• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número3"

Copied!
10
0
0

Texto

(1)

Fierz-Pauli Higher Derivative Gravity

A.Aioly (1)

, S.Ragusa (2)

, H. Mukai (3)

,and E. de Rey Neto (1)

(1)

Instituto deFsiaTeoria,

UniversidadeEstadual Paulista, Rua Pamplona145,01405-900 S~aoPaulo,SP,Brazil

(2)

DepartamentodeFsiaeInformatia,

Instituto deFsiadeS~aoCarlos,

Universidadede S~aoPaulo,C.P.369,

13560-250 S~aoCarlos, SP,Brazil

(3)

Departamentode Fsia,

Funda~aoUniversidadeEstadual deMaringa,

Av. Colombo5790,87020-900 Maringa,PR,Brazil

e-mail: aiolyift.unesp.br

Reeived20Deember,1999. Revisedversionreeivedon31May,2000

We onsider a model for gravity in whih the linear part of the four-derivative terms

R

RR

p

gd 4

xand R

R 2

p

gd 4

x are inludedinto the Fierz-Pauli gravitationalation.

Uni-tarity isdisussed at thetree-level. Theissue ofthe gravitational deetionofalight rayis also

onsidered.

I Introdution

Einstein'seld theoryaountsverywellforallknown

marosopi gravitational phenomena. The theory is

dened byation

S= Z

d 4

x p

g 2R

2

; (1)

where 2

=32G, G beingNewton's onstant, is the

Einstein's onstant. Thepossibility of a osmologial

onstant,whihexperimentallymustbeverysmall,was

ignored.

However,asaquantumtheoryitislesssatisfatory,

sine puregravityhasan S matrix whih, despite

be-ing niteat one-looplevel[1℄,divergesat thetwo-loop

order[2℄.

Thus,itisrathernaturalforthequantumeld

the-orist to view (1) as a long-distane approximation to

someationwhihexhibitsbetterultravioletbehavior,

and denes ameaningful quantum theory. Now, as is

wellknown, (1)isnotthemostgeneralationallowed

for the symmetries (generalovariane)of thetheory.

Thegeneralationisgivenby[3℄

S= Z

d 4

x p

g

2

2

R+ 0

R 2

+ 0

R

R

+ 0

R

R

Æ

R

Æ +:::

;

d

where 0

; 0

; 0

; et., are suitable parameters. The so

alled higherderivative gravity, in turn, is dened by

theation

S = Z

d 4

x p

g

2R

2

+

2 R

2

+

2 R

R

; (2)

DeserandvanNieuwenhuizen[4℄arguedthatsuh

the-ory would be renormalizable but ontain ghosts due

to the k 4

propagators. On the other hand,

Anto-niadis and Tomboulis [5℄ pointed out that the

pres-eneofamassivespin-2ghostinthebarepropagatorof

quadrati gravity is inonlusive, sine this exitation

isunstable. Stelle[6℄provedrigorouslythe

(2)

sarily has ghosts or tahyons [7℄. This result led us

to onsider a model forgravity whih ontains, in

ad-dition to the linear partof the four-derivatives terms

R

R

R

p

gd 4

x and R

R 2

p

gd 4

x, the Fierz-Pauli

gravitationalation. Thismodel,however,asfarasthe

tree-levelunitarityisonerned,fellfarshortofour

ex-petations. Butontheotherhand,ithasitsvirtuesas

wellwhihwethinkmakeitsstudyworthwhile. Indeed,

itagreesasymptotiallywithNewton's law-besidesit

predits an aeptable value for the gravitational

de-etion. It alsoallowsusto ndtheeetiveoupling

onstantforFierz-Pauligravity.

Having heked that the linear part of the

four-derivative term R

R 2

p

gd 4

x is the Ahille's heel of

Fierz-Pauligravitywith higherderivatives,we

onsid-eredafterwardamodelwhereinonlythelinearpartof

the four-derivative term R

R 2

p

gd 4

x is inludedinto

theFierz-Pauligravitationalation. Theresulting

the-oryisunitaryatthetreelevelandinadditiongives,in

the limitof tinymasses,a valueof1.31 arsefor the

deetion ofalightbeampassingnear totheSun.

InSe. II weexamineindetailthequestionof the

tree-level unitarity of quadrati gravity. Our aim in

so doing was in rst plae to provide a presription

unitarityofwhatevertheoryofgravitationwithhigher

derivativeswewished; and seondly, to present a

rig-oroustreatmentoftheissuerelatedtotheunitarityof

higherderivativegravityatthetreelevel,llingin this

wayagap inthe literatureonthe subjet. InSe. III

wedisuss Fierz-Pauli gravitywith higherderivatives.

\Fierz-Pauli+R 2

gravity"isanalyzedinSe. IV.

In our notation the signature is (+ ). The

urvature tensor is dened by R

Æ

=

Æ

+:::,

the Rii tensor by R

= R

, and the urvature

salarbyR =g

R

, whereg

is themetritensor.

Naturalunitsareusedthroughout.

II Tree-level unitarity and

bending of light in the

on-text of higher derivative

gravity

Intheweakeldapproximation,i. e.,g

=

+h

,

where

= diag(+1; 1; 1; 1), the higher

deriva-tivegravityLagrangianreduesto

L

g =

b

4 h

2h

2h

A

;

2

F 2

+(1+4) A

; 2

2 i

1

2 h

h

2h

+A 2

+(A

)

2 i

; (3)

where A

h

;

;h;F

A

; A

; ;b

2

2 ;

. Indies arelowered(raised)using

(

).

Inorderto verifywhether ghostsandtahyonsareabsentin(3), werequirethatthepropagatorhasonlyrst

order poles at k 2

M 2

=0with realmasses M (notahyons)and with positive residues(noghosts) [8℄. Let us

thendeterminethepropagatorforhigherderivativegravity. Todothat,weaddto(3)thegauge-xingLagrangian

L

gf =

1 ( A

)

2

+ b

4 h

2 A

; 2

2

+

3 F

2

i

:

TheresultingLagrangian,

L=L

g +L

gf ;

anbeastintothebilinearform

L= 1

2 h

O

; h

;

where theoperatorOisgivenby[9℄

O=x

1 P

1

+x

2 P

2

+x

0 P

0

+x

0

P 0

+

x

0

P 0

(3)

x 1 b=2 3 k 4 +2 1 k 2 =b ; x 2 b=2 k 4 +2k 2 =b ; x 0 b=2 4k 4 4k 2

=b+12k 4 +3 2 2 k 4 +12 1 2 k 2 =b ; x 0 b=2 2 k 4 2 2 k 4 8 1 k 2 =b+ 2 2 k 4 +4 1 2 k 2

=b+4

1 k 2 =b ; x 0 b=2 2 k 4 4 1 k 2 =b+ 2 2 k 4 +4 1 2 k 2 =b ; and P 1 ; = 1 2 ( ! + ! + ! + ! ) ; P 2 ; = 1 2 ( + ) 1 3 ; P 0 ; = 1 3 ; P 0 ; =! ! ; P 0 ; = ! +! ; with = k k =k 2 ; ! =k k =k 2 : P 1 ;P 2 ;P 0 ; P 0 and P 0

aretheBarnes-Riversoperators[10℄ andk

isthemomentum ofthegravitonexhanged.

Thenthepropagatorinmomentum spaeis

O 1 = 1 x 1 P 1 + 1 x 2 P 2 + 1 x 0 x 0 3 x 2 0 h x 0 P 0 +x 0 P 0 x 0 P 0 i : (4)

Thehoie =0,givesthepropagator

O 1 = m 2 1 k 2 (m 2 1 1 k 2 3 ) P 1 + m 2 1 k 2 (m 2 1 k 2 ) P 2 + m 2 0 2k 2 (k 2 m 2 0 ) P 0 + m 2 1 k 2 ( 2 1 m 2 1 2 k 2 ) P 0 : (5) with m 2 0 2 2

( 3+) ; m 2 1 4 2 : d

Note that all parts of the propagator (5) behave like

k 4

. ThishoieorrespondstotheJulve-Toningauge

[11℄.

Wearenowreadytoprobethetree-levelunitarityof

higherderivativegravity. Toaomplishthisweouple

thepropagator(5)toexternalonservedurrents,T

,

ompatiblewiththesymmetriesofthetheoryandthen

we examine the residue of the urrent-urrent

ampli-in momentumspaeanbewrittenas

A=g 2

T

(k)O

; ( k)T

(k) ;

wheregistheeetiveouplingonstantofthetheory.

Now,takinginto aountthat k

T

=0,weometo

theonlusionthatonlythespin-projetorsP 2

andP 0

(4)

A=g 2

T

m 2

1

k 2

(m 2

1 k

2

) P

2

+

m 2

0

2k 2

(k 2

m 2

0 )

P 0

; T

: (6)

Thus,wehavetwopolesforboththespin-2setor,i. e.,

k 2

=0 ; k 2

=m 2

1 ;

andthespin-0setor,namely,

k 2

=0 ; k 2

=m 2

0 :

In summary, the theory ofquadrati gravity yieldsa masslessand twomassiveexitations. Abseneof tahyons

requires that <0and3+ >0.

From(6)wepromptlyobtain

A=g 2

T

T

T 2

=2

k 2

T

T

T 2

=3

k 2

m 2

1 +

T 2

6(k 2

m 2

0 )

; (7)

where T

T

=T

.

Nowweexpandthesouresin asuitablebasis. Thesetofindependentvetorsinmomentum spae,

k

= k 0

;k

; ~

k

k 0

; k

; "

i

(0;~

i

) ; i=1;2 ;

where~

1 and~

2

aremutuallyorthogonalunitvetorswhiharealsoorthogonaltok,servesourpurpose. Aordingly,

thesymmetriurrenttensorT

( k)anbewrittenas

T

=ak

k

+b ~

k

~

k

+ ij

" (

i "

)

j +dk

(

~

k )

+e i

k (

" )

i +f

i

~

k (

" )

i :

Theurrentonservation,k

T

=0,givesthefollowingonstraintsfortheoeÆientsa,b,d,e i

andf i

ak 2

+

k 2

0 +k

2

d=2=0 ; (8)

b

k 2

0 +k

2

+dk 2

=2=0 ; (9)

e i

k 2

+f i

k 2

0 +k

2

=0 : (10)

IfwesaturatetheindiesofT

withmomentak

,weobtaintheequationk

k

T

=0,whihyieldsaonsisteny

relationfortheoeientsa,b andd

ak 4

+b

k 2

0 +k

2

2

+dk 2

k 2

0 +k

2

=0 : (11)

From(7),(8), (9)and(10)weonludethattheresidueofAatthepole k 2

=0is

R es A

k 2

=0 =g

2

1

2

11

2

+2 12

2

+ 1

2

22

2

k 2

=0 >0 :

So,theneessaryonditionfortree-levelunitarity,i. e.,R esA>0atthepole,isensuredasfarasthepolek 2

=0

isonerned.

Similarly,wendtheresidueatthepole k 2

=m 2

(5)

R es A k 2 =m 2 1 = g 2 ab k 2 0 +k 2 2 +b 2 k 4 +bdk 2 k 2 0 +k 2 + ij 2 1 2 k 2 0 +k 2 e i f i k 2 2 f i 2 1 3 h ak 2 +bk 2 ii +d k 2 0 +k 2 i 2 k 2 =m 2 1 = g 2

(a b)k 2 2 + ij 2 + k 2 2 h e i 2 f i 2 i 1 3

(b a)k 2 ii 2 k 2 =m 2 1 ;

whereusehasbeenmadeof(8),(9),(10)and(11). Thisexpressionanalsobewritten as

R es A k 2 =m 2 1 = g 2 ( 2 3

(a b)k 2 2 + " ij 2 ii 2 3 # + k 2 2 h e i 2 f i 2 i 2 3

(a b)k 2 ii k 2 =m 2 1 : d

Now,assumingasusualthatT 0,wegetthat ii

0,

whih implies that R es Aj

k 2

=m 2

1

<0. So, we have a

massivespin-2 ghost in the bare propagatorof higher

derivative gravity. This ghost is nontahyoni sine

we have assumed that < 0 m 2

1 >0

. In short,

quadratigravityisnonunitary.

Ofourse,R es Aj

k 2

=m 2

0

>0. Thus,thesalar

mas-sivepartileisaphysialone. Notethat wehave

sup-posedthat3+>0 m 2

0 >0

.

Letus takefor granted,for awhile, that the

mas-sivespin-2partileofnegativeresidue,i. e.,theghost,

is unstable [6℄. Now,aording to Feynman, The test

of all knowledge is experiment [12℄. In this vein, we

should expetthathigherderivativegravity,viewedas

a lassial theory, passed the tests suggested by

Ein-stein for general relativity. Sine we are dealingwith

the linearized version of higher derivative gravity, we

will onentrateourattention onlyonthe issueof the

gravitationaldeetion ofalightray. Letusthen

on-sider the interation between a xed soure, like the

Sun,andalightray. Theassoiatedenergy-momentum

tensorswillbedesignatedrespetivelyasT

andF

.

Theurrent-urrentamplitudeforthisproessisgiven

by

~

A = g 2 T m 2 1 k 2 (m 2 1 k 2 ) P 2 + m 2 0 2k 2 (k 2 m 2 0 ) P 0 ; F = g 2 T + 2k 2 1 2 ( + ) 1 3 k 2 m 2 1 + + 6(k 2 m 2 0 ) F : (12) d

Taking into aount that the energy-momentum

tensorforlight(eletromagnetiradiation)istraeless,

whileT =Æ 0 Æ 0 T 00

forastatisoure,weget

~

A=g 2 T 00 F 00 1 k 2 1 k 2 m 2 : (13)

Note that the harmless massive salar mode gives no

ontribution at allto the gravitational deetion.

In-identally, it does not ontribute either to the light

deetion in the framework of R+R 2

gravity[13,14℄.

(6)

is alwayssmaller than that predited by general

rela-tivity (

E

= 1:75 00

). Fig. 1 shows a qualitative plot

of deetion versus m

1

for rays passing by the Sun.

In the measurement of the solar gravitational

exp

theor

=1:00010:0001forthe deetion at thesolar

limb,where

theor

isthedeetionpreditedbygeneral

relativity. So,

Q:G: <

measured .

6

-m

1

Q:G:

E =1:75

00

Figure1 Deetion vs. m

1 .

III Fierz-Pauli higher

deriva-tive gravity

To arrive at the Lagrangian for Fierz-Pauli higher

derivative gravity we add the linear part of the

La-grangianontainingthefour-derivativeterms

2 R

2 p

g

and

2 R

2

p

g,namely,

L

hd =

b

4 h

2h

2h

A

;

2

F 2

+(1+4) A

; 2

2 i

;

where b ~ 2

2 ;

, ~

2

being the \Einstein's onstant" for Fierz-Pauli gravity [16℄, to the Fierz-Pauli

La-grangian,i. e.,

L

FP =

1

2 h

h

2h

+(A

)

2

+(A

)

2 i

1

2 m

2

h 2

2

:

Inmomentum spaetheresultingLagrangiananbewritten as

L= 1

2 h

b

2 k

4

+k 2

m 2

P 2

m 2

P 1

+ 2bk 4

2k 2

+6bk 4

+2m 2

P 0

+m 2

P 0

i

h

(7)

Sine this theoryis not gaugeinvariant owingto theProa-likemassterm, we donot need to introdue any

gaugexingterminto (14)in orderto ndthepropagator. As aresult, allwehavetodoin this aseisto invert

theoperator

O=

b

2 k

4

+k 2

m 2

P 2

m 2

P 1

+ 2bk 4

2k 2

+6bk 4

+2m 2

P 0

+m 2

P 0

:

Usingthealgorithm presented in Ref. [9℄ foromputing thepropagatorfor higherderivativegravitytheories,

wepromplyobtain

O 1

=

1

b

2 k

4

+k 2

m 2

P 2

1

m 2

P 1

2bk 4

+6bk 4

2k 2

+2m 2

3m 4

P 0

+ 1

3m 2

P 0

: (15)

Ifwetakeb==0in(15)wereoverthepropagatoronerningFierz-Pauligravity[16℄,namely,

O 1

; =

1

2 (

+

)

1

3

k 2

m 2

;

wherewehaveomittedthetermsproportionaltothegravitonmomentum.

OurtasknowistondoutwhetherornotFierz-PaulihigherderivativegravitygivesanaeptableNewtonian

limit. Tosueedindoingthisweomputetheeetivenonrelativistipotentialfortheinterationoftwoidential

massivebosonsofzerospinviaagravitonexhange. Theexpressionforthepotentialis

U(r)= 1

4M 2

1

( 2) 3

Z

d 3

kM

N:R: e

ikr

; (16)

whereupon M

N:R

is thenonrelativisti limitof the Feynman amplitudefor theproesss+s ! s+s, where s

standsforaspinlessbosonofmassM. TheorrespondingFeynmandiagramisshowninFig. 2.

TheLagrangianfortheinterationofgravitywithafree,massivesalareld ~

,is

L

int =

~

k

2 h

~

~

1

2

~

~

M

2

~

2

:

FromthepreviousexpressiontheFeynman rulefortheelementaryvertexmayreadilybededued. Itisshown

in Fig. 3. Aordingly,theinvariantamplitudefortheproessshowninFig.2is

M= 2m 2

1

1

( k 2

M 2

1 )(k

2

M 2

2 )

~

k 2

2 h

(pq)(p 0

q 0

)+(pq 0

)(p 0

q)

+(pp 0

) M 2

qq 0

+(qq 0

) M 2

pp 0

+2 M 2

pp 0

M 2

qq 0

2

3 2M

2

pp 0

2M 2

qq 0

;

whereupon

M 2

1 =m

2

1 +

q

m 4

1 2m

2

1 m

2

; M 2

2 =m

2

1 q

m 4

1 2m

2

1 m

2

;

wherem 2

1

1

b =

2

~ 2

. Abseneoftahyonsrequires that<0andm 2

1 >2m

2

.

Inthenonrelativistilimitthisexpressionredues to

M

N:R: =

4

3 ~ 2

M 4

m 2

1

(k 2

+M 2

)( k 2

+M 2

)

(8)

U(r)= 4

3 M

2

~

G

1

p

1 2m 2

=m 2

1

e M

1 r

r e

M

2 r

r

;

from whih itfollowsimmediately theexpressionfor\Fierz-Pauligeneralizedpotential"

V(r)= 4

3 M

~

G

1

p

1 2m 2

=m 2

1

e M1r

r e

M2r

r

: (18)

d

It is easy to see that (18)tends to the Fierz-Pauli

potential,i. e.,

V

F:P: ( r)=

4

3 M

~

G e

mr

r ;

asm 2

1

!1. Comparisonofthis result,in thelimitof

anextremelysmallmass,withtheNewtonianpotential

V

N (r)=

MG

r

,showsthat ~

G= 3

4

G. Asaonsequene,

~ g 2

=g 2

= ~

G =G=3=4, where ~g is theeetive oupling

onstantforFierz-Paulitheory.

A ursory look at (18) allows us to onlude that

at the originthat expression tends to the nite value

4

3 M

~

G(M

2 M

1 )=

s

1 2m

2

m 2

1

. Itisinterestingtonote

that only in the absene of tahyons (both positive

andnegativeenergy)inthedynamialelddoes

Fierz-Pauli higher derivative gravity agree asymptotially

withNewton's Law.

Let us now examine the question of unitarity (at

the tree level) of Fierz-Pauli higher derivative theory.

Tobeginwith weanalyzethepoles to getinformation

onthe physiality of the masses. As we havealready

mentioned, tahyons are exluded from the spetrum

whenever <0andm 2

1 >2m

2

. It istrivial tosee in

thisase that wehavetwo massivespin-twopartiles,

onewithsquaremassM 2

1

andanotherwithsquaremass

M 2

2

. One anverify promptly, that the residueof the

transition amplitudeat thepole k 2

=M 2

1

is negative,

whihimpliesthatFierz-Paulihigherderivativegravity

isnonunitary. Theresidueofthetransitionsamplitude

atthepole k 2

=M 2

2

,inturn, ispositive. Thereby,the

partileofmassM

2

isaphysialone,whilethatofmass

M

1

isaghost.

The transition amplitude for the interation

be-tweenastatisoureandalightbeamisgiven,inturn,

by(seeSe. II)

~

A = g~ 2

T 00

F 00

m 2

1

p

m 4

1 2m

2

m 2

1

1

k 2

M 2

1 +

1

k 2

M 2

2

= 3

4 g

2

T 00

F 00

m 2

1

p

m 4

1 2m

2

m 2

1

1

k 2

M 2

1 +

1

k 2

M 2

2

:

For m 2

extremely small, this expression tells us that 0<

F:P:H:G:

<1:31 00

, where

F:P:H:G:

is the deetion

(9)

s

s s

s

p 0

p

q 0

q k

Figure 2 Lowestorderontributiontothereations+s !s+s,

where sstandsforaspinless massiveboson.

p 0

p

V

( p;p

0

)= 1

2 ~

p

p

0

+p

p

0

p:p

0

+M 2

Figure 3 TherelevantFeynmanruleforboson-bosoninteration.

IV Final remarks

Despite its interesting properties, Fierz-Pauli higher

derivativegravitydidnotome uptoourexpetations

asfar asthe issueof unitarity isonerned. However,

it is easy to see that the massive spin-2 ghost that

appears in the bare propagator of Fierz-Pauli higher

derivative gravity is entirelydue to the linear partof

thefour-derivativeterm R

R 2

p

gd 4

x. So,itis

worth-whiletoonsideramodelforgravityin whihonlythe

linearpartof the four-derivativeterm R

R 2

p

gd 4

x is

inludedintothe Fierz-Pauligravitationalation. For

thesakeofsimpliity,letusallthistheory\Fierz-Pauli

+R 2

gravity". TheorrespondingLagrangianisgiven

by

L= ~

2

A

; 2

2 1

h

2h

+(A

)

2

+(A

)

2

1

m 2

(h 2

2

(10)

L= 1

2 h

h

k 2

m 2

P 2

m 2

P 1

+ 2k 2

+3~ 2

k 4

+2m 2

P 0

+m 2

P 0

i

; h

:

Thus,thepropagatorin momentumspaeis

O 1

= 1

k 2

m 2

P 2

1

m 2

P 1

3~ 2

k 4

2k 2

+2m 2

3m 4

P 0

+ 1

3m 2

P 0

:

d

Of ourse, the inlusion ofthe linearpartof the

four-derivativeterm R

R 2

p

gd 4

xintotheFierz-Pauli

grav-itationalationdoesnotimprovetheultraviolet

behav-ioroftheusualFierz-Paulitheory.

ItiseasytoseethatFierz-Pauli+R 2

gravityis

uni-taryatthetree-level. Ontheotherhand,thetransition

amplitude for the interation between a stati soure

andalightbeamisgivenby(seeSe. II)

~

A=~g 2

T 00

F 00

1

k 2

m 2

= 3

4 g

2

T 00

F 00

1

k 2

m 2

:

Inthelimitofanextremelysmallmass,Fierz-Pauli

+R 2

gravitygivesavalueforthebendingofalightray

passinglosetotheSunwhihis 3

4

ofthatpreditedby

generalrelativity. So,

1:31 00

=

F:P+R 2 <

measured :

Note thatthepreditionofbothFierz-Pauli+R 2

grav-ity and Fierz-Pauli gravity for the solar gravitational

deetion areoneandthesame(asexpeted).

Aknowledgment

E.deReyNetoisverygratefultoFunda~aode

Am-paroaPesquisadoEstadodeS~aoPaulo(FAPESP)for

nanialsupport.

Referenes

[1℄ G.'tHooftandM.Veltman,Ann.Inst.HenriPoinare

20,69(1974).

[2℄ Mar H. Goro and Augusto Sagnotti, Phys. Lett. B

160,81,(1985).

[3℄ JohnF.Douglas,Phys.Rev.Lett.72,2996(1994).

[4℄ S.Deserand P.vanNieuwenhuizen, Phys.Rev.D10,

401(1974).

[5℄ I. Antoniadis and E. T. Tomboulis, Phys Rev. D 33,

2756(1986).

[6℄ K.S.Stelle,Phys.Rev.D16,953(1977).

[7℄ E.SezginandP.vanNieuwenhuizen,Phys.Rev.D21,

3269(1980).

[8℄ P. van Nieuwenhuizen, N. Phys.B 60, 478 (1973); F.

C.P.Nunes and G.O. Pires, Phys.Lett. B301, 339

(1993);C.Pinheiro,G.O.PiresandF.A.B.Rabelode

Carvalho,Braz.J.Phys.27,14(1997).

[9℄ A. Aioly, S.Ragusa, H.Mukai and E. deReyNeto,

Int.J.Theor.Phys.39,1601(2000).

[10℄ R.J.Rivers,NuovoCimento34,387(1964).

[11℄ J. Julve and M. Tonin, Nuovo Cimento B 46, 137

(1978).

[12℄ R. P. Feynman, R. B. Leighton and M. Sands, The

Feynman Letures on Physis, vol. I (Addison-Wesley,

1966).

[13℄ A.Aioly,A.D. Azeredo,E.C.deReyNetoand H.

Mukai,Braz.J.Phys.28,496(1998).

[14℄ A.Aioly,S.Ragusa,E.C.deReyNetoandH.Mukai,

NuovoCimentoB(NoteBrevi)114,595(1999).

[15℄ D.S.Robertson,W.E.CarterandW.H.Dillinger,

Na-ture349,768(1991).

[16℄ P.vanNieuwenhuizen,Phys.Rev.D7,2300(1973).

[17℄ H. van Dam and M. Veltman, N. Phys. B 22, 397

Imagem

Figure 2 Lowest order ontribution to the reation s + s ! s + s,

Referências

Documentos relacionados

The hardness and stress of amorphous arbon lms prepared by glow disharge and by ion beam.. assisting deposition

higher arbon ontent the density of Si-C bonds should. derease and the C-C bonds

lms were grown on &lt; 100 &gt; silion using the neutral luster beam deposition tehnique). These lms were highly rystalline and

The observed harateristis are explained using small signal a iruit analysis.. It is shown that the theoretial urve generated using the a iruit analysis gives

oupied moleular orbital (H), the next lower oupied level (H-1), their energy dierene value () and their relative. ontribution dierene to the LDOS ()

The stati and spherially symmetri solution of the eld of a harged point.. partile

the present higher-derivative model the magneti eld restores hiral symmetry broken initially on.. the

The expliit form of the multipliative and onformal anomalies in losed oriented hyperboli.. manifolds