• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número3"

Copied!
8
0
0

Texto

(1)

Constrution of Exat Solutions for the

Stern-Gerlah Eet

J. DazBulnes and I.S. Oliveira

CentroBrasileirode PesquisasFsias

RuaDr. XavierSigaud150,Riode Janeiro-22290-180, Brazil

Reeivedon1February,2001

Weobtainexatsolutionsfor theShrodinger-Paulimatrixequationfor aneutralpartileofspin

1/2 in a magneti eld with a eld gradient. The analytial wavefuntions are written on the

symmetry plane Y = 0, whih ontains the inident and splitted beams, in terms of the Airy

funtions. Thetime-evolutionoftheprobabilitydensities, j

+ j

2

and j j 2

,andtheeigenenergies

are alulated. These inlude a small ontribution from the eld gradient, , proportional to

(~) 2=3

,whihamountsto equal energydisplaements onboth magnetilevels. Theresults are

generalizedforspinS=3=2,andinthisasewefoundthatthem=1=2andm=3=2magneti

sublevelsareunequalysplittedbytheeldgradient,beingthediereneinenergyoftheorder0.4

MHz. Replaing realexperimentalparameterswe obtained aspatialsplitting ofthe spinup and

spindownstatesoftheorderz4mm,inaordanetoarealStern-Gerlahexperiment.

I Introdution

TheexperimentofStern-Gerlah,performedintherst

quarterofthe20thentury,isintroduedinbasi

quan-tum mehanistextbooksin orderto illustrate the

ex-istene of thespinof apartile [1 6℄. Inspiteof its

historialimportane,anditswideuseasan

experimen-tal paradigmforthedisussion oftheoneptof

mea-surementinquantummehanis,authorshavefailedto

exhibit a full, oreven partiular solution of the

prob-lem,thatis, thepartilesanalytialwavefuntionsand

their timeevolution,as well astheir eigenenergies. A

fairlylargenumberofreentworkshavebeenpublished

onthe subjet,as that of Batelaanet al: [7℄who

pro-posed an experimental setup where harged partiles

ould be separatedby their spins in a\Stern-Gerlah

apparatus",ontraditing theideasof Bohr andPauli

atthebeginningoftheentury;NiChormaietal:[8℄,

employinginterferometrytehniquesinaStern-Gerlah

experiment,investigatedpropertiesofneutralpartiles

inabeam;Hannoutetal:[9℄ontributedtothetheory

ofmeasurementsinquantum mehanisusingtheidea

ofaStern-Gerlah apparatus. Insomeother workson

thesubjet[10 13℄theroleplayedbytheeldgradient

remainsundetermined.

Inthispaper,weareonernedwithabeamof

neu-tral atoms of spin S = 1=2 and mass m whih

pene-tratestheeld regionalong thex-axis. Themagneti

eld insidethe magnetregionanbeapproximatedas

:

B(y;z)= yj+(B

0

+z)k (1)

where B

0

representsahomogeneousomponentof the

eld, and (>0) the eld gradient along the z

dire-tion. One notiesthat this eld satises theequation

rB =0,and alsothat itanbederivedfrom a

po-tentialvetorA= y(z+B

0

=2)i+(B

0 x=2)j.

From the eld given in Eq.(1), one an write the

hamiltonian:

^

H=I ^

P 2

2m +

B ^

B(y;z) (2)

andthereforetheShrodinger-Paulimatrixequation:

^

H = I ~

2

2m r

2

+

B

[ y

2 +(B

0 +z)

3 ℄ =i~

t

(3)

whereIisthe22identitymatrixand

1 ;

2 and

3 the

Paulimatries. = (x;y;z;t)is thetwo-omponent

spinor:

=

+

(4)

Inwhatfollowswewill usethespinoromponents,

+

and ,denedthrough:

+ =

+

0

; =

0

(5)

Beforeproeeding,itisinstrutivetoonsidera

sim-plealulationoftheexpetedvalueforthepositionof

the partile on the z-axisin a instantof time t using

(2)

< ^

Z>

(t)=

Z

y

(t)

^

Z

(t)d

3

r (6)

SinethehamiltonianinEq.(2)isindependentoft,one

anwrite:

(t)=e

i ^

Ht=~

(0) (7)

andapplytheBaker-Hausdoridentity[5℄:

e ^

O

^

Ae ^

O

= ^

A+[ ^

O; ^

A℄+ 1

2! [

^

O;[ ^

O; ^

A℄℄+ 1

3! [

^

O;[ ^

O;[ ^

O; ^

A ℄℄℄+ (8)

Inthepresentase:

^

A= ^

Z and ^

O= i

~ (

^

P

x 2

2m +

^

P

y 2

2m 2

B

^

Y ^

S

y +

^

P

z 2

2m +2

B B

0 ^

S

z +2

B

^

Z ^

S

z )t

Fromtheseexpressionsoneobtains:

[ ^

O; ^

A℄ = ^

P

z

m t

[ ^

O;[ ^

O; ^

A℄℄ = 2

B t

2

m ^

S

z

[ ^

O;[ ^

O;[ ^

O; ^

A℄℄℄ = (2

B )

2

t 3

m~ ^

Y ^

S

x

[ ^

O;[ ^

O;[ ^

O;[ ^

O; ^

A℄℄℄℄= (2

B )

3

t 4

m~ 2

^

Y 2

^

S

z +

(2

B )

3

2

B

0 t

4

m~ 2

^

Y ^

S

z +

+ (2

B )

3

t 4

m~ 2

^

Z ^

Y ^

S

y (2

B )

2

t 4

m 2

~ ^

P

y ^

S

x ;et:

Consideringthe\redued"hamiltonian, ^

H

r

,atingonthewavefuntionsontheplaneY =0:

^

H

r =

^

P

x 2

2m +

^

P

z 2

2m +2

B B

0 ^

S

z +2

B

^

Z ^

S

z

theproblemisgreatlysimpliedforallthetermsoforderhigherthan2vanish. Wewillallthese funtions:

1

(x;z;t)

+

(x;0;z;t) and

2

(x;z;t) (x;0;z;t)

from whih oneanalulate theexpeted valueofZ. Weobtainthenalresult:

< ^

Z >

1;2 (t)=<

^

Z>

1;2

(0)+<v^

z >

1;2 (0)t

B t

2

m <

^

S

z >

1;2

(0) (9)

d

thisresultisinaordanewiththetheoremof

Ehren-fest[5℄. Thus,ifthebeamhasbeenpreviouslypolarized

alongthez-axis,byenteringtheStern-Gerlah

appara-tusitwillbesubjettoaforeequalto+

B

for

spin-down partiles (< ^

S

z

> (0) = 1=2), and

B for

spin-up partiles (< ^

S

z

>(0)=+1=2). Consequently,

thebeamissplittedbytheeldgradient,andthe

parti-lesareseparatedbytheirspindiretion onthez-axis.

Inthenextsetioneq.(3)issolvedontheplaneY =0,

andtheexatwavefuntionsareobtained. InsetionIII

thestationarywavefuntionaredeterminedalongwith

theorrespondingeigenenergies. The ase S = 3=2is

disussedinSe.IVandtheenergyandspatialsplittings

(3)

II Exat Solutions on Y = 0

On this setion we will derive exat solutions for the

Stern-Gerlah eet on a symmetry plane. We will

onsider a magneti eld with eld gradient dierent

from zero for x > 0 (diretion of the inident

parti-le) and equal to zero for x 0. Thetime-evolution

ofthepartileswavefuntionsrossingaStern-Gerlah

apparatusanbeobtainedanalytiallyonthe

symme-try plane Y = 0, on whih the two equations in (3)

beomedeoupled:

~ 2

2m

2

1

x 2

+

2

1

z 2

+

B (B

0

+z)

1 =i~

1

t

(10)

~ 2

2m

2

2

x 2

+

2

2

z 2

B (B

0

+z)

2 =i~

2

t

(11)

d

Onthebasisoftheresultsofthepreeedingsetion,one

anexpetthatthesolutionsoftheaboveequationswill

ontain afuntion dependent on thevaribles z and t,

representing the separation of the beam along the

z-axis. Besides, Berry [14℄ showed that the solutionsof

theShrodingerequationofafree-partileanbe

writ-tenasproduts of AiryAi funtions byomplex

expo-nentialfuntionswhosesquaremodulusevolveswithout

deformation. Thefat that Eqs.(10)and (11)ontain

the oordinate z suggeststhat the same type of Airy

funtionsanbefoundhere.

We therefore propose as possible solutions of (10)

and(11)thefollowingmultiparameterfuntions

1 and

2 :

1

(x;z;t)=F[a(z+bt 2

)℄e itz

e (i=~)(p

x x ~!

+ t)

(12)

and

2

(x;z;t)=G[ ~a( z+ ~

bt 2

)℄e i~tz

e

(i=~)(pxx ~! t)

(13)

Wherep

x

iseigenvalueof ^

P

x

,whihisinturnonserved.

Replaing (13)and (12)in(11)and (10),respetively,

one nds that the funtions F and Gsatisfy theAiry

equation[15℄onlyiftheparametersassumethe

follow-ingvalues:

a=

2m(

B

2mb)

~ 2

1=3

; ~a= "

2m(

B

2m

~

b)

~ 2

#

1=3

(14)

~!

+ =

p

x 2

2m +

B B

0

; ~! = p

x 2

2m

B B

0

(15)

= 2mb

~

; ~= 2m

~

b

~

(16)

b= ~

b=

B

4m

(17)

One noties that with this set of parameters, a and ~a are positive, a neessaryondition for j

1 (z;t)j

2

and

j

2 (z;t)j

2

to represent funtions whih moveappart with time. Expliitly, thenon-normalized solutionsof (10)

and(11)are:

1

(x;z;t)=Ai h

(

B m

~ 2

) 1=3

(z+(

B

4m )t

2

) i

e

i( B=2~)zt

e (i=~)[p

x x ((p

x 2

=2m)+

B B

0 )t℄

(18)

2

(x;z;t)=Ai h

(

B m

2 )

1=3

( z+(

B

)t 2

) i

e i(

B =2~)zt

(4)

e

(i=~)[pxx ((px 2

=2m) BB0)t℄

(19)

Onenotiesthatthesesolutionsareorretlyreduedtofreepartileplanewavesintheregionoutsideofeld,that

is, x0. Thetime-evolutionoftheprobabilitydensityisproportionaltothesquaredmodulusof

1 and 2 : j 1 (z;t)j

2 = Ai h ( B m ~ 2 ) 1=3

(z+( B 4m )t 2 ) i 2 (20) j 2 (z;t)j

2 = Ai h ( B m ~ 2 ) 1=3

( z+( B 4m )t 2 ) i 2 (21)

Thesefuntions,however,stilldonotrepresentphysiallyorretsolutionstotheproblem. Firstonenotesthat

theAiryAifuntionsosillatealongthez-axiswithoutdeayingforlargevaluesofz. Togetridoftheseosillations

andobtainaproperwavefuntion,wesimplymultiplythesolutions(18)and(19)byHeaviside'sstepfuntions,,

whih\trunate" theosillationsattherstzero(

o

). Seondly, weintrodueadisplaement

o

= 1:0188(rst

maximumofAi) inordertomakethetwofuntions oinideat t=0. With this,thenalorret time-dependent

wavefuntionsbeome:

1

(x;z;t)=Ai

a(z+(

o

=a)+bt 2 ) z ( o

=a)+(

o

=a)+bt 2 e i(zt) e (i=~)[pxx ~w+t℄ (22) and 2

(x;z;t)=Ai

a( z+(

o

=a)+bt 2 ) z ( o

=a)+(

o =a)+t

2 e i(zt) e (i=~)[p x x ~w t℄

(23)

Itmustbeemphesizedthatthefuntions(22)and(23)arealsosolutions ofthe samesetof equations(10)and

(11),with thesame setofparameters(14),(16)and(17),but ~w

+

and~w , whiharenowgivenby:

~! + = p x 2 2m + B B 0 o 2 ( B 2 2 ~ 2 m ) 1=3 (24) ~! = p x 2 2m B B 0 o 2 ( B 2 2 ~ 2 m ) 1=3 (25)

Thedomainsof

1 and

2 are<

3

f(x;z;t)=z=(

o =a) (

o =a) bt

2

gand< 3

f(x;z;t)=z= (

o =a)+( o =a)+ bt 2

g,respetively. Thespin-upand spin-downprobabilitydensitiesbeometherefore:

j'

1 (z;t)j

2 =fAi ( B m ~ 2 ) 1=3 z+ o + 1 4 ( B 2 2 m~ ) 2=3 t 2 h z o ( B m ~ 2 ) 1=3 + o ( B m ~ 2 ) 1=3 +( B 4m )t 2 i g 2 (26) and j' 2 (z;t)j

2 =fAi ( B m ~ 2 ) 1=3 z+ o + 1 4 ( B 2 2 m~ ) 2=3 t 2 h z o ( B m ~ 2 ) 1=3 + o ( B m ~ 2 ) 1=3 +( B 4m )t 2 i g 2 (27) d

Inorderto produeraplotofthefuntions we

de-ne anunit oflength,,as follow:

2

= Z

y

(x;z;t)(X 2

+Z 2

) (x;z;t)dxdz

Intermsof,otherphysialquantitiesbeome:

x; z in units of \"

t in units of \(m 2

)=~"

in units of \~ 2 =(m 2 B 2 )"

=t in units of \~=(m 2 )" 2 =x 2

in units of \1= 2

"

remaining arbitrary. Fig. 1shows j'

1 (z;t)j

2

and

j'

2 (z;t)j

2

for=800. Itis apparentthatthe

\spin-up"stateseparate from the\spin-down"asthe

(5)

Figure.1Timeevolutionofthespin-upandspin-down

prob-ability densitiesas partilesythroughthe magnetregion

for (a) t = 0:0001, (b) t = 0:03 and () t = 0:05 and

~=1;m=1;B =1and=800.

III Eigenenergies

Theeigenenergiesof thesystemaregivenbythe

solu-tionsofthestationaryequation:

^

H =E (28)

where ^

H is given by (2). On the plane Y = 0 one

obtains:

1

2m (

^

P 2

x +

^

P 2

z )+

B (B

0 +z)

1 =E

1

(29)

1

2m (

^

P 2

x +

^

P 2

z

)

B (B

0 +z)

2 =E

2

(30)

Replaingsolutionsofthetype:

1

(x;z)=e (i=~)pxx

R (z) (31)

oneobtainsthefollowingequationforthefuntion R :

R 00

(z

1

)R=0 (32)

where:

= 2m

B

~ 2

(33)

and

1 =

2m

~ 2

[E p

x 2

2m

B B

0

℄ (34)

Deningthenewvarible through:

= 1=3

z

1

2=3

(35)

wendthenewequation:

R 00

() R()=0 (36)

wih is the Airy equation. Thesolution of Eq.(29) is

therefore:

1

(x;z)=Ai( 1=3

z+

o )

z

o

1=3

+

o

e (i=~)p

x x

(37)

Wherethestepfuntionhasbeenintrodued,asdisussedinthepreeedingsetion. Theeigenenergyassoiated

tothisfuntions is:

E

1 =

p

x 2

2m +

B B

o

o (

B 2

2

~ 2

2m )

1=3

(38)

Similarly,areobtainfor

2 :

2

(x;z)=Ai( 1=3

z+

o )

z

o

1=3

+

o

e (i=~)p

x x

(6)

d

witheigenenergy:

E

2 =

p

x 2

2m

B B

o

o (

B 2

2

~ 2

2m )

1=3

(40)

Weseethattheeetoftheeldgradientistoprodue

a small positive displaement on the magneti levels,

and onsequently, theenergy dierene E

1 E

2 does

notdependon.

IV Solutions for S = 3=2

Onthissetionwegeneralizetheresultsofthe

preeed-ingsetion to the ase S =3=2. The hamiltonian for

aneutralpartilewithzeroorbitalangularmomentum

andarbitraryspin ^

S inamagnetieldBis:

^

H= ^

P 2

2m I+

2

B

~ ^

S:B (41)

The orresponding Shrodinger-Paulimatrix

equa-tionbeomes:

^

H = I ~

2

2m r

2

+

B

[ y

2 +(B

0

+z)

3 ℄ =i~

t

(42)

where

i

,with i=1;2;3,arethespinmatries. ForS=3=2,overY =0wehavefourdeoupledequations:

~ 2

2m

2

3

x 2

+

2

3

z 2

+3

B (B

0

+z)

3 =i~

3

t

(43)

~ 2

2m

2

2

x 2

+

2

2

z 2

+

B (B

0

+z)

2 =i~

2

t

(44)

~ 2

2m

2

1

x 2

+

2

1

z 2

B (B

0

+z)

1 =i~

1

t

(45)

~ 2

2m

2

0

x 2

+

2

0

z 2

3

B (B

0

+z)

0 =i~

0

t

(46)

where

1

,et., aretheomponentsofthefour-dimensionalspinor.

d

Following the same proeedure as in the previous

setionweobtainthefollowingenergies:

E

3 =

p

x 2

2m +3

B B

o

o (

9

B 2

2

~ 2

2m )

1=3

(47)

E

2 =

p

x 2

2m +

B B

o

o (

B 2

2

~ 2

2m )

1=3

(48)

E

1 =

p

x 2

2m

B B

o

o (

B 2

2

~ 2

2m )

1=3

(49)

E

0 =

p

x 2

2m 3

B B

o

o (

9

B 2

2

~ 2

2m )

1=3

(50)

Themaindiereneinrespettothepreviousase,

is theunequaldisplaementsofthemagnetilevelsfor

m= 1=2 and m= 3=2. This situation anbe

ex-ploitedtomeasuretheeetsoftheeldgradientona

beam,asshownbelow.

IV.1Energy Splitting

Inthissetionweevaluatethemagnetiofthe

on-tribution of the eld gradient to the energy splitting.

Let us assume the following values for the physial

quantities involved:

v=600 m=s

m=1:810 25

Kg

B

=9:2740810 24

J=T

h=6:6260710 34

J:s

B

o =1 T

=10 3

(7)

Withthesevalueswendthefollowingvalueforthe

levelsE

0 andE

3 :

( 9

B 2

2

~ 2

2m )

1=3

=0:141110 8

eV

andforE

1 eE

2 :

(

B 2

2

~ 2

2m )

1=3

=0:183210 8

eV

Itis interesting to express thedierene in energy

betweentheselevelsinunits offreueny:

=(E

1 E

o

)=h0;4 MHz

In a real experimental situation we an superimpose

tothestatields, aradiofrequenyeldtuned to

fre-quenies at this range and hange the populations of

themagnetilevels.

Otherordersofmagnitudesare:

p 2

x

2m

=0:2022 eV

B B

o

=0:578810 4

eV

V Spatial splitting

FortheaseS =1=2oneobtainthe aelerationv_ by

makingtheargumentoftheAiryfuntion,eq.(22),

on-stant andderivating in respetto time. Fromthis we

have:

_

v= 2b= (

B =2m)

CallinglthelengthofthemagnetandLthelength

betweenthemagnet andthedetetor, thetotal

devia-tionofthepartilealongthez axisisgivenby:

z=(

B

4m )

l 2

v 2

x +(

B

2m )

lL

v 2

x

Replaingthe valuesoftheonstantsgivenaboveand

makingl=L=0:2m,wendz4mm,whihisthe

orretorderofmagnitudeforthesplittingobservedin

areal Stern-Gerlahexperiment.

VI Disussions and Conlusions

Onthis paperweobtainedanalytialsolutionsforthe

problem of a neutral partile with spin S in a stati

magnetieldwitheldgradient. Thesesolutionswere

builtfrom oftheAiry funtions,whih arein turn

so-lutions of the Shrodinger equation in the symmetry

plane Y = 0. By hoosing adequately the

parame-ters involved,weobtainedadisrete energyspetrum,

andspinupandspindownwavefuntionswhihtravels

apartwithtime,asinarealStern-Gerlahexperiment.

Noapproximationhasbeenmadeonthemagnitudeof

theeldgradient,. Thisontrastswiththeusual

pro-eedure (and physially inorret) of making B

0

[6;16℄. Results were obtained for the ases S = 1=2

and S = 3=2. On this last ase we showed that the

magneti energy levelsare unequally displaed by the

eld gradient, and that the splitting is on the KHz

-MHzfrequenyrange. Thealulatedspatialsplitting

isin aordanewith whatisobservedin areal

Stern-Gerla! h experiment.

As a nal remark we mention that Eqs (10) and

(11)preditanotherinterestingfeature,thefatthatin

arealStern-Gerlahexperimenttheseparationofspin

up and spindown partilesis not omplete, asstated

in [17℄. We found further soltions of those equations

whihshowanadmixtureofspinstatewavestravelling

in opositediretion[18℄.

Aknowledgments

Oneof us, JDB, is thankful to Prof. H.G. Valqui

(UNI,Lima)forusefulsugestionsonerningsome

top-isofthiswork.

Referenes

[1℄ A. Bohm, Quantum Mehanis Foundations and

Ap-pliations,Springer-Verlag,NewYork(1993).

[2℄ D.I.Blokhintsev,QuantumMehanis,D.Reidel

Pub-lishingCompany,Holland(1964)

[3℄ P.R.Holland, The QuantumTheory of Motion,

Cam-bridgeUniversityPress.Cambridge(1995)

[4℄ R.G.Winter,Quantum Physis,Se.2.9, 8.1and 8.2,

WadsworthPublishingCompany,California(1979).

[5℄ F. Shwabl, Quantum Mehanis, Springer, Berlin

(1995).

[6℄ J.L. Martin, Basi Quantum Mehanis, Oxford

Si-enePubliations,Oxford(1982).

[7℄ H. Batelaan, T.J. Gay,and J.J Shwendiman, Phys.

Rev.Lett.79(23),4517(1997).

[8℄ S.NiChormai,Ch.miniatura,O.Gioreix,B.Viaris

de Lesegno, J. Robert, S. Feron, V. Lorent, J.

Rein-hardt,J.BaudonandK.Rubin,Phys.Rev.Lett.72(1),

1(1994).

[9℄ M. Hannout, S.Hoyt, A. Kryowonos and A. Widon,

Am.J.Phys.66(5),377(1998).

[10℄ D.E.Platt,Am.J.Phys.60(4),306(1992).

[11℄ M.F Barros, J. Andrade and M.H. Andrade, Ann.

Fond.LouisdeBroglie 12(2),285(1987).

[12℄ M.F Barros, J. Andrade and M.H. Andrade, Ann.

(8)

[13℄ M.I.Shirokov, Ann.Fond.LouisdeBroglie21(4),391

(1996).

[14℄ M.V. Berry, N.L. Balazs, Am. J. Phys. 47(3), 264

(1979).

[15℄ N. Bleistein and R. Handelsman, Asymptoti

Expan-sionsofIntegrals,DoverPubliations,NewYork(1986)

[16℄ J.M. Graia-Bonda, Trevor W. Marshall and Emilio

Santos, Phys.Lett.A183,19(1993).

[17℄ C.W. Muller and F.W. Metz, J. Phys. A 27, 3511

(1994).

[18℄ J. Daz Bulnes, Constru~ao de Solu~oes Exatas e

Aproximadas para o Efeito Stern-Gerlah, MS.

Referências

Documentos relacionados

angles of the magneti partile, the two polar angles of the magneti moment relative to the partile.. and the modulus of the

Birefringene n and normalized birefringene n= (inset) of opper ferrite samples as a funtion of the applied.

Knowledge of partile size distribution is very important for the study of magneti uids, magneti.. powders and other

The inuene of an external onstant uniform magneti eld on the Casimir energy assoiated with.. a Dira eld under antiperiodi boundary ondition is omputed using

Current and magneti eld proles of bent strips in external magneti elds and with applied.. urrents are

YBCO blok in 1-D and mapping the trapped magneti eld in those bloks in 2-DC. I In

The inrease of toroidal magneti eld leads to gradients in the mean plasma radial.. proles and the onset of

spin splittings resulting in a magneti-eld dependent subband struture.. Within