• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número2

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número2"

Copied!
7
0
0

Texto

(1)

Is There New Physis Around the Corner?

O. J.P.

Eboli

InstitutodeFsiaTeoria,

UniversidadeEstadual Paulista

Rua Pamplona145,S~aoPaulo,SP01405{900,Brazil

E-mail: eboliift.unesp.br

Reeived7January,2000

TherearemanytheoretialargumentsindiatingthatthereshouldbenewPhysisaroundtheTeV

sale whihanbedisoveredinthenextdeade. Webrieyreviewsomeofthepossiblesenarios

whihgiverisetoaplethoraofnewsignalsatolliderexperiments.

I New Physis Senarios

In the last few years it hasbeen established that the

interationsof thegaugebosonswith thefermionsare

well desribedby theStandardModel(SM) [1℄.

How-ever,wehavenotobservedtheSU(2)

L U(1)

Y

symme-trybreakingmehanismyet. Atpresent,thebest

avail-able limiton the SM Higgs mass arises from searhes

at the CERN LEP ollider. The ALEPH

Collabora-tionanalysisofthe1999datawithintegrated

luminosi-tiesof 29 pb 1

at p

s =191:6 GeV and 69.5pb 1

at

p

s=195:6GeV[2℄yieldsM

H

>98:8GeVat95%CL.

The preision measurements performed at the Z

peak exhibit an agreement at the per mile level with

theSMtheoretialpreditions[1℄. Suhapreision

al-lows us to obtain information on the Higgs boson via

loopeetsdespiteitsontributionbeingonly

logarith-mi upon the Higgs mass. Performing a global t to

theavailable datawithin theframeworkof theSM

al-low us to onstraints the Higgs mass [3℄; see Fig. 1.

At the 95% CL the SM Higgs mass is bounded from

aboveM

H

<230GeV.Therefore,weshouldbeableto

startprobingthesymmetrybreakingmehanisminthe

nextfew years at theTevatron orthe LHC if theSM

desribesorretlythismehanism.

Howeverthis might be not the whole story! The

analysis of the stability of the SM vauum implies

that the quarti Higgs oupling is bounded from

be-low, whih orresponds to a lower limit on the Higgs

mass [4℄. Requiring that theSM vauum is stable up

totheGUTsale(10 16

GeV),wemusthaveM

H >130

GeV.Moreover,the runningquarti Higgs ouplingis

givenby

1

() =

1

(M

H )

3

4 2

log

2

M 2

H

; (1)

nite sale. This pole signalsthe appearane of new

physis. Again,assumingtheSMtobevalidupto the

GUTsaleleadstoM

H

<180GeV[5℄.

0

2

4

6

10

10

2

10

3

m

H

[GeV]

∆χ

2

Excluded

Preliminary

∆α

had

=

∆α

(5)

0.02804

±

0.00065

0.02784±0.00026

theory uncertainty

Figure1. 2

oftheSMglobaltasafuntionoftheHiggs

mass.

Fromtheabovedisussion, theSMwithone Higgs

doubletmightdesribethewholepartilephysisupto

theGUT saleprovided130<M

H

<180GeV.

How-ever,eveniftheHiggsisdisoveredin thismassrange

it is unlikely that the SM is the whole truth sine it

is unnatural to have alight salar in a model with a

(2)

meha-heavysaledue to radiativeorretions. Onesolution

tothenaturalnessproblemistointrodue

supersymme-try(SUSY)attheTeVsale. Inthisase,thereshould

be plenty of new partiles waiting to be found in the

nextfewyears.

Another distint possibility is that the symmetry

breaking mehanism does not exhibit a Higgs boson.

This happens in models with dynamial symmetry

breaking. Here, theoretial argumentsalso point that

the new physis sale is low enough to be tested in

thenextgenerationof olliders. Infat,thesattering

WW !WW violatesunitarityforenergieslargerthan

4v ' 3TeV if there is no Higgs boson [6℄. This

in-diates that weshould have newstates at this energy

sale orthat thetheory beomes stronglyinterating.

Againtherewillbeplentyofexitementwhenwestart

to probetheTeVsaleifthisistheorretsenario!

Reentlytherehasbeenagreatinterestinthe

pos-sibilitythatthesaleofquantumgravityisoftheorder

of theeletroweaksale [7℄insteadofthePlanksale

M

pl ' 10

19

GeV. The known onstrutions of a

on-sistent quantum gravity theory require the existene

of extra dimensions [8℄, whih should have been

om-patied. AsimpleargumentbasedontheGauss'law

in arbitrarydimensionsshowsthatthe Planksaleis

related to theradius of ompatiation (R ) of the n

extradimensionsandthequantumgravitysaleby

M 2

pl 'R

n

M n+2

S

; (2)

where M

S

is the (4 + n) dimensional fundamental

Planksaleorthestringsale. Thusthe largenessof

the4 dimensionalPlanksaleM

pl

(orsmallnessofthe

Newton's onstant)an be attributed to theexistene

of largeextradimensionsofvolume R n

. If one

identi-esM

S

O(1 TeV),thissenarioresolvestheoriginal

gauge hierarhy problem between the weak sale and

thefundamental Planksale,andleadtorih low

en-ergy phenomenology. The n = 1 ase orresponds to

R'10 8

km,whihisruledoutbyobservationon

plan-etarymotion. Intheaseoftwoextradimensions,the

gravitationalfore ismodied onthe 0:1 mm sale; a

region notsubjettodiret experimentalsearhesyet.

However, astrophysisonstraintsfrom supernovahas

set alimitM

S

>30TeVforn=2[9℄,andthus

disfa-vored asasolutionto thegaugehierarhyproblem as

wellasforadiret ollidersearh.

Generallyspeaking, whentheextradimensionsget

ompatied, the elds propagating there give riseto

towers of Kaluza-Klein states [10℄, separated in mass

by O(1=R ). Inorderto evadestrongonstraintsfrom

eletroweak preisionmeasurementsthe SM elds are

assumed to liveon a4{dimensionalhypersurfae,and

only gravitypropagatesin theextradimensions. This

assumption is basedon newideasaboutthe D-branes

[11℄. If gravity beomes strong at the TeV sale,

Kaluza{Klein (KK) gravitons should play a r^ole in

asavirtualexhangestate. Therehasbeenmuhwork

in the reent literature to explore the ollider

onse-quenesfortheKK gravitons[12,13℄.

The above new physis senariosare just a

repre-sentativesetofthelargenumberofpossibleextensions

of the SM. Inthe followingwedesribesome of their

phenomenologialimpliations and the respetive

sig-nalsat olliders. Our main pointis that thesemodels

giverisetosuhalargenumberofnewtopologiesthat

theirstudy will over almost all newphysis

possibil-ities, even the ones not onsidered here, guaranteeing

thattheexperimentswillnotmissanynewphysissign

intheTeVsale!

II Higgs Searhes

NowadaysLEPIIisthemahinewiththelargest

apa-bilitytostudytheprodutionofHiggsbosonsprovided

M

H

isnottoolarge. AtLEPenergiesthemainHiggs

produtionmehanismis[14℄

e +

e !ZH ; (3)

whosetotalrosssetionwepresentinFig. 2.This

pro-essallowus to probeHiggs masses up to ' p

s 95

GeV[14℄.

Figure2. SMHiggs prodution rosssetion at LEP as a

funtionofM

H

fordierententer{of{massenergies[14 ℄.

TheSMHiggssignaldependsonitspossibledeays

whih are displayin Fig. 3. Taking into aount the

Z andHiggsdeayhannels,theSMHiggsprodution

topologiesaretheonesshowninTable1. Animportant

featureoftheseHiggstopologiesisthepreseneofjets

taggedasb-jets sinealightHiggshasalarge

(3)

theHiggs searh aretheW +

W andZZ produtions

whose ross setions are roughly 20 and 1 pb

respe-tively. An eÆientwayto reduethebakgroundisto

require the presene of b-tagged jets in the event. In

fat,b-taggingreduesthesignalbyafator0:60while

theW +

W bakgroundisreduedbyafator0.01and

10%oftheZZ bakgroundsurvives.

Figure3. SMHiggsbranhingratiosasafuntionofthe

Higgsmass[14 ℄.

nalstate frequeny

4jets 60%

2jets+E

/

T

18%

2jets+2` 6%

2jets+2 9%

Table1. Finalstatetopologiesandexpetedfrequeniesfor

aSMHiggsbosonatLEPII.Here,`standsfore

and

.

In theLEPII experimental searhes,aneural

net-work is used to analyze the data, where many

vari-ablesare onsidered likevisible energy, missing

trans-versemomentum,invariantmassofjetpairs,displaed

verties, et. We summarize in Table 2 the 95% CL

lower limits on the SM Higgs mass obtained by the

negativeresults at 189 GeV of the four LEP

ollabo-rations, aswell as the values expeted assuming that

just the bakground has been observed [15℄. We also

presentinthistabletheombinedlimitofthefour

ol-laborations. Notie that the limits derived from data

areusuallysmallerthantheexpetedones. Thisisdue

to aslight overall exess of events whih is not

au-mulatedin asinglebin. Thisexessanoriginatefrom

statistialutuationsorsimplyasystemati

underes-InitslastyearofoperationLEPwillbeableto

ex-tend the above limitson theSM Higgs. Forinstane,

running at 198GeV with anintegrated luminosity of

200pb 1

perexperiment,itsispossibletodisoverSM

Higgs bosons with masses up to 105 GeV or to rule

outSMHiggsbosonswithmassesupto107GeV.The

next mahine that will be able to improve these

lim-its is the RUN II of the Tevatron whose performane

is summarized in Fig. 4. As weansee from this

g-ure, theTevatron anexludeHiggsmasses upto 120

GeVforanintegratedluminosityof2fb 1

. Inorderto

probethewholerangeofallowedHiggsmasseswehave

to wait until theCERN LargeHadron Collider starts

operating.

Collaboration M

H

(GeV) expeted(GeV)

ALEPH 92.9 94.1

DELPHI 94.1 94.6

L3 95.3 94.8

OPAL 91.0 94.9

Combined 95.2 97.2

Table2. LowerboundontheSMHiggsmassderivedbythe

fourLEPCollaborationsusingthedatatakenat189GeV.

For omparison we present the expeted limits assuming

that onlythebakgroundwas observed. Thelast linewas

obtainedombiningthefourexperiments.

Figure 4. Combined CDF and D integrated luminosity

neededtodisover/rule outaSMHiggsasafuntionofits

mass.

III Anomalous Higgs

Intera-tions

A veryinteresting possibility is that the new physis

manifestsitselfmodifyingtheSMHiggsprodutionand

(4)

eletroweaksale. Inthisaseweanparametrizethe

deviationsfromtheSMusingeetivelagrangianswith

alinearrepresentationoftheSU(2)

L U(1)

Y

symme-try. Asetofpossibleeetiveoperatorsis

L

e =

f

BW

2

B

y

W

+ f

2

( y

D

)(D

y

)

+ f

WW

2

W

W

y

+ f

BB

2

B

B

y

+ f

;1

2

(D

)

y

y

(D

) ; (4)

whih modify the ouplings of the Higgs to gauge

bosons. The operators O

;1

and O

BW

ontribute at

treeleveltothevetor{bosontwo{pointfuntions,and

onsequently are severely onstrained by low{energy

data [16℄. The present 95% CL limits on these

oper-ators for 90 GeV M

H

800GeV and m

top =175

GeV,read

1:2 f

;1

2

0:56TeV 2

; (5)

1:0 f

BW

2

8:6TeV 2

: (6)

Asurprising fat isthat theseresidual interations

an modify onsiderably the Higgs physis even when

we take into aount these bounds! Forinstane, we

show in Fig. 5 the allowed Higgs mass region by the

lowenergypreisiondatainludingtheeetofthe

op-eratorsO

;1 andO

BW

[17℄. Notiethedramatihange

withomparisonwithFig. 1!

Figure5. AllowedHiggsmassregionwhenweonsiderthe

eetoftheoperators O

;1 andO

BW .

The eet of the additional Higgs interations on

the properties of an intermediate mass Higgs an be

moreeasilyseeninproessesthataresuppressedinthe

SM,thisdeayoursonlyatone{looplevel,anditan

beenhaned(orsuppressed)bytheanomalous

intera-tions [18℄. Moreover, these eetive interations also

leadtonewtopologiesforHiggssearhatLEP[19℄

e +

e ! H(!) ; (7)

e +

e ! H(!b

b) : (8)

Reently theL3 analyzed these signals[20℄, obtaining

the95%CLlimitsonasafuntionoftheHiggsmass

forf

WW =f

BB

=1;seeinTable3.

M

H

70 289

90 216

110 243

130 218

Table3.95%CLlowerboundson(GeV)asafuntion

MH (GeV).

IV Supersymmetri Models

Weaksalesupersymmetrimodelsreeivedalotof

at-tention not only due to its intrinsi beauty but also

forprovidingasolutionforthenaturalness(hierarhy)

problem. Weshould notforget that these models are

perturbative and onsequently we an make reliable

preditions,ontrarytowhathappensinstrongly

inter-atingmodelsliketehniolor. Inmypointoutofview,

SUSYmodelsare aexellentframework forpreparing

theanalyses ofexperiments sinethey possess alarge

parameterspaeinitsmoregeneralformwhih,inturn,

givesrisetomanydistintpreditionsandtopologies.

In supersymmetri models the spetrum is more

thantwotimesbigger thanthe SMonesine wehave

to introdue onesupersymmetri partner foreah SM

partile and also enlargethe Higgs setor. Moreover,

sinethesupersymmetripartnersarenotdegenerated

inmasswiththeSMpartileswemustalsoadda

super-symmetrybreaking setor, and onsequently new free

parameters. Altogether thenumberof SUSY

parame-tersis largerthan100beingthis thesoureof itsrih

phenomenology.

Here,Iwill just giveabroadviewofsomepopular

SUSYsenarios. Initially wedivide the SUSYmodels

intotwolassesaordingtheyexhibitornotadisrete

symmetry alled R {parity. R {parityis related to the

partilespin(S),leptonnumber(L),andbaryon

num-ber(B)throughR=( 1)

(3B+L+2S)

, beingalltheSM

partilesR {evenwhile theirsuperpartnersareR {odd.

Neithergaugeinvarianenorsupersymmetryrequireits

onservation.

Let us start by the models with R {Parity

onser-vation. In this ase the lightest supersymmetri

(5)

pro-ConstrainedMinimalSupersymmetriStandardModel

(CMSSM)whihusessupergravitytoredue the

num-berof free parametersto 5at theGUT sale. Inthe

CMSSMitis assumedthat SUSYbreaking is

ommu-niatedtooursetorbygravitationalinterations[21℄,

resultingthatthefreeparametersareaommonSU(2)

gaugino mass (M

2

), a ommon salarmass (m

0 ), the

ratiooftheVEVofthetwoHiggsdoubletsinthemodel

(tan),theHiggsmixingparameterandtheommon

trilinearouplingA

0

. IntheCMSSM,theLSPis

neu-tral andweakinterating,therefore, itis notobserved

in detetors. The deays of the SUSY partiles lead

totheprodutionofLSP'sduetheR {parity

onserva-tion. Therefore,oneofthemainpropertiesofCMSSM

topologiesisthepreseneofsubstantialmissingenergy.

For example, theprodutionof the SUSY partners of

W

(harginos~

)anleadtothefollowingtopology

ine +

e olliders

e +

e !~ +

~

!LSPLSPW

W

; (9)

whereonlythedeayprodutoftheW

'sareobserved.

Other models exhibitingR {parityonservationare

thesoalledtheGaugeMediatedSUSYBreaking

mod-els (GMSB), where the breaking of supersymmetryis

mediatedbygaugeinterationbetweenoursetorand

the hidden setor. In this ase the harateristi

en-ergysaleanbemuhsmallerthan thePlankmass.

Thisimpliesthatthegravitinostartsplayingan

impor-tant r^ole in the phenomenology of these models sine

it is the LSP. In this ase the gravitinos are not

ob-served,alsoleadingtomissingenergysignatures.

How-ever,thesemodelsalsopossesstheadditionalproperty

thatthenexttolightestSUSYpartile(NLSP)deays

into its SM partner and a gravitino ~

G . If the NLSP

is theSUSY partner oftaus, theeventswill present a

largenumberoftausdueto ~! + ~

G. Ontheother

hand,iftheNLSP is theSUSYpartner ofthe neutral

gaugebosons~

0

,therewillbephotonrihsamplesdue

to~

0 !+

~

G. ClearlytheGMSBmodelshavea

phe-nomenologyverydistintoftheCMSSM.Forinstane

GMSB models an leadto eventspresentingtwo

pho-tonsandmissingtransverseenergyinhadroniolliders

via

pp!~

0 ~ 0 ! ~ G ~

G : (10)

We an lassify the models without R {parity

a-ordingtothemehanismofR {paritybreaking,whih

an be expliit orspontaneous. The expliit break of

R {parity takesplae byadding thefollowingtermsto

thesuperpotential ijk L i L j E k + 0 ijk L i Q j D k +00 ijk U i D j D k + i L i H u ; (11)

whih ontain thequark and leptonsuperelds Q, U,

D and L. In this senariothere are 48 extra free

pa-rameters! The SUSY phenomenologyis modied

sub-andtheLSPisnolongerstable. Moreover,SUSY

parti-lesanalsobeproduedasresonanes,leadingtonew

learsignatures. Typialbounds onthe's areof the

orderof1%exeptwhenthesenewinterationanlead

toafastprotondeay. Forinstane, 0 11k 00 11k <10 22

in thisase[22℄.

In this senario, there an be events presenting

manyjetsand/orleptons,withorwithoutmissing

en-ergy, due to omplex asade deays and to the fat

that theLSPis unstable. Forinstane,theOPAL

ol-laboration denesnine topologiesin their searhesfor

harginos[23℄,seeTable4. Notiethattherearemany

newhannelswith respet tothe CMSSMsearh that

leadstoapairofW'sandmissing energy. Sinethere

aresomanynewanddistinttopologiesinmodelswith

R {parityviolationit is possible thatwend asignof

new physis, even if it is not supersymmetri, when

looking desperatelyforSUSY!

2` +p / T 4` +p / T 6` +p / T 6` n`

+kjets 2+4jets

4jets+p

/

T

>4jets+p

/

T

6jets

Table 4. Topologiesstudiedby theOPALollaborationin

theirsearhforharginosassumingthatR {parityis

expli-itlybroken.

V Low Sale Quantum Gravity

Thephenomenologyofmodelswithlowsalequantum

gravitydierfromtheSMonesinetheyexhibittowers

of Kaluza{Kleingravitons. Despite thegraviton

inter-ation with SM partiles being suppressed by powers

of thePlankmass,they angiveriseto visible eet

sinewehavetosumuptheontributionofthewhole

graviton tower, whih trades the Plank mass by the

quantum gravity sale M

S

; see for instane [7℄.

Vir-tualgravitonexhangesmodiestheSMrosssetions

aordingto ' SM + E M S 4 ~ I + E M S 8 ~ G ; (12)

where E is aharateristienergysale oftheproess

SM , I and G

areassoiated,respetively,totheSM,

interferenegraviton{SM,and puregraviton

ontribu-tions. An interesting feature of the virtual graviton

exhange isthat it isinsensitive onthenumberof

ex-tra dimensions. Thesignature ofgravitonexhangeis

themodiationoftheenergydependene oftheross

(6)

No-with energythat iteventuallyleadsto unitarity

viola-tion. At this point, either there is the appearane of

new states to enfore unitarity or themodel beomes

stronglyinterating.

Sine graviton{matter interations are not

en-haned, gravitons esape detetion leading to missing

energy signatures. In graviton emission wemust also

sumoverallgravitonmasses

d 2

dtdm

G =

2 n=2

(n=2) M

2

P

M 2+n

S m

n 1

G

d(m

G )

dt

(13)

whihleadstoanenhanementoftherosssetion

'

E

M

S

2+n

~

: (14)

Notie thatgravitonemissiondepends stronglyonthe

numberofextradimensionsandthatiteventuallygives

risetounitarityviolation.

The presently available data from LEP and T

eva-tron onstrain the quantum gravity saleto be larger

than'1TeV[24℄. Forinstane,letusstudythelimits

thatanbeobtainedfromtheproesse +

e ![25℄.

TheLEPCollaborationsusethisreationtosetbounds

onontatinterationswhoseontributioniswrittenas

d

dz =

2 2

s 1+z

2

1 z 2

1 s

2

2 4

(1 z

2

)

; (15)

wherezistheosineofthepolarsatteringangle. The

leadinggravitonexhangeontributionanalsobeast

into thisformwith,forn6=2,

4

+

=(n 2)M 4

S

: (16)

Employingthe95%C.L.limitson

+

(GeV)obtained

bytheLEPCollaborations[26℄weobtainedthelimits

showedinTable5.

VI Final Remarks

There are strong theoretial arguments that the next

deade will be very exiting for partile physis sine

forthersttimewewillprobethesymmetrybreaking

setoroftheeletroweakinterations. Therearemany

viablenewphysissenarios,howevertheexperiments

willbelookingforsomanysignalsofnewphysisthat

weanbealmostsurethatnewphysiswillbeobserved.

Aknowledgments

Thiswork wassupportedby ConselhoNaional de

Desenvolvimento Ciento eTenologio (CNPq), by

Funda~ao de Amparo a Pesquisa do Estado de S~ao

Paulo(FAPESP),andbyProgramadeApoioaNuleos

Referenes

[1℄ OPAL Collaboration, L3 Collaboration, DELPHI

Col-laboration ALEPH Collaboration, LEP Eletroweak

Working Group, and SLD Heavy Flavour and

Ele-troweakGroups,preprintCERN-EP/99-15.

[2℄ ALEPHCollaboration,Contributionto the19th

Inter-nationalSymposiumonLeptonandPhotonInterations

atHigh-Energies,Stanford(1999),hep-ex/9908016.

[3℄ M.Swartz,resultspresentedatthe1999Lepton-Photon

Symposium,Stanford,August9{14,1999.

[4℄ M.Sher,Phys.Rep.179,273(1989); G.Isidori, Phys.

Lett. B 337, 141 (1994); J. Espinosa and M. Quiros,

Phys.Lett. B353,257(1995).

[5℄ J.Casas,J.Espinosa, M. Quiros,andA.Riotto, Nul.

Phys. B 436, 3 (1995); L. Maiani, G. Parisi, and R.

Petronzio,Nul.Phys.B136,115(1978).

[6℄ B.W.Lee, C.Quigg, andH.B. Thaker, Phys.Rev.D

16,1519(1977).

[7℄ N.Arkani{Hamed,S.Dimopoulos,and G.Dvali, Phys.

Lett. B 429, 263 (1998); I. Antoniadis, N.

Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B

436, 257 (1998); I. Antoniadis and C. Bahas, Phys.

Lett.B450,83(1999).

[8℄ See,forinstane,M.B.Green,J.H.Shwarz,andE.

Wit-ten,SuperstringTheory,CambridgePress(1987).

[9℄ S.CullenandM.Perelstein,hep-ph/9903422;V.Barger,

T.Han,C.Kao,andR.Zhang,hep-ph/9905474.

[10℄ See,e.g.,ModernKaluza-KleinTheories,eds.T.

Ap-pelquist, A. Chodos, and P. Freund, Addison-Wesley

Pub.(1987).

[11℄ I. Antoniadis, Phys. Lett. B 246, 377 (1990); J.

Lykken, Phys. Rev.D 54, 3693 (1996); K. Dienes, E.

Dudas,andT.Ghergetta,Phys.Lett.B436,55(1998).

G.ShiuandS.-H.Tye,Phys.Rev.D58,106007(1998);

Z.Kakushadzeand S.-H.Tye,Nul.Phys.B548,180

(1999); L.E. Ibanez, C. Munoz, and S. Rigolin,

hep-ph/9812397.

[12℄ N.Arkani{Hamed,S.Dimopoulos,andG.Dvali,Phys.

Rev.D59,086004(1999).

[13℄ A.K.Gupta,N.K.Mondal,andS.Rayhaudhuri,

hep-ph/9904234;P.Mathews,S.Rayhaudhuri,andK.

Srid-har,Phys.Lett.B455,115(1999)andhep-ph/9904232;

T. Rizzo, Phys. Rev. D 59, 115010 (1999),

hep-ph/9902273,hep-ph/9903475andhep-ph/9904380;S.Y.

Choietal.,Phys.Rev.D60,013007(1999);K.Agashe

and N.G. Deshpande, Phys. Lett. B 456, 60 (1999);

K.Cheung andW.-Y.Keung, hep-ph/9903294; D.

At-wood, S. Bar-Shalom, and A. Soni, hep-ph/9903538;

C. Balazs et al., hep-ph/9904220; K. Cheung,

hep-ph/9904510; K.Y. Lee, H.S. Song, and J. Song,

hep-ph/9904355; Hooman Davoudiasl, hep-ph/9904425; G.

Shiu, R. Shrok, and S.-H. Tye, hep-ph/9904262; T.

Han,J.Lykken,andRen{JieZhang, Phys.Rev.D59,

105006(1999);O.

Ebolietal.,hep-ph/9908358.

(7)

[15℄ ALEPH, DELPHI, L3, and OPAL Collaborations,

preprintALEPH99-081CONF99-052,submittedtothe

International Europhysis Conferene on High Energy

Physis,Tampere,Finland,1999.

[16℄ A. De Rujula, M.B. Gavela, P. Hernandez, and E.

Masso,Nul.Phys.B384,3(1992)3;K.Hagiwara,S.

Ishihara,R.Szalapski,andD.Zeppenfeld,Phys.Rev.D

48,2182 (1993).

[17℄ L.HallandC.Kolda,Phys.Lett.B459,213(1999).

[18℄ F. de Campos, M.C. Gonzalez{Garia, and S.F.

No-vaes,Phys.Rev.Lett.79,5210(1997);M.C.Gonzalez{

Garia, S.M. Lietti, and S.F. Novaes, Phys. Rev. D

57,7045(1998);F.deCampos,M.C.Gonzalez{Garia,

S.M.Lietti,S.F.Novaes,andR.Rosenfeld,Phys.Lett.

B435,407(1998);M.C.Gonzalez{Garia,S.M.Lietti,

andS.F.Novaes,Phys.Rev.D59,075008(1999);M.C.

Gonzalez{Garia,Int.J.Mod.Phys.A14,3121(1999).

[19℄ O.

Eboli,M.C.Gonzalez{Garia,S.M.Lietti,andS.F.

Novaes,Phys.Lett.B434,340(1998).

[20℄ L3Collaboration,L3 Referene2365,Marh5,1999.

[21℄ Fordetails,seeforinstane,M.DreesandS.P.Martin,

hep-ph/9504324 andreferenestherein.

[22℄ V.Barger,G.F.Guidie,T.HanPhys.Rev.D40,2987

(1989).

[23℄ OPAL Collaboration, G.Abbiendi et al.,. Eur. Phys.

J.C11,619(1999).

[24℄ Seeforinstane,T.Rizzo,hep-ph/0001247.

[25℄ KingmanCheung,Phys.Rev.D61,015005(2000).

[26℄ ALEPHCollaboration,Phys.Lett.B429,201(1998);

andontributiontothe1999winteronfereneALEPH

99-022;L3Coll.,Phys.Lett.B413,159(1997);and

sub-missiontoICHEP'98, L3 InternalNote2269; DELPHI

Collaboration, Phys. Lett. B 433, 429 (1998); OPAL

Coll.,Phys.Lett.B438,379(1998);andOPALPhysis

Imagem

Figure 2. SM Higgs prodution ross setion at LEP as a
Table 2. Lower bound on the SM Higgs mass derived by the
Table 4. Topologies studied by the OPAL ollaboration in

Referências

Documentos relacionados

Using a oherent amplitude analysis to t the Dalitz plot of this deay, we.. nd strong evidene that a salar resonane of mass

defets formed in symmetry breaking phase transitions. To explore the similarities and dierenes.. here has been a very fruitful experiene for both sides. On one hand, topologial

theory of the Casimir fore taking into aount orre-. tions up to the 4th order both in surfae

detetor data from the front-end eletronis to the

A Bohm-de Broglie piture of a quantum geometrodynamis is onstruted, whih.. allows the investigation of these

neutrino anomalies and their possible interpretations in terms of osillation indued by neutrinoN. mass and

We present some aspets of the study of quantum integrable systems and its relation to

of many important subjets, like the hard Pomeron..