• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número2

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número2"

Copied!
5
0
0

Texto

(1)

Condensed Matter Physis as a Laboratory

for Gravitation and Cosmology

Fernando Moraes

LaboratoriodeFsiaTeoriae Computaional

Departamentode Fsia, UniversidadeFederalde Pernambuo

50670-901 Reife,PE,Brazil

E-mail: moraesdf.ufpe.br

Reeived7January,2000

Thegeometri languageofGeneralRelativity isnotnormallyrelated toCondensedMatter(CM)

Physis sine it is the eletromagneti and not the gravitational interation that dominates the

physisofCMsystems. WhatpointsinommonwouldthenCMPhave withCosmologyand the

dynamisofobjetsinagravitationaleld?Thereisatleastonethatisveryimportant: topologial

defetsformedinsymmetrybreakingphasetransitions. Toexplorethesimilaritiesanddierenes

herehasbeenaveryfruitfulexperiene for bothsides. Ononehand,topologialdefetsinsolids

startedtobedesribedbyagravity-liketheoryinludingtorsionand,ontheotherhand,experiments

havebeenproposedandperformedinCMsystemswiththepurposeoftestingosmologialtheories.

Someexamplesare: 1)LandaulevelsandtheAharonov-Bohmeetofeletronsmovinginarystal

ontainingasrewdisloationanbedesribedinasimplewayinageometriformalism;2)losed

timelike urves have been proposed in the viinity of vorties in superuid Helium; 3) Kibble

mehanism, for the generation of topologial defets, has been experimentally veried in liquid

rystals. Insummary,CondensedMatterPhysiswithitsrihdiversityofsystemsandphenomena

and of relatively easy aess to experiments, appears as a laboratory for testing hypotheses of

gravitationaltheoryandosmologyinvolvingtopologial defets. InthisworkIsummarizereent

resultsinthisinterfaeareafousingmainlyintheresultsobtainedbyourresearhgroup.

I Introdution

Topologialdefets,bothinCondensedMatterPhysis

andinCosmology,areformedduringsymmetry

break-ingphasetransitions[1℄. Theanalogyissostrongthat,

inthepastfewyears,some\osmologialexperiments"

have been arried out in liquid rystals[2℄ and

super-uid Helium[3℄, shading a new light on the dynamis

ofthedefetformationproess. Althoughquite

onve-nienttostudy thedynamis ofdefetformation,those

systemsdonotprovideaneasyexperimentalsettingfor

thestudyofstatipropertiesofthedefetbakground,

due to the high mobilityof the defets. Onthe other

hand,topologialdefetsinrystallinesolids,withtheir

verylowmobility,are justidealforthis purpose. But,

howsimilar arethese defetsto spae-timedefets? It

is the intent of this work to briey review these

sim-ilarities and to present a summary of results on this

researhareaobtainedbyourresearhgroup.

There is a formal equivalene between

three-dimensionalgravitywith torsionandthetheoryof

de-fetsin solids[4℄. Defetsin rystalsare formed when

theontinuoustranslationalandrotationalsymmetries

of thelattieduring thefreezing transition. Theyan

beoneptuallygeneratedbya\utandglue"proess,

knownintheliteratureastheVolterraproess[5℄. This

proessgivesaunifyingviewofthetopologialline

de-fets. That is, take a ylinder of a ontinuous elasti

materialandmakearadialutin it,fromitsaxisout.

Displaementofthesurfaesoftheutwithrespetto

eahother andsubsequentglueingwill generatealine

defetwhoseoreoinideswiththeaxis. Considering

ylindrialoordinates,ifthedisplaementis:

(i) along the z-diretion a srew disloation is

formed.

(ii) along the r-diretion, an edge disloation is

formed.

(iii)alongthediretion,whihimpliestheaddition

orremoval ofawedgeof material, leadsto a

dislina-tion.

(iv)aombinationof both(i)and(iii) itprodues

adispiration.

It is lear then, that the ore of suh line defets

areassoiatedtogeometrisingularities.Hereweome

lose to gravity theory, where geometri singularities

(2)

from theatMinkowskygeometry.

II Geometri model for line

de-fets in elasti solids

It iswellknownthatelastisolidswithtopologial

de-fetsanbedesribedbyRiemann-Cartangeometry[6℄.

Reently, Katanaev and Volovih[4℄ have shown the

equivalene between three-dimensional gravity with

torsion andthe theoryof defets in solids. Thedefet

ats as a soure of a \gravitational" distortion eld.

Themetridesribingthemedium surroundingthe

de-fetisthenasolutiontothethree-dimensional

Einstein-Cartanequation.

Sineweare disussinglinedefets itis onvenient

to imagine at three-dimensional spae as a pile of

\panakes". This waywe animagineaVolterra

pro-ess for a single \panake", and then, extend the

de-formationtotherest ofthepile. Obviouslythemetri

desribingthespaeis

ds 2

=dz 2

+dr 2

+r 2

d 2

; (1)

in ylindrialoordinates.

A srew disloation orresponds to a pile of ut

\panakes" like the onein Fig. 1. The displaement

between the edges of the ut is the so-alled Burgers

vetorofmodulusbanddiretedalongthez-axis. The

orrespondingmetriis[7℄

ds 2

=(dz+ b

2 d)

2

+dr 2

+r 2

d 2

: (2)

Figure1. SrewDisloation

Figure2. Dislination

Fig. 2 orresponds to the dislination. The

met-riofadislinatedmedium, whihis in fat thespae

setionoftheosmistringmetri[8℄,isgivenby

ds 2

=dz 2

+dr 2

+ 2

r 2

d 2

; (3)

where givesameasure of the angular deit. Sine

aslieofangle2(1 )hasbeentakenoutof spae,

thetotalalglearoundthez-axisisnow2.

The above metris are in fat partiular ases of

theonedesribingthespinninghiralstringspae-time

onsideredbyGal'tsovandLetelier[9℄andTod[10℄

ds 2

=(dt+Jd) 2

dr 2

2

r 2

d 2

(dz+d) 2

; (4)

Figure3.Edgedisloationviewedasadislinationdipole.

An edge disloation may be formed [4℄ by plaing

a pair of opposing parallel dislinations next to eah

other asa dipole (Fig. 3). Eah dislination is made

byeitherremovingorinsertingawedgeofmaterial. In

theontinuumlimit,atlargedistanesfromthedefet,

themedium isdesribedbythemetri[4℄

ds 2

=dz 2

+

1+

m 2hrsin h 2

2

(dr 2

+r 2

d 2

(3)

in ylindrialoordinates. Thewedge anglesaregiven

bymandthedislinationsareatadistane hapart.

The Burgers vetor ~

b = mh ^x is therefore along the

x-axisandthedefetitselfisalongthez-axis.

Naturally,therearemoredefetsand,onsequently,

moremetris. Theyarealllisted in[7℄. Wewill be

in-terestedinjusttheones desribedabove.

III Some results

We havebeen mainly interested in the physial

prop-erties of rystals with defets where the defets have

the passive role of providing the bakground for

par-tiles (eletrons orholes) or elds (eletromagneti or

salar) to be around. We have also looked at

simi-lar defets in spae-time. The defets impose

bound-ary onditions on those objetsleading to bound and

sattering states for the partiles: binding of

ele-trons and holes to defets[12, 13℄, Landau levels in

thepreseneofthedefets[14,15℄, loalizedstates[16℄,

geodesi motion[11, 17℄, transport phenomena[18℄,

Aharonov-Bohmeet[19, 20, 21℄,quantum sattering

by defets[22℄, the aquisition of a quantum (Berry's)

phase[23℄. Fortheelds, theboundaryonditionsdue

tothedefetsleadtolassialandquantumeetslike

self-fore[24, 25, 26℄,Casimir eet[27, 28℄ and

orre-tionsto physialonstants[29℄. Amongthese results I

hoosetoommentbrieyon: (a)thegeodesisaround

anedge disloation[11℄, (b)theself-foreonaharged

partile also near an edge disloation[26℄, () the

or-retion to the magneti moment of the eletron near

adislination[29℄and, nally, (d)theAharonov-Bohm

eetaroundasrewdisloation[20,21℄.

(a)AsshowninFig. 3,anedgedisloationmaybe

formedbyremovingaretangularslieofmaterialand

glueingthelooseedges. Themediumwiththisdefetis

assoiatedtothemetri(5)whihdesribesessentially

aatthree-dimensionalspaewith singulartorsionon

thez-axis. Notietheassymmetryofthemetriasone

goaroundthez-axis. Thisbeomequiteevidentwhen

oneobservesthegeodesisinsuhmedium[11℄(Figures

4-6). Eahgureshowsabundleof geodesis,parallel

to eah other at innity, approahing and being

de-eted by the disloation loated at the origin of the

plots.

(b)Theboundaryonditionsimposedbya

topolog-ialdefeton theeletrield of apoint hargein its

neighborhood provokes a distortion of the eld lines.

This anbe interpreted as due to image harges, just

likein the aseof a point harge in the presene of a

ground onduting plane. Inthis asethe interation

energy between the harge and its image is the

self-energyoftheharge. Sineitdependsonthedistane

betweenthehargeandtheplane,thederivativeofthis

energywithrespettothisdistanegivesrisetoan

ef-samealsohappensforapointhargeandatopologial

defet[26℄. Fig. 7showsaplotoftheself-energyofa

lin-earhargedensityparalleltoanedgedisloation(and

'aretheoordinatesofthelineofhargewithrespet

tothedefet,whoseloationoinideswiththez-axis).

Thelakofaxialsymmetryofthedefetismanifestin

theplot. Notiethat,asthehargegoesaroundthe

de-fet,therearealternatingregionsofeetiveattration

andrepulsion, respetively.

() Analogousto the lassialeld phenomenon of

theself-foretherearealsoquantumeldeetsdueto

topologialdefets. TheCasimireet[27,28℄beingthe

bestknownexampleofsuhphenomena. Alessknown

eet,butveryimportantforondensedmatter

exper-imentsistheorretionofthemagnetimomentofthe

eletronduetoadefet[29℄. Quantumeletrodynamis

givesus = e~ 2m 1+ e 2 2~ +::: ; (6)

forthemagnetimomentoftheeletroninemptyspae.

TheorretiontotheDiravalue= e~

2m

isduetothe

ouplingoftheeletrontothequantizedmagnetield.

Whenthequantizedeletromagnetield issubmitted

to the boundary onditions imposed by a topologial

defettheorretionobviouslyhange. Foraneletron

boundto anegativedislinationitisfound[29℄

Æ = (1 p 2 )s 2 (p)e 6 288 4 ~ 3 3 2 ; (7)

where p=1=. Anegativedislinationorrespondsto

0<p<1, therefore Æ

>0,onrming experimental

evidene[30℄ that negative urvature dislinations

en-ouragelargerloalmoments.

(d) Here, just a brief omment on the

Aharonov-Bohmeetaroundasrewdisloation,whihhasbeen

studied in detail in[20, 21℄. The well-known original

Aharonov-Bohmeetinvolvesahargedpartile

mov-ing outsidea regionwith magneti ux. Ifthe ux is

onnedtoastring,itanbedesribed,inthe

Kaluza-Kleinapproah,astheve-dimensionalmetri

ds 2 =dt 2 dz 2 dr 2 r 2 d 2 (dx 5 + 2 d) 2 ; (8)

whereisthemagnetiuxandx 5

thefthdimension.

Now, ompare this metri with the four-dimensional

metriofasrewdisloation(seeEquation(2)

ds 2 =dt 2 (dz+ b 2 d) 2 dr 2 r 2 d 2 : (9)

NotiethattheBurgersvetorbplaysthesameroleas

themagnetiuxmakingitlearthatthe

Aharonov-Bohmeetshouldappearforapartilemovingin the

preseneofasrewdisloation. Indeed,theShrodinger

equation will look the same in either bakground (

(4)

Figure4. Geodesisaroundedgedisloation(1).

Figure5. Geodesisaroundedgedisloation(2).

Figure7. Self-energyofalinearhargedensityparallelto

anedgedisloation.

IV Other systems

Topologialdefetsappearinnatureasonsequeneof

symmetry-breaking phase transitions. An important

issue in osmology is whether the observed struture

of the universe ontains relis of topologial defets

formed as theearly universe ooled. What is the

de-fetdensityafteraphasetransition? In1976T.W.B.

Kibble[31℄ proposed a statistial proedure for

alu-lating theprobabilityof stringformationin thephase

transitionsin the earlyuniverse. In1991 Chuangand

oworkers[32℄ and in 1994 Bowiket al. made

experi-mentalveriationsoftheKibblemehanismforstring

formation in liquid rystals. Sine 1994 dierent

ex-perimental groups[3℄ have tested Kibble's mehanism

insuperuidHe 4

.

MoreinterestingthansuperuidHe 4

arethe

super-uidphasesofHe 3

whiharequantum liquidswith

in-terating fermioni and bosoni elds. Its rih

stru-turegivesrisetoanumberofanaloguesofosmologial

defets[33℄: 1) the dysgiration, that simulates the

ex-tremely massiveosmi string; 2) the singularvortex,

whihisanalogoustotherotatingosmistring,3)the

ontinous or ATC vortex, whose motion auses

\mo-mentogenesis",whihistheanalogueofbaryogenesisin

theearly universe; 4) planarsolitons, that haveevent

horizons similar to rotating blak and white holes; 5)

symmetri vorties (in a thin lm), whih admit the

existeneoflosed timelikeurvesthroughwhih only

superuidlustersofanti-He 3

atomsantraveland

(5)

gen-There are still thesuperondutorswith their

vor-ties; glasses with their urved spae desription that

requiredislinations andperhapsmonopoles; magnets

withtheirdislinationsanddomain walls...

V Conlusion

Condensed Matter Physis has muh beneted from

tools and ideas from gravitation and osmology and

paysthatbakbyoeringalaboratoryfortestingsome

osmologialor gravitationalhypotheses.

Aknowledgments

My warmest thanks go to my numerous ollaborators

(see referenes [12-28℄) whomade this work ome out

of the vauum. This work was partially supported

byFACEPE,CNPqandFINEPthroughitsPRONEX

program.

Referenes

[1℄ TammayVahaspati,Phys.Rev.D44,3723(1991).

[2℄ MarkJ.Bowiketal.,Siene263,943(1994).

[3℄ W.H.Zurek,Phys.Rep.276,177(1996).

[4℄ M.O.KatanaevandI.V.Volovih,Ann.Phys.(NY)

216,1(1992).

[5℄ M. Kleman, Points, Lignes, Parois: dans les

u-ides anisotropes et les solides ristallins (Edition de

Physique,Frane1977).

[6℄ E. Kroner, Continuum theory of defets, in: Les

Houhes,SessionXXXV,1980-PhysisofDefets,eds.

R.Balianetal.(North-Holland,Amsterdam,1981)pp.

282-315.

[7℄ Roland A. Puntigam and Harald H. Soleng, Class.

QuantumGrav.14,1129(1997).

[8℄ A.Vilenkin,Phys.Rev.D23,852(1981).

[9℄ D. V. Gal'tsov and P. S. Letelier, Phys. Rev. D 47,

4273(1993).

[10℄ K.P.Tod,Class.QuantumGrav.11,1331(1994).

[11℄ FernandoMoraes,Phys.Lett.A214,189(1996).

[12℄ ClaudioFurtadoandFernandoMoraes,Phys.Lett. A

188,394(1994).

[13℄ ClaudioFurtadoandFernandoMoraes,Harmoni

Os-illatorInteratingwithConialSingularities,

submit-tedtopubliation.

[14℄ C.Furtadoetal.,Phys.Lett.A195,90(1994).

[15℄ Claudio Furtado and Fernando Moraes, Europhys.

Lett.45,279(1999).

[16℄ Sergio Azevedo, Claudio Furtado and Fernando

Moraes,PhysiaStatusSolidi(b),207,387(1998).

[17℄ A. de Padua, Fernando Parisio-Filho and Fernando

Moraes,Phys.Lett.A238,153(1998).

[18℄ A.P. Balahandran, Varghese John, Arshad Momen

and Fernando Moraes, Int. J. Mod. Phys.A 13, 841

(1998).

[19℄ Sergio Azevedoand Fernando Moraes, Phys. Lett. A

246,374(1998).

[20℄ ClaudioFurtado,FernandoMoraesandV.B.Bezerra,

Phys.Rev.D59,107504(1999).

[21℄ ClaudioFurtado,FernandoMoraesandV.B.Bezerra,

Loop Variables andAharonov-Bohm eet in

Kaluza-Kleintheory, Aeptedfor publiationinMod.Phys.

Lett.A(2000).

[22℄ Sergio Azevedo and Fernando

Moraes,Two-dimensionalsatteringbydislinationsin

monolayer graphite,submittedtopubliation.

[23℄ ClaudioFurtado,V.B.BezerraandFernandoMoraes,

Berry's Quantum Phase in DisloatedMedia,

submit-tedtopubliation.

[24℄ E.R. BezerradeMello, V.B.Bezerra,C.Furtadoand

F.Moraes,Phys.Rev.D51,7140(1995).

[25℄ Claudio Furtadoand Fernando Moraes, Class.

Quan-tumGrav.14,3425 (1997).

[26℄ A. M. de M. Carvalho, Claudio Furtado and

Fer-nandoMoraes,Self-foresoneletriandmagneti

lin-earsoures in the presene of a torsionaldefet,

sub-mittedtopubliation.

[27℄ FernandoMoraes,Phys.Lett.A204,399(1995).

[28℄ IvanPontualand FernandoMoraes,Phil. Mag.A 78,

1073(1998).

[29℄ FernandoMoraes,Mod.Phys.Lett.A10,2335(1995).

[30℄ L.H.BennetandR.E.Watson,Phys.Rev.B35,845

(1987).

[31℄ T.W.B.Kibble,J.Phys.AGen.Phys.9,1387(1976).

[32℄ I. Chuang, N. Turok and B.Yurke, Phys. Rev.Lett.

66,2472(1991).

[33℄ G.E.Volovik,P.Natl.Aad.Si.USA96,6042(1999)

Imagem

Figure 2. Dislination
Figure 4. Geodesis around edge disloation (1).

Referências

Documentos relacionados

ories is presented for physial S-matrix elements in the ase of harged salar partiles interating.. in minimal way with an external or quantized

for all hadroni systems, to total ross-setions whih.. inrease with the energy [3℄ somewhat like

Using a oherent amplitude analysis to t the Dalitz plot of this deay, we.. nd strong evidene that a salar resonane of mass

theory of the Casimir fore taking into aount orre-. tions up to the 4th order both in surfae

detetor data from the front-end eletronis to the

A Bohm-de Broglie piture of a quantum geometrodynamis is onstruted, whih.. allows the investigation of these

neutrino anomalies and their possible interpretations in terms of osillation indued by neutrinoN. mass and

We present some aspets of the study of quantum integrable systems and its relation to