somecellularmechanismshavebeenexplored. Cre-banine,amajorcomponentofS.venosa,exertsanti-proliferative

effects on human cancer cells through the induction of cell

cyclearrest attheG1phases andapoptosis (Wongsirisin etal.,

∗ Correspondingauthor.

E-mail:sumetk@tu.ac.th(S.Kongkiatpaiboon).

2012).Stephanine,thealkaloidfromS.venosa,couldinducethe reverseof mitoticexit,eventuallyleading tocelldeathby apo-ptosis(Leetal.,2017).l-Tetrahydropalmatine,thealkaloidfromS. venosawhichactsasadopaminereceptoragonist,couldattenuate

cocaineandmethamphetamineself-administrationand

cocaine-and methamphetamine-inducedreinstatement inrats (Mantsch

etal.,2007;Gongetal.,2016),modulatemethamphetaminereward behavior(Suetal.,2013),andinhibittheacquisitionof ketamine-inducedconditionedplacepreferencebyregulatingtheexpression ofextracellularsignal-regulatedkinases(ERK)andcAMPresponse element-bindingprotein(CREB)regulationinrats(Duetal.,2017). Dicentrine,aknownalpha1-adrenoceptorantagonist,couldhave atherapeuticpotentialtodevelopasantihypertensive, antihyper-lipidemicandothercardiovasculardrugs(Suetal.,1994;Yuetal., 1994a,b).

ThelocalwidespreadusesofStephaniaformedicalproperties hasledtoanincreasinginterestinthisplant.Thereporteddata showedthatalkaloidsarethemainphytochemicalconstituentsof thisgenus(Semwaletal.,2010).Although,isolationand elucida-tionofphytochemicalconstituentshavebeenextensivelydoneand someanalyticalmethodshavebeendevelopedinanother Stepha-niaspecies(Daryetal.,2017;Heetal.,2016),therearetheneeded

https://doi.org/10.1016/j.bjp.2017.10.004

(2)

DeionizedwaterwaspurifiedbyUltraClearTMsystem(Siemens

WaterTechnologiesCorp.). Ammoniumacetate andallreagents

wereofanalyticalgradeifnotstateotherwise.

Plantmaterials

SamplesrepresentingStephaniavenosa(Blume)Spreng.,

Menis-permaceae, were obtained from various location in Thailand

(Table 1). Identificationwas done based onthe key to species describedinFloraofThailand(Forman,1991).Voucherspecimens weredepositedatDrugDiscoveryandDevelopmentCenter, Tham-masatUniversity,Thailand.Eachsamplewasthoroughlycleaned bytapwater,cutintosmallpiecesanddriedinahotairovenat 50◦Cfor72h.Eachdriedsamplewasgroundintofinepowderand keptinanair-tightcontaineruntilused.

Extractionandisolationofmajorcomponents

Dicentrine(1),tetrahydropalmatine(2),andcrebanine(3)were isolatedinourpreviouswork(Kongkiatpaiboonetal.,2016).As described,thesamplewasmaceratedwithmethanolfor3×72h withoccasional shaking.Thecombinedextractwasfilteredand

concentrated using a rotary evaporator. The methanol crude

extractwasthenpartitionedwithdichloromethaneandwater.The lipophiliclayer,whichcontainsalkaloids,wasroughlyseparatedby

columnchromatography(CC)(Mercksilicagel60,70–230mesh)

withdichloromethane: EtOAc:MeOH (70:25:5, v/v/v)as mobile

phase. Fractions were monitored using TLC (silica gel 60 F254)

sprayedwithDragendorff’sreagent.Furtherpurificationwasmade byCC(Mercksilicagel60,230–400mesh).Thefinalcleaningup

wascarriedoutusingonaSephadexLH-20columnelutedusing

methanolaseluent.

data(Blanchfieldetal.,2003).

HPLCapparatusandconditions

HPLCwasperformedonanAgilent1260Series(Agilent

Tech-nologies)equippedwitha1260QuatpumpVLquaternarypump,

1260ALSautosampler,1260TCCcolumn thermostat,and1260

DADVLdiodearraydetector.Theseparationwasdoneona Hyper-silBDSC18column(4.6×100mmi.d.,3.5␮m)withaC18guard

column.Themobilephaseswere(A)100mMammoniumacetate

inwaterand(B)methanol.Gradientelutionwasusedfrom50%

Bto70%BinA for20min,100%Bfor10min.Thecolumn was

equilibratedwith50%BinAfor10minpriortoeachanalysis.The flowratewassetat1ml/minwithcontrolledtemperatureat25◦C. DADdetectorwassetatthewavelengthof210nmfordetection oftetrahydropalmatine,280nmfordicentrineandcrebanine,and 270nmforstephanine.Theinjectionvolumewas10␮lforevery

sampleandstandard.

Stockandworkingsolutionsstandardcompounds

Stockstandardsolutionoftetrahydropalmatine,dicentrine,

cre-banine,and stephanine withpuritymore than 90%determined

by HPLC was prepared by dissolving each standard compound

inmethanoltoobtaintheconcentrationof1000␮g/ml.Working

standardsolutionswereobtainedbyappropriatedilutionofthe stocksolutionswithmethanoltoobtainedthedesired concentra-tion.

InvestigationofsuitablesolventforStephaniavenosaextraction

ToobtainthehighestalkaloidscontentfromS.venosaextraction, varioussolvents, i.e. water, methanol,ethanol, acetonitrile,and

Table1

Percentageofdicentrine(1),tetrahydropalmatine(2),crebanine(3),andstephanine(4)inStephaniavenosacollectedfromvariouslocationsofThailand.

Locationa Contentb(mg/g)

Dicentrine(1) Tetrahydropalmatine(2) Crebanine(3) Stephanine(4)

ChiangMai,DoiAngKhang(N),Sample1 17.08±0.25 0.32±0.03 12.33±0.15 3.81±0.06 ChiangMai,DoiAngKhang(N),Sample2 – 1.48±0.03 18.30±0.21 0.49±0.01 ChiangMai,DoiAngKhang(N),Sample3 1.20±0.01 – 16.52±0.12 6.80±0.06

Lampang,Muang(N) – 1.31±0.11 12.00±0.65 <0.05

Uttaradit,Nampad(N) – 1.78±0.08 21.69±0.19 0.38±0.01

Kanchanaburi,Saiyok(SW) – 0.87±0.05 15.33±0.16 0.32±0.01

PrachuapKhiriKhan,Muang(SW) – 6.10±0.22 10.41±0.21 <0.05

Roi-Et,Muang(NE) – 5.47±0.04 23.37±0.14 0.05±0.02

Udonthani,Phen(NE) 3.20±0.04 0.61±0.02 5.73±0.05 1.00±0.01

Udonthani,NongWuaSo(NE) 20.38±0.72 1.61±0.06 0.16±0.02 – NakhonRatchasima,Wangnumkheo(E) – 9.19±0.30 30.27±0.90 <0.05

aFloristicregionsofThailand:N=northern,NE=northeastern,E=eastern,SW=southwestern. b Expressedasmean

(3)

Fig.1.Influenceofammoniumacetateconcentrationsintheseparationofdicentrine(1)andtetrahydropalmatine(2)inreversed-phaseHPLC.Column:HypersilBDSC18

(4.6mmi.d.×10cm,3.5␮m).Mobilephase:(A)ammoniumacetateinwaterand(B)methanol.Gradientelution:50%BinAto70%BinAfor20min;then100%Bfor10min. Concentrationofammoniumacetatesolution:(I)5mMammoniumacetatesolution,(II)20mMammoniumacetatesolution,(III)50mMammoniumacetatesolution,and (IV)100mMammoniumacetatesolution;flowrate1ml/min,detectionat280nm.

mixturesofwaterandmethanolatdifferentratio,wereevaluated asextractingsolvents.CrudedrugpowderofS.venosa(50mg)was accuratelyweighedandseparatelyextractedwith5mlofthese sol-ventsbysonicationattheambienttemperature.Eachextractwas triplicatelypreparedandanalyzedbytheHPLC.Thesolvent yield-ingthehighestcontentofalkaloidsintheextractwaschosenasthe appropriatesolventforextraction.

Samplepreparation

Each powdered sample of S. venosa roots was accurately

weighedandextractedwithwater–methanol(30:70,v/v)at con-centrationof10mg/mlinanultrasonicbathforeach30min.Each samplewasdoneintriplicate.Priortoinjection,eachsolutionwas filteredthrougha0.2␮mnylonmembranefilterandanalyzedwith

HPLC.

Methodvalidation

Validationofthemethodwasdoneaccordingtothe Interna-tionalConferenceonHarmonizationguideline(ICH,1996/2005). Themethodwasvalidatedforlinearity,precision,accuracy,limit ofdetection(LOD),andlimitofquantitation(LOQ).

Linearity

Linearityofthemethodwasstudiedbyinjectingsevenknown concentrationsoftheanalytesintherangeof1.9–250␮g/mlin

trip-licate.Thecalibrationcurveswereobtainedbyplottingthepeak areaversustheamountofthestandard.

Precision

Themeasurementofintra-andinter-dayprecisionwasdone

byanalyzing50␮g/mlstandardsolution.Theintra-dayprecision

wasdeterminedbyanalyzingseventimeswithin1day,whilethe inter-dayprecisionwasexaminedforthreeconsecutivedaysbythe proposedmethod.Theprecisionwasexpressedaspercentrelative standarddeviation(%RSD).

Accuracy

Recovery wasused toevaluatethe accuracyof the method.

Standardadditionwasperformedwithpre-analyzedstandard solu-tion.Threedifferentlevelsofstandard mixtures wereaddedto thesampleextract.Spikesampleswerepreparedintriplicate.The

recoverywascalculatedasfollows:recovery(%)=100×(amount found−originalamount)/amountspiked.

Limitofdetectionandlimitofquantitation

Determinationofsignal-to-noiseratiowascalculatedunderthe proposedchromatographiccondition.LODwasconsideras3:1and LOQas10:1.

Results

HPLCmethoddevelopment

AHPLCmethodwasdevelopedforanalysisthecontentsofmajor alkaloids,dicentrine(1),tetrahydropalmatine (2),crebanine(3), andstephanine(4)inS.venosaroots.Optimizationofthemobile

phasecompositionswasdone.Reversed-phaseC-18columnwhich

is broadly usedin pharmaceutical separation, wasused in this study.Thecriticalseparationof1and2affectedbyammonium acetateconcentrationsareshowninFig.1.Fromvariousmobile phasestrialed,thesystemcontaininggradientsolventsystemusing

100mMammoniumacetateandwatergavethesymmetricpeaks

andprovidedthemostefficientseparationandspeed(Fig.1).The

wavelengthat210nmwhichgavehighabsorbancecapacitywas

usedfordetectingtetrahydropalmatine(2),at280nmfor dicen-trine(1)andcrebanine(3),and270nmforstephanine(4).

SuitablesolventforextractingalkaloidsfromStephaniavenosa

(4)

sol-Parameters Results

Dicentrine(1) Tetrahydropalmatine(2) Crebanine(3) Stephanine(4)

Regressionequationa Y=26.626X+46.607 Y=70.037X+146.33 Y=32.897X+65.959 Y=22.38+43.673

Correlationcoefficient(r2) 0.9998 0.9981 0.9998 0.9998

Linearrange,␮g/ml 1.9–250 1.9–125 1.9–250 1.9–250

LOD,␮g/ml 0.1 0.3 0.1 0.1

LOQ,␮g/ml 0.3 1 0.3 0.3

aXistheconcentrationofeachstandarding/ml;Yisthepeakareaat280nmfordicentrine(1)andcrebanine(3),210fortetrahydropalmatine(2),and270forstephanine

(4).

vents.Sonicationwaschosenasanextractionmethodduetoits simplicity,rapidityandcompatibilitywithvarioussolvents.After quantificationbyHPLC,thehighestalkaloidscontentwasfound inthewater-methanol(30:70,v/v)extractasshowninTable2. Although, tetrahydropalmatine (2) and crebanine (3) extracted frommixtureofwater–methanolatratioof50:50and30:70(v/v) werenotsignificantlydifferent.Mixtureofwater–methanolatratio of30:70(v/v)couldextractthehigheststephanine(4)content com-paredtotheothersolvents.Thus,mixtureofwater–methanolat ratioof30:70(v/v)waschosenasasuitablesolventforextraction.

Methodvalidation

TheHPLCmethodwasvalidatedforanalysisofthedicentrine (1),tetrahydropalmatine(2),crebanine(3),andstephanine(4)inS. venosaroots.Linearity,precision,accuracy,LOD,andLOQwere ana-lyzedformethodvalidationparameters(ICH,1996/2005).Linearity wasevaluatedbyusingstandardsolutionsdissolvedinmethanol at concentrations in the range of 1.9–250␮g/ml for dicentrine

(1), crebanine (3), and stephanine (4) while of 1.9–125␮g/ml

fortetrahydropalmatine(2).Eachconcentrationwasanalyzedin triplicate.The plotof thepeak areas versusthe concentrations

of all compounds provided a linear of this method with good

correlationcoefficient(Table3).Theinvestigationofintra-day pre-cisionbyseventimes injectionof125␮g/mlstandard solutions

withinonedayshowedtheresultthatthepercentageofrelative

standarddeviationwaslowerthan1%RSD.Whilethe

measure-mentofinter-day precisionbythreeconsecutivedays withthe samestandardprovided thepercentrelative standarddeviation lessthan3.8%(Table4).Theresultsgaveanacceptableprecision ofthemethod.Theaccuracyofthemethodwasdeterminedbythe recoveryvalues.Theresultsreportedtherecoveryofdicentrine(1), tetrahydropalmatine(2),crebanine(3),andstephanine(4)inthe rangedof96.30–98.82%(average97.78%),95.36–100.76%(average 98.17%),98.23–99.07%(average98.79%),and95.25–100.17% (aver-age98.42%),respectively,asshowninTable5.TheLODandLOQ, atsignaltonoiseratioas3:1forLOD,and10:1forLOQ,were0.1 and0.3,0.3and1,0.1and0.3,and0.1and0.3␮g/ml,for

dicen-trine(1),tetrahydropalmatine(2),crebanine(3),andstephanine (4),respectively(Table3).

Table4

Intradayandinterdayprecisionofdicentrine(1),tetrahydropalmatine(2),crebanine (3),andstephanine(4);resultsareshownas%RSD.

Compound Intra-day Inter-day

Day1 Day2 Day3

Dicentrine(1) 0.38 0.39 0.25 3.14

Tetrahydropalmatine(2) 0.54 0.40 0.18 3.56

Crebanine(3) 0.67 0.38 0.36 3.80

Stephanine(4) 0.33 0.41 0.27 3.71

Table5

Recoverystudyofdicentrine(1),tetrahydropalmatine(2),crebanine(3)and stepha-nine(4).

Level Compound Theoreticala

(␮g/ml)

Foundb(g/ml) Recoveryb (%)

1

Dicentrine(1) 46.32 45.49±0.53 98.22±1.15

Tetrahydropal-matine(2)

45.53 43.42±1.95 95.36±4.28

Crebanine(3) 87.96 86.40±0.79 98.23±0.90 Stephanine(4) 14.77 14.07±0.35 95.25±2.35

2

Dicentrine(1) 62.13 61.40±0.69 98.82±1.10

Tetrahydropal-matine(2)

65.98 64.92±1.76 98.39±2.40

Crebanine(3) 121.36 120.23±1.10 99.07±0.91 Stephanine(4) 21.13 21.17±0.17 100.17±0.81

3

Dicentrine(1) 80.88 77.89±0.70 96.30±0.87

Tetrahydropal-matine(2)

88.66 89.33±0.84 100.76±0.96

Crebanine(3) 160.63 158.70± 98.79±0.93 Stephanine(4) 24.63 24.60±0.14 99.84±0.80

Average

Dicentrine(1) 97.78

Tetrahydropal-matine(2)

98.17

Crebanine(3) 98.70

Stephanine(4) 98.42

aTheoreticalvalueistheamountcalculatedbyoriginalamountplusamount

spiked.

(5)
(6)

Standardizationofphytopharmaceuticalproductsaimsto

con-trol the consistency of the component product for safety and

biological activity for reproducible products quality. HPLC, a methodofchoiceforpharmaceuticalanalysis,isconsidered effi-cient and stringent for qualitative and quantitative analysis of

plantchemicalcompounds.Inthisstudy,theHPLCmethodwas

developedforanalysisthecontentsofmajoralkaloids,dicentrine (1),tetrahydropalmatine(2),crebanine(3),andstephanine(4)in

S.venosaroots. Optimizationofthemobilephase compositions

anddetection wavelengthweredonein ordertomaximizethe

efficiencyandsensitivityofthemethod.Validationhasbeen per-formedtoensurethelinearity,precision,accuracy,andsensitivity ofthemethodaccordingtotheICHguideline(ICH,1996/2005)and provedthatthemethodissuitableforitsintendeduse.

Criticalseparationof dicentrine(1)and tetrahydropalmatine (2) affected by ammoniumacetate concentrations (Fig. 1) rep-etitiouslyshowedtheinteraction ofalkaloids withtheresidual silanolgroupofthecolumnasdescribed inourpreviouspaper (Kongkiatpaiboon and Gritsanapan, 2012). It was probably due tothecompetitiveinteractionofthebuffercation withresidual silanolsasdescribedbytheLangmuirisotherm(Langmuir,1916; FliegerandCzajkowska-Zelazko,2011).However,slightlyvariation ofbatch-to-batchinHPLCcolumnproductionwasobserved. There-fore,inpracticalapplication,optimalconditionmayneeddifferent

ammoniumacetateconcentration.

Solventsused duringtheextractionarea crucial role inthe qualityandquantityofextractedcompounds.Sonication,which issimple,rapidandhasnolimitationonanysolventtype,was per-formedtodeterminethesuitablesolvent.Withvarioustypesof solventtrialed(Table2),themixtureofwater–methanol(30:70, v/v)wasthemostsuitablesolventthatyieldedhighestalkaloids contentsfromthematrix.Wealsoperformedthestudyeffectof solventpolaritytothedicentrine(1)extractingyields.Theresult

wasappearedinthesamemanner(datanotshown).Mixtureof

water–methanol(30:70, v/v) was also the efficient solvent for extractingdicentrine(1)comparedtotheothersolvents.Thus,it waschosenasextractingsolventinthesamplepreparation.

S.venosasamplescollectedfromvariouslocationswere

ana-lyzedusingthedevelopedHPLCmethodwhichcouldbeusedfor

routineanalysis.Besidesthereportedisolatedcomponentsineach individualS.venosastudy(Likhitwitayawuidetal.,1999; Ingkani-nanetal.,2006;Yodkeereeetal.,2013;Kitisripanyaetal.,2013;Le etal.,2017),thepresentstudyprovidedcomprehensiveoverview ofmajorcomponentsinS.venosa.Aremarkablevariationinthe accumulationofalkaloidsineachpopulationandthebetween indi-vidualinthesamepopulationcouldbeobserved.Duetoincomplete dataontheoccurrenceofthesealkaloids,nofurthergeographic segregationcanbededuced.Morphologicaldataoneach individ-ualhasbeen recordedand willbefindoutfor therelationship withtheirphytochemicalcomponentsinfurtherstudy.Ourresults

tine analysisofS.venosaraw materialsinpractical application.

The present study provided comprehensive overview of major

componentsinS.venosa.Aremarkablevariationinthe accumu-lationofalkaloidsineachpopulationandthebetweenindividual

in the same population could be observed. The heterogeneity

of S. venosa in Thailand suggests a further study for species delimitations.

Authors’contribution

SKcontributionincludedcollectingsamples,designingand per-forminglaboratorywork,analyzingtheresults,andpreparingthe paper.NTandWIcontributionincludedisolationandpurification ofthecompounds.NDandSPcontributionincludeddata interpre-tationandidentificationofthecompounds.Alltheauthorshave readthefinalmanuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

The authors gratefully acknowledge the financial support

provided by Thammasat University under Thai Government

Research Fund (Contract No. 56/2559). We thank Ms. Pajaree

Inthachub for discussion and identification of plant materials.

WealsoacknowledgeChulabhornResearchInstitutefortheNMR

measurement.

References

Blanchfield,J.T.,Sands,D.P.A.,Kennard,C.H.L.,Byriel,K.A.,Kitching,W.,2003. Char-acterisationofalkaloidsfromsomeAustralianStephania(Menispermaceae) species.Phytochemistry63,711–720.

Dary,C.,Bun,S.S.,Herbette,G.,Mabrouki,F.,Bun,H.,Kim,S.,Jabbour,F.,Hul,S., Baghdikian,B.,Ollivier,E.,2017.ChemicalprofilingofthetuberofStephania cambodicaGagnep.(Menispermaceae)andanalyticalcontrolbyUHPLC-DAD. Nat.Prod.Res.31,802–809.

Du,Y.,Du,L.,Cao,J.,Holscher,C.,Feng,Y.,Su,H.,Wang,Y.,Yun,K.M.,2017. Levo-tetrahydropalmatineinhibitstheacquisitionofketamine-inducedconditioned placepreferencebyregulatingtheexpressionofERKandCREBphosphorylation inrats.Behav.BrainRes.317,367–373.

Flieger,J.,Czajkowska-Zelazko,A.,2011.Comparisonofchaotropicsaltandionic lipidasmobilephaseadditivesinreversed-phasehigh-performanceliquid chro-matographyofbiogenicamine.J.Sci.Sep.34,733–739.

Forman,L.L.,1991.Menispermaceae.FloraThailand5,300–365.

Gong,X.,Yue,K.,Ma,B.,Xing,J.,Gan,Y.,Wang,D.,Jin,G.,Li,C.,2016. Levo-tetrahydropalmatine,anaturalmixeddopaminedreceptorantagonists,inhibits methamphetamineself-administrationandmethamphetamine-induced rein-statement.Pharmacol.Biochem.Behav.144,67–72.

(7)

ICH,1996/2005.InternationalConferenceonHarmonisationofTechnical Require-ments for Registration of Pharmaceuticals for Human Use. Validation of AnalyticalProcedures:TextandMethodology.ICH,Geneva.

Kitisripanya,T.,Komaikul,J.,Tawinkan,N.,Atsawinkowit,C.,Putalun,W.,2013. DicentrineproductionincallusandcellsuspensionculturesofStephaniavenosa. Nat.Prod.Commun.8,443–445.

Kongkiatpaiboon,S.,Gritsanapan,W.,2012.HPLCquantitativeanalysisof insecti-cidaldidehydrostemofolineandstemofolineinStemonacollinsiaerootextracts. Phytochem.Anal.23,554–558.

Kongkiatpaiboon,S.,Duangdee,N.,Prateeptongkum,S.,Chaijaroenkul,W.,2016. AcetylcholinesteraseinhibitoryactivityofalkaloidsisolatedfromStephania venosa.Nat.Prod.Commun.11,1805–1806.

Ingkaninan, K., Phengpa, P., Yuenyongsawad, S., Khorana, N., 2006. Acetyl-cholinesteraseinhibitorsfromStephaniavenosatuber.J.Pharm.Pharmacol.58, 695–700.

Langmuir,I.,1916.Theconstitutionandfundamentalpropertiesofsolidsandliquids. J.Am.Chem.Soc.38,2221–2295.

Le,P.M.,Srivastava,V.,Nguyen,T.T.,Pradines,B.,Madamet,M.,Mosnier,J.,Trinh,T.T., Lee,H.,2017.StephaninefromStephaniavenosa(Blume)Sprengshowed effec-tiveantiplasmodialandanticanceractivities,thelatterbyinducingapoptosis throughthereverseofmitoticexit.Phytother.Res.31,1357–1368.

Likhitwitayawuid,K.,Dej-adisai,S.,Jongbunprasert,V.,Krungkrai,J.,1999. Anti-malarialsfromStephaniavenosa,Prismatomerissessiliflora,Diospyrosmontana

andMurrayasiamensis.PlantaMed.65,754–756.

Makarasen,A.,Sirithana,W.,Mogkhuntod,S.,Khunnawutmanotham,N.,Chimnoi, N.,Techasakul,S.,2011.Cytotoxicandantimicrobialactivitiesofaporphine alkaloidsisolatedfromStephania venosa(Blume)Spreng. PlantaMed.77, 1519–1524.

Mantsch, J.R., Li, S.J., Risinger, R., Awad, S., Katz, E., Baker, D.A., Yang, Z., 2007.Levo-tetrahydropamaltineattenuates cocaineself-administrationand cocaine-induced reinstatement in rats. Psychopharmacology (Berlin) 192, 581–591.

Semwal,D.K.,Badoni,R.,Semwal,R.,Kothiyal,S.K.,Singh,G.J.P.,Rawat,U.,2010. ThegenusStephania(Menispermaceae):chemicalandpharmacological per-spectives.J.Ethnopharmacol.132,369–383.

Su,H.L.,Zhu,J.,Chen,Y.J.,Zhao,N.,Han,W.,Dang,Y.H.,Xu,M.,Chen,T.,2013.Rolesof levo-tetrahydropalmatineinmodulatingmethamphetaminerewardbehavior. Physiol.Behav.118,195–200.

Su,M.J.,Nieh,Y.C.,Huang,H.W.,Chen,C.C.,1994.Dicentrine,analpha-adrenoceptor antagonistwithsodiumandpotassiumchannelblockingactivities.Naunyn. SchmiedebergsArch.Pharmacol.349,42–49.

Wongsirisin,P.,Yodkeeree,S.,Pompimon,W.,Limtrakul,P.,2012.Inductionof G1arrestandapoptosisinhumancancercellsbycrebanine,analkaloidfrom

Stephanaivenosa.Chem.Pharm.Bull.60,1283–1289.

Yodkeeree,S.,Wongsirisin,P.,Pompimon,W.,Limtrakul,P.,2013.Anti-invasion effectofcrebanineandO-methylbulbocapninefromStephaniavenosavia down-regulatedmatrixmetalloproteinases andurokinase plasminogenactivator. Chem.Pharm.Bull.61,1156–1165.

Yu,S.M.,Ko,F.N.,Chueh,S.C.,Chen,J.,Chen,S.C.,Chen,C.C.,Teng,C.M.,1994a.Effect ofdicentrine,anovelalpha1-adrenoceptorantagonist,onhumanhyperplastic prostates.Eur.J.Pharmacol.252,29–34.

Imagem

Fig. 1. Influence of ammonium acetate concentrations in the separation of dicentrine (1) and tetrahydropalmatine (2) in reversed-phase HPLC
Fig. 2. HPLC chromatogram of hydromethanolic extract of Stephania venosa roots sample collected from various locations of Thailand (detection at 280 nm)

Referências

Documentos relacionados

In this context, and following our interest on the study of the chemical composition and valorization of CPL leaves, the aim of this study is to evaluate the potential of CPL as a

The methanolic extract showed significant in vitro cytotoxic activity against four human cancer cell lines such as colon (DLD-1, SW-620), breast (MCF-7), head and neck (FaDu)..

trimera aqueous extract promoted an increase in Nrf2 transcrip- tional activity, promoting antioxidant protection against the stress by the ethanol. Lívero

JNE (PhD student) contributed running the laboratory work, and drafted the paper; EFMN, PHBD and MAN contributed to biologi- cal studies, running the laboratory work, analysis of

To analyze the hypoglycemic and hypolipidemic effects, we used rats with streptozotocin–nicotinamide- induced hyperglycemia; the rats were classified into four groups (six rats

It is noteworthy that 83.97% of the documented medicinal plant species were not reported in the previous studies used for comparative analysis which was calcu- lated by dividing

The results will be helpful to some extent understand the mechanism of chrysosplenetin as a potent inhibitor on artemisinin resistance at P-gp/Mdr1 mRNA and ABCG2 mRNA (encoding

The potential reason remains unclear; it might be relative to binding sites competition between artemisinin and chrysosplenetin or the homodimer/oligomer formation of breast