• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número2

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número2"

Copied!
6
0
0

Texto

(1)

Studies of Eletron-Moleule Collisions Using the

Shwinger Variational Priniple with Plane

Waves as a Trial Basis Set

Jorge L. S. Lino

N uleode PesquisasemMatematiae

MatematiaApliada,Universidade BrazCubas,

Campus I,0877-380MogidasCruzes,S~aoPaulo,Brazil

Maro A. P. Lima

InstitutodeFsia,Uniamp,

13083-970Campinas,S~aoPaulo,Brazil

Reeived10February,2000

Wereportelastidierentialrosssetions(DCS)forthesatteringofeletronbyH2,CH4,C2H4,

SiH4, and H2O in the 5 to 20 eV energy range. These ross setions were obtained using the

Shwinger variational priniple. Inourproeduresthesattering wave funtionisexpanded as a

ombinationofplanewaves. Inthepresentimplementationtheexhangepotentialandpolarization

eets arenotonsideredandall resultsareobtainedat thestatilevelofapproximation. Forall

moleules, exeptH2,ouralulated DCSagree reasonably wellwithavaliable experimentaldata

and with othertheoretial results (obtainedat the stati-exhangelevel of approximation). Our

studysuggeststhattheShwingervariationalpriniplewithplanewaveexpansionmaybeomean

eÆientmethodforstudyingeletron-moleulesattering.

Among the rst-priniple methods, the Shwinger

variationalpriniple(SVP) [1℄ hasreeivedspeial

at-tention in the last ouple of deades. The rst

al-ulations using theSVP foreletron-moleule

satter-ing were presented by MKoyand o-workersusing a

separable form for the Green's funtion [2℄. To

a-ountforpolarizationeetsandmultihanneloupling

(duetoinelasti proessesinvolvingenergetiallyopen

eletroniexitedstates),TakatsukaandMKoy

intro-dued modiations into the SVP and reated the so

alledShwingerMultihannelMethod(SMC)[3℄.

Sev-eralappliationsofthismethodarereportedinthe

lit-erature [4℄. Later on, studies using the SMC method

withnormonservingpseudopotentials[5℄wereshown

tobeveryusefulformoleulesontainingheavyatoms

[6℄. InadditiontoappliationsofShwingerVariational

type of methods, several other studies using iterative

proedures (ISVP) to solve the Lippmann-Shwinger

equation have also been applied to eletron-moleule

sattering alulations [7-11℄. The main limitation of

themethod(SVP orSMC)residesonwhat makesita

generalmethod: theexpansionof the sattering

fun-tion is done in a L 2

basis (Cartesian Gaussian

fun-tions) and this is very eetive only for short-range

potentials. An importantdevelopment of the method

would be to allow inlusion of plane waves (PW) in

the sattering basis and this is the motivation of the

presentpaper. Inorder to dothis, wehavedeveloped

omputerodesinvolvingmatrix elementsof the type

< ~

k

f jVG

(+)

0 V j

~

k

i

>(seond-Borntypeofterms)with

norestritionsonmoleulargeometries[12,13℄. Inthis

paperwepresentresultsfore -H

2 ,CH

4 ,C

2 H

4 ,SiH

4 ,

and H

2

Osattering in thestatiapproximationin the

(5-20)-eV energy range. Although the orret

treat-mentofexhangeandofpolarizationeetsisknownto

beimportantforlow-energysattering,wesurprisingly

found that the present statiresults are in very good

agreementwithexperimental data for allmoleules of

theabovelist,exeptforH

2

at5and10eV,andforCH

4

at5eV.Ourresultsarealsousefultoestablish

benh-markalulationsat thestatilevelofapproximation,

indispensable in the development of a more omplete

formalisminludingexhange and polarization eets.

Other partiular interest is to hek if theSVP using

planewavesis apable,for instane, ofdesribing

(2)

refertheSVPusingplanewavesasSVP-PW.

IntheSVPforeletron-moleuleelastisattering,

thebilinearvariationalformofthesatteringis

f( ~ k f ; ~ k i )℄= 1 2 f<S ~ kf jV j

(+)

~

ki

>+< ( )

~

k

f

jV jS

~ ki > < ( ) ~ k f

jV VG (+) 0 V j (+) ~ ki >g (1) d

Here jS

~

ki

>is theinputhannel staterepresentedby

theprodutofaplanewave ~

k

i

timesj

0

>,theinitial

(ground)targetstate. jS

~

k

f

>hasanalogousdenition,

exept that the plane wave points to ~

k

f

, V is the

in-terationbetweentheinidenteletronandthetarget,

G (+)

0

is the projeted Green's funtion, written as in

theSMCmethod[14℄:

G (+) 0 = Z d 3 k j 0 ~ k>< ~ k 0 j (E H 0 +i) (2) H 0

istheHamiltonianfortheNeletronsofthetarget

plusthekinetienergyoftheinidenteletronandE

is totalenergyof thesystem(target +eletron). The

satteringstatesj (+)

~

ki

>and< ( )

~

k

f

jareprodutsof

the targetwavefuntion j

o

> andone-partile

sat-teringwavefuntion. Theinitial stepin ourSVP

al-ulationsisto expandtheone-partilesatteringwave

funtions asaombination of planewaves. So, in the

statiapproximation,forelastisattering,the

expan-sionofthesatteringwavefuntionisdoneinadisrete

formas j (+) ~ ki >= X m a m ( ~ k m )j 0 ~ k m > (3) j ( ) ~ kf >= X n b n ( ~ k n )j 0 ~ k n > (4)

TheinlusionofthesedenitionsinEq.(1)andthe

appliation of astationarity ondition[1, 13℄ with

re-spet totheoeÆients,givestheworkingform ofthe

satteringamplitude: [f( ~ k f ; ~ k i )℄= 1 2 ( X mn <S ~ k f jV j

0 ~ k m >)(d 1 ) mn < ~ k n 0 jV jS

~ ki >) (5) where d mn =< 0 ~ k m

jV VG (+) 0 V j 0 ~ k n > (6) d

We haveimplemented a set of omputational

pro-grams to evaluateallmatrixelementsof Eq.(5). The

Green'sfuntiongiveninEq.(2)anditsassoiated

dis-ontinuitieshavebeenexaminedandtreatedin a

simi-larwayasinthesubtrationmethod [15,14, 13℄. Our

disrete representationofthesattering wavefuntion

(given by Eqs. (3) and (4)) is made only in two

di-mensionalspae(spherialoordinates,usingGaussian

quadratures for and and the on-shell k value for

the radial oordinate). To illustrate, we present

re-sults of appliations of the present method for elasti

sattering of eletrons by H

2 , CH 4 , C 2 H 4 , SiH 4 and H 2

O,forseveralimpatenergies(from5to20eV).For

resent the ground state of the targets with the same

CartesianGaussianbasisset expansionthathavebeen

used in previous alulations with the SMC method

(Ref.[16℄forH

2

,Ref.[17℄forCH

4

,Ref.[18℄forC

2 H

4 ,

Ref.[19℄forSiH

4

, andRef.[20℄forH

2 O).

Fig. 1 shows our DCS for H

2

along with seleted

experimentaldata([21,22℄). Asnoted,at5eVthe

ab-seneofexhangeandpolarizationontributionsauses

anoverallunderestimationof thealulatedross

se-tion. Above 10eV, the SVP-PW generallyagree well

with the experimental data, exept at near forward

(3)

Figure1. ElastiDCSfore -H2 satteringat5,10, 15and20eV.PresentresultsSVP-PW:solidline;experimentaldata

ofRefs.[21 ,22 ℄: fulltrianguleandsquaresymbols,respetively.

Figure2. ElastiDCSfore -CH4satteringat5,10,15and20eV.PresentresultsSVP-PW:solidline;experimentaldata

ofRef.[23 ℄: fulltriangule;resultsoftheSMCmethodusingstati-exahangeapproximationofRef.[24 ℄: dashedline;results

oftheISVPinstati-exhange-plus-polarizationapproximation ofRef.[25 ℄: dottedline.

Fig. 2 shows our DCS for CH

4

with

experimen-tal data of Tanakaet al. [23℄. Theoretial ross

se-tions using stati-exhange (SE) approximation with

theShwinger MultihannelMethod [24℄ anditerative

son. Again, the dierenesat 5eV are expeted, due

to thefatthat wearenegletingexhangeand

polar-ization eets. Above 5 eV, however,the omparison

(4)

Figure 3. ElastiDCSfor e -C2H4 sattering at5,8,15.5 and30eV. Present results SVP-PW:solidline; experimental

dataofRef.[26 ℄: full triangule; resultsoftheISVPusingstati-exhange-plus-polarization ofRef.[27 ℄: dottedline;results

ofSMCmethodusingstati-exhangeofRef.[18 ℄: dashedline.

Fig. 3showsourDCSforC

2 H

4

alongwith

experi-mentaldata([26℄)andtheoretialresultsobtainedwith

the Shwinger Multihannel Method [18℄ and iterative

Shwinger Method [27℄, both at the stati-exhange

plus polarization (SEP) level of approximation. As

noted, for all energies, our DCS are reasonably lose

totheexperimentalandtheoretialresults.

Figure4. ElastiDCSfore -SiH4 satteringat5,10,15and20eV.PresentresultsSVP-PW:solidline;experimentaldata

(5)

Fig. 4 shows DCS for SiH

4

. Again, for all

en-ergies, our results using the SVP-PW at the stati

level of approximation are very lose to experimental

results [29℄ and to theoretial results obtained at the

stati-exhange level of approximation with the SMC

method[19℄.

Figure5. ElastiDCSfor e -H2Osatteringat 6,10, 15, and20eV. Present resultsSVP-PW:solidline; experimental

data of Ref. [34 , 35 ℄: full triangule and full square symbols, respetively; results of the ISVP using stati-exhange of

Ref. [30 ℄: dottedline; alulations ofOkamotoetal. usingstati-exhange-polarization[31℄: plus-dashedline; alulations

ofGianturo [32 ℄: dashedlinewithopensquare.

Finally, Fig. 5 shows DCS for H

2

O. Theoretial

studies[30-33℄are alsoinludedfor omparison

when-ever available. As expeted for H

2

O, due to the

per-manent dipole moment, our ross setions show very

strongforward-peaking. Agreementbetweenour

alu-lated rosssetionsand available experimental datais

generallygood. Ourresultsalso agree quitewellwith

other theoretial studies over the angular and energy

regionsoveredhere.

Insummary, although exhange potential and

po-larizationeets arenottakeninto aountinour

al-ulations, our results are, in general, in good

agree-mentwithexperimentalandothertheoretialmethods

forelastieletronsatteringofH

2 , CH

4 , C

2 H

4 , SiH

4 ,

and H

2

O over the range of aproximately 5 to 20 eV.

Inthefuture,weplantoextendthepresentmethodto

investigatethe thelower-energysatteringrange from

0to5eV.Thiswillbedonebyimplementingtheplane

wave expansion in the SMC method, where exhange

and polarization eets anbe treatedin an ab-initio

form.

The researh of J.L.S.L. is supported by the

Funda~ao de Amparo a Pesquisa do Estado de

S~ao Paulo (Fapesp) and Nuleo de Pesquisas em

pemap), Brazil. M.A.P.L aknowledge support from

Brazilian agengy Conselho Naional de

Desenvolvi-mentoCientioeTenologio(CNPq). These

alula-tionsweremadeatCentroNaionaldeProessamento

deAltoDesempenho(CENAPAD-Nordeste) and

ITA-CTA. The authors also anowledge Dr. L. M.

Bres-ansinforinsightfuldisussions.

Referenes

[1℄ J.Shwinger,Phys.Rev.72,1763(1947);B.A.

Lipp-mannandJ.Shwinger,Phys.Rev.79,469(1950).

[2℄ T.N.Resigno,C.W.MCurdy,andV.MKoy,Chem.

Phys.Lett.27,401(1974);T.N.Resigno,C.W.

M-Curdy,andV.MKoy,Phys.Rev.A10,2240(1974).

[3℄ K.Takatsuka,V.MKoy,Phys.Rev.A24,2473(1981);

K.Takatsuka,and V.MKoy,Phys.Rev.A 30,1734

(1984).

[4℄ See,forexample,C.WinsteadandV.MKoy,Advanes

inChemialPhysis,Vol.XCVI,EditedbyI.Prigogine

andStuartA.Rie,1996andreferenestherein.

[5℄ M. H.F.Bettega, L.G.Ferreira,and M.A.P.Lima,

Phys.Rev.A47,1111 (1993).

(6)

M. H.F.Bettega, L. G.Ferreira,and M.A. P.Lima,

Phys.Rev.A59, 879(1999);M.T.doN.Varella,M.

H. F.Bettega, A. J.R.daSilva,and M. A.P.Lima,

J.Chem.Phys.110,2452 (1999);M.T.doN.Varella,

L.G.Ferreira,andM.A.P.Lima,J.Phys.B32,2031

(1999).

[7℄ R. R. Luhese and V. MKoy, J. Phys.B 12, L421

(1979); R. R. Luhese, G. Raseev, and V. MKoy,

Phys.Rev.A25,2572(1982); R.R.LuheseandV.

MKoy,Phys.Rev.A25,1963 (1982).

[8℄ L. M. Tao, L. M. Bresansin, M. A. P. Lima, L. E.

Mahado,andE.P.Leal,J.Phys.B23,4331(1990).

[9℄ S.K.Adhikari,Chem.Phys.Letters,258,596(1996);

S.K.AdhikariandK.L.Kowalski,Dynamialollision

theory anditsappliation(AademiPress,NewYork,

1991)andreferenestherein.

[10℄ J. Horaek and T. Sasakawa, Phys. Rev.A 30, 2274

(1984).

[11℄ M.-T. Lee, I. Iga, M. M. Fujimoto, and O. Lara, J.

Phys.B28,L299(1995).

[12℄ D. K.Watson andV.MKoy,Phys.Rev.A 20,1474

(1979);A.W.FlietandV.MKoy,Phys.Rev.A21,

1863 (1980).

[13℄ J. L. S. Lino, Ph. D. Thesis (1995), Instituto

Te-nologiodeAeronautia,CentroTenioAeroespaial,

S~aoJosedosCampos,S~aoPaulo,Brazil.

[14℄ M. A. P.Lima, L. M. Bresansin, A. J. R. Silva, C.

WinsteadandV.MKoy,Phys.Rev.A41,327(1990).

[15℄ S. K. Adhikari and L. Tomio, Phys. Rev. C 37, 41

(1988).

[16℄ M. A. P. Lima,T.L. Gibson, V. MKoy, and W.M.

Huo,Phys.Rev.A38,4527(1988).

[17℄ C.Winstead,Q.Sun,V.MKoy,J.L.S.Lino,andM.

A.P.Lima,J.Chem.Phys.98,2132(1993).

[18℄ C. Winstead, P. G. Hipes, M. A. P. Lima, and V.

MKoy,J.Chem.Phys.94,5455(1991).

[19℄ C. Winstead and V. MKoy, Phys. Rev.A 42, 5357

(1990).

[20℄ L. M. Bresansin, M. A. P. Lima,L. E. Mahado, L.

M.Tao,Braz.J.Phys.22,221(1992).

[21℄ S.K.Srivastava,A.ChutjianandS.Tajmar,J.Chem.

Phys.63,2659(1975).

[22℄ T.W.Shynand W.E.Sharp,Phys.Rev.A24,1734

(1974).

[23℄ H. Tanaka,T. Okada, L. Boesten, T. Susuki,T.

Ya-mamoto,andM.Kubo,J.Phys.B15,3305 (1982).

[24℄ M. A. P. Lima, T. L. Gibson, W. M. Huo, and V.

MKoy,Phys.Rev.A32,2696(1985).

[25℄ L.E.Mahado,M.T.LeeandL.M.Bresansin,Braz.

J.Phys.28,111(1998).

[26℄ B.MapstoneandW.Newell,J.Phys.B25,491(1986).

[27℄ L.M.Bresansin,L.E.MahadoandM.T.Lee,Phys.

Rev.A57,3504(1998).

[28℄ T.N. Resigno and B.H. Lengseld, Z. Phys.D24,

117(1992).

[29℄ J.Perrin,J.P.M.Shmitt,G.deRosny,B.Drevillon,

J.Hu,andA.Lloret,Chem.Phys.73,383(1982).

[30℄ L.E.Mahado,L.M.Tao,L.M.Bresansin,M.A.P.

LimaandV.MKoy,J.Phys.B28,467(1995).

[31℄ Y.Okamoto, K.OndaandY.Itikawa,J.Phys.B26,

745(1993).

[32℄ F.A.Gianturo,J.Phys.B24,3837(1991).

[33℄ A. Jain and D. G. Thompson, J. Phys. B 16, 3077

(1987).

[34℄ W.M.JohstoneandW.R.Newell,J.Phys.B24,3633

(1991).

[35℄ A.Danjo and H. Nishimura,J. Phys.So.Japan 54,

Imagem

Figure 1. Elasti DCS for e - H2 sattering at 5, 10, 15 and 20 eV. Present results SVP-PW: solid line; experimental data
Figure 3. Elasti DCS for e - C2 H4 sattering at 5, 8, 15.5 and 30 eV. Present results SVP-PW: solid line; experimental
Fig. 4 shows DCS for SiH

Referências

Documentos relacionados

ories is presented for physial S-matrix elements in the ase of harged salar partiles interating.. in minimal way with an external or quantized

for all hadroni systems, to total ross-setions whih.. inrease with the energy [3℄ somewhat like

Using a oherent amplitude analysis to t the Dalitz plot of this deay, we.. nd strong evidene that a salar resonane of mass

defets formed in symmetry breaking phase transitions. To explore the similarities and dierenes.. here has been a very fruitful experiene for both sides. On one hand, topologial

theory of the Casimir fore taking into aount orre-. tions up to the 4th order both in surfae

detetor data from the front-end eletronis to the

A Bohm-de Broglie piture of a quantum geometrodynamis is onstruted, whih.. allows the investigation of these

neutrino anomalies and their possible interpretations in terms of osillation indued by neutrinoN. mass and