• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número4

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número4"

Copied!
5
0
0

Texto

(1)

Ferrroeletri Phase Transitions and the Ising Model

F. C. Sa Barreto

Departamento deFsia,Universidade Federalde MinasGerais,

30.123-970 BeloHorizonte,MG,Brazil

Reeivedon1September,2000

TheIsingmodelhasbeenanimportanttheoretialtoolintheunderstandingofphasetransitions

inferroeletrimaterials. Werstreviewhowitrelatestotheunderlyingphysisoforder-disorder

phasetransitionsinthesesystems,aswellasmean-eldresultsforthespontaneouspolarizationand

thedieletrionstantneartheritialtemperature. Forhydrogen-bondedferroeletris,atermof

interationwithanexternaltransverseeld isneessaryto aountfor protontunnelingbetween

thetwominimaof adouble-wellpotential. Finally,wedisussbothexperimental andtheoretial

resultsforthe problemsofproton-lattieinterations,entral peakdynamis,dynamialbehavior

ofpseudo-one-dimensionalferroeletris andpressureeetsonhydrogenbondedferroeletris.

I Introdution

We begin with the Hamiltonian of a rystal used in

the study of ferroeletri phasetransitions [1℄. A

fer-roeletriphase transition islassied asa

displaive-typeororder-disordertypetransition. Foradisplaive

phasetransitionsomerequirementsareimposedonthe

Hamiltonianparameterssothatatransitiontakesplae

ontherystal. Foranorder-disordertransitiona

disor-deredlattiebeomesorderedwithloweringofthe

tem-perature. Quantumeetsmayalsobeomeimportant

in thisase.

InordertoobtaintheHamiltonianwetakea

single-ion model. Consider a diatomi rystal onsisting of

atoms AandB andassumethat inaphasetransition

AatomsmovewhileB atomsremainxed. Thefores

atingonatom Aaredue totheneighboring B atoms

andalsofromnext-neighborAatoms. Letu( ~

R )bethe

displaementalonganaxis,saythez-axis,ofanatom

A in the unit ellwhose enter is loated at ~

R. The

Hamiltonianis

H = X

~

R (

1

2 au(

~

R) 2

+ 1

4 bu(

~

R) 4

)+ 1

2

X

~

R; ~

R 0

(u( ~

R ) u( ~

R 0

)) 2

(1)

where a<0,b>0and is thestinessoeÆientfor

thefores(strings)linkingthepartiles. Therstterm

in Eq. (1) desribestheinteration between Aand B

atoms whilethe seond termdesribestheinteration

betweenatomsA. Letusexplainhowthetwotypesof

phasetransitionsaredesribedbythisHamiltonian.

(a) Displaive phase transitions (jaj ). For

T >T

,themeanpositionsofatoms Aarein the

en-tersoftheellsand,therefore,u( ~

R )=0,exeptfor ~

R

0 ,

atingonanAatomis

U = 1

2

(a+6)u( ~

R

0 )

2

+ 1

4 bu(

~

R

0 )

4

(2)

The oeÆientoftherst termispositiveand the

in-dividualAatommovesinaneetivepotentialwitha

singleminimum(Fig. 1).

(b) Order-disorder phase transitions (jaj ). In

Eq. (2), ifjaj thersttermis negative,while the

seondispositive. Anindividualatommovesina

sym-metriphasein adouble wellpotential(Fig. 2). Eah

atomoupiesoneofthetwoequilibriumpositions

or-respondingto theenergyminima,

u

1; 1 =

r

jaj

b

=u( ~

R

0

): (3)

ThedisplaementofanAatomfrom theenter ofthe

unit ellisaquantitywhihanhaveonlytwovalues,

u( ~

R)=uS( ~

R

0

); (4)

where S( ~

R )=1. InsertingEq. (4) intoEq. (1)and

onsideringthat S( ~

R ) 2

=1,wendthat

H = 1

2 X

~

R ; ~

R 0

JS( ~

R )S( ~

R 0

) (5)

where J =2u 2

0

and terms not ontaining S( ~

R ) have

(2)

Figure1.Eetivepotentialwithasingleminimum,

our-ringindisplaivephasetransitions.

II Order-disorder ferroeletris

Intheseferroeletris,thepartilesperformosillations

relative to their equilibrium positions, and an also

movefromoneequilibriumpositiontotheother,under

the ation of randon thermal fores. Therefore, they

moveadistane of2u( ~

R

0

)and ahargedpartile

per-forming suh amotion,from position 1to 1,orfrom

1to1,anberegardedasareversibleeletridipole.

The dipole momentis p=eu( ~

R

0

). So,in the

disor-deredphasetherystalisasystemofrandomlyaligned

dipoles. The partiles oupy either equilibrium

posi-tion with the sameprobability. In a phasetransition

the probabilities of the two equilibrium positions are

unequal. In the ordered phase eah partile oupies

one ofthepositionsforalongerperiodoftimethanin

the other. AswementionedearliertheIsing

Hamilto-nian desribesthismehanism.

In order to get some basi information on

order-disorder ferroeletris we use the results of the mean

eldapproximation,whiharemoreauratethelarger

theradiusofinterationofthepartiles. Themain

re-sults arethefollowing:

(i)Thetemperaturedependeneofthespontaneous

po-larizationisgivenby

P 2

= ( 3p

2

v 2

) (T T

)

T

; (6)

where pis the dipole moment, v is the volume of the

unit ell,T

=J

0 =k

B

is theCurietransition

tempera-ture,andJ

0 =

P

~

R 0

J( ~

R ; ~

R 0

)isaonstantrepresenting

the interation of the partile at ~

R with all the other

partilesin therangeofinterationof radius ~

R

0 .

(ii) The dieletri onstant along the diretion of the

polarizationis

"=1+ 4p

2

J

0 v

T

T T

: (7)

The Curie-Weisslaw is thus obtained, with the Curie

onstant C =4p 2

T =J v. The typeof interation in

thesystemhasto begivensothat thevalueofJ

0 an

be obtained before quantitative alulations are

per-formed.

(iii)Theeletrield(meanvalue)atingoneah

par-tileis

E=E

0 +

J

0 v

p 2

P; (8)

where E

0

is the marosopi eld. For rystals

be-longingtotheorder-disordertype,therelationC=T

=

4= =3isapproximatelyfullled,where =J

0 v=p

2

isknown astheLorentz fator. The following are

ex-amplesoforder-disorderrystals: (a)TGS,T

=322K

and C = 3200K; (b) NaNO

2 , T

= 433K and C =

5000K;()KH

2 PO

4 ,T

=123KandC=3600K.On

theotherhand,in theaseofrystalsofthedisplaive

typethatrelationisnotfullledevenapproximately,as

inBaTiO

3

,whereT

=400KandC=170000K.

(iv)Anothertesttoharaterizeanorder-disorder

tran-sition is the hange of the entropy from T = 0K to

T = T

. In that ase one obtains S = Rln2 per

mole. In orders of magnitudethe value S=R 1 is

anindiationofanorder-disordertyperystal. Infat,

for TGS, S=R = 1:1, while NaNO

2

and KH

2 PO

4

havethesamenumerialvalue,namely0:7.

III Tunneling eets in

ferro-eletris

Anorder-disorderphasetransitionourswhenthe

dis-order eets (k

B

T) are omparable with the ordered

eets (J

0

). However, if the masses of the partiles

responsibleforthedynamis aresmall, suh as

hydro-gen,then quantum-mehanialtunneling of the

parti-lesthroughthebarrier(seeFig. 2)willaddtothe

dis-ordermehanism. Wewillnowskeththededutionof

theHamiltonian whih desribes quantum-mehanial

order-disorderphasetransitions. TheHamiltonianwill

turnouttobethetransverseIsingmodel[2℄.

Figure2. Eetivedouble-wellpotential,whereanatomlies

(3)

Thestateofeahpartileinadouble-wellpotential

anberepresentedbythewavefuntion,

'= 1 ' 1 + 2 ' 2 ; (9) where ' 1 and' 2

are thewavefuntionsdesribingthe

statesof thepartile ontheleft and rightsides ofthe

potential,withthenormalizationondition 2 1 + 2 2 =1.

Notethatexitedstatesarenotonsideredhere. Upon

onsidering the eets of tunneling arossthe

double-well internal barrier, the ground state energy "

0 will

split into two levels, with energies "

1 = " 0 and " 2 =" 0

+,orrespondingtosymmetri(

1

)and

anti-symmetri(

2

)ombinations. Henethewavefuntion

desribingthesystemis

=a 1 1 +a 2 2 ; (10) where a 1 = 1 p 2 ( 1 2

) and a

2 = 1 p 2 ( 1 + 2 ): (11)

The Hamiltonian of the many-partile system is

givenby H = X ~ R H 0 ( ~

R )+ 1 2 X ~ R; ~ R 0

V(~r ~ r 0 ); (12) where ~ r 0 = ~

R+u( ~ R)and H 0 = 0 0 =S z ( ~

R ): (13)

Notie that the energies have been shifted by "

0 . HereS z ( ~

R)arethespin-1=2Paulimatries,andV(~r

~

r 0

) is the interation operator. The latter an be

ex-panded in terms of the displaements of the partiles

u( ~

R)=u,foru ~

R ,asfollows,

V(~r ~

r 0

)=V( ~

R ~

R 0

)+(~u( ~

R ) u( ~ R 0 )V 0 ( ~ R ~ R 0 )+ 1 2 (u( ~ R) u( ~ R 0 )) 2 V 00 ( ~ R ~ R 0

)+::: (14)

Thematrixrepresentation ofthe partile

displae-mentis,

u( ~

R )= u 11 u 12 u 21 u 22 ; (15) where u ij = Z i u j dv: (16)

Bytakingintoaountthesymmetriesofthe

displae-ments(uisanoddfuntionoftheoordinates),ofthe

potential(evenfuntion oftheoordinates)andofthe

funtions

1 and

2

(even and odd, respetively), we

obtainafterastraightforwardalulationthe

Hamilto-nian in terms of spin-1=2 Pauli operators,S x

( ~

R ) and

S z

( ~

R ),

H =V

0 + 0 X ~ R S z ( ~ R ) 1 2 X J( ~ R ~ R 0 )S x ( ~ R )S x ( ~ R 0 ); (17) whereV 0 = P ~ R ; ~ R 0 V( ~ R ~ R 0 ), 0 =+ 1 4 P ~ R 0 V 00 ( ~ R ~ R 0 )(u 2 11 u 2 22

)andJ( ~

R ~

R 0

)=2V 00 ( ~ R ~ R 0 )u 2 12 . Inthe

representationofthefuntions'

1 and'

2

,weobtain,

H = X ~ R S x ( ~ R ) 1 2 X ~ R; ~ R 0 J( ~ R ~ R 0 )S z ( ~ R )S z ( ~ R 0 ); (18)

whihisthetransverseIsingmodelHamiltonian.

The polarization is proportional to < S z

> and,

in themeaneld approximation,itanbeobained by

solvingthetransendentalequation,

p ( 2 +J 2 0 <S z > 2 ) J 0 =tanh( p ( 2 +J 2 0 <S z > 2 ) k B T ): (19)

The transition temperature obtainedwithin the mean

eld approximationis

T = 2J 0 k B = =J 0 ln 1+=J 0 1 =J0 : (20)

Withtheinreaseoftunneling(aswearesetting~=1,

thetunneling frequenyis 2)thetransition

tempera-turedropsandT

!0as!J

0

. Therefore,tunneling

worksasadisordermehanism.

IV Disussion of experimental

and theoretial results

We shall present now some experimental results that

havebeenexplainedbytheuseofthemodelsdisussed

previously. They are the resultof investigations done

inthePhysisDepartmentoftheFederalUniversityof

Minas Gerais, Brazil. More reent experimental and

theoretialresultsanbefoundelsewhere[3℄.

(a)Proton-LattieInterations.

Theaddition of aB

ij S x i S x j

{typeoupling between

thetunnelingmotionofoneprotonandthatofanother

to the Ising model in a transverse-eld Hamiltonian,

or the addition of the probably larger S x i F x i Q i {type

pseudospin phonon oupling (desribing the

modula-tion of thedistane between thetwoequilibrium sites

in a O-H-O bond by nonpolar phonons), results in a

temperature-dependent renormalization of the proton

tunneling integral [4℄. This is important lose to T

,

where the soft-mode frequeny vanishes, !

rit ! 0.

This mayleadtolargeisotopeshiftsinT

on

deutera-tionevenforsmallvaluesofthetunnelingintegraland

may explain some phenomena observed in PbHPO

4

[5,6℄and squari aid[7℄ aswell asthedependene of

theeetiveproton-lattieinteration onstanton

(4)

eet may be also due to the presene of a S x

i D

x

i Q

2

i

termin additiontotheKobayashitermS z

i F

z

i Q

i when

ouplingwithpolaroptiphononsistakenintoaount

[4℄. When the lattie motion is so anharmoni that

thelattieionsmoveinadouble-wellpotentialandthe

proton-lattie oupling are so strongthat theprotons

an tunnel in only one outof the two possible lattie

ongurations,twoCurietemperaturesmayappear[4℄.

(b)DynamiCentralPeak.

Measurementsofthetemperatureandfrequeny

de-pendene of the proton and deuteron spin-lattie

re-laxation, T

1

, show the presene of a dynami

en-tral peak in paraeletri KH

2 PO

4

, whih exhibits a

dramati narrowing on deuteration. The results of

an NMR study of the frequeny and temperature

de-pendene of the proton and deuteron T

1

in

paraele-tri KH

2 PO

4

and deuterated KD

2 PO

4

, represented

the rst diret observation of the narrowing of a

dy-nami entral peak on deuteration [8℄. The entral

peak in deuterated KD

2 PO

4

is morethan two orders

of magnitudenarrowerthanthedynami entral peak

in paraeletri KH

2 PO

4

. A ontinued-fration

alu-lation of the order-parameter utuation spetrum of

KH

2 PO

4

as a funtion of deuterium ontent

qualita-tivelyreproduestheobserved entral-peaknarrowing

on deuteration. The two studies together represent

strong evidene that small dynami intrinsi lusters

ourin KDP-typerystals in additionto large stati

defet-indued lusters observedin light-sattering

ex-periments. The study showed as well that naturally

abundant deuterium annot be the ause of the

ob-servedstati(light-sattering)anddynami(T

1 NMR)

entralpeaksinKH

2 PO

4 .

()DynamisofPseudo-One-DimensionalCrystals.

Cesium dihydrogen phosphate CsH

2 PO

4

is a

hy-drogen bonded ferroeletri rystal whih undergoes

an order-disorderphase transition at T

= 152K.The

shift of the phase transition temperature T

= 267K

in theisomorphdeuteratedompoundCsD

2 PO

4

indi-ates that the motion of the proton in the hydrogen

bonds hasan importantrole forthe ferroeletriityin

these materials. Results of X-ray diration [9℄ and

neutron sattering experiments [10℄ showed that the

hydrogenbondsin CsH

2 PO

4

runalonghains. Ithas

been also shown [11℄ that the intrahain interations

dueto thehydrogenbondsaremuhstrongerthanthe

interhain ones, a fat whih haraterizes the

quasi-one-dimensional behaviorof these rystals. Therefore,

in ordertostudytheirpropertiestheoretiallyitis

de-sirable to take into aount the strong intrahain

in-terations as exatly as possible while the interhain

interationsanbetreatedwithinameaneld

approx-imation. Thedynamisofthestrongly-anisotropiIsing

modelinatransverseeldwasusedwiththepurposeof

explainingthedieletriritialslowingdownobserved

experimentallyinthequasi-one-dimensional

hydrogen-bonded ferroeletri rystal CsH PO . Good

agree-ment with the experimental data on the temperature

dependene of the dieletri onstant and relaxation

timehasbeenobtained[12℄.

(d)PressureEets.

Experimentalstudies[13,14℄indiatethatthe

tran-sition temperature of both C

s H

2 PO

4 and C

s D

2 PO

4

dereases as the pressure is inreased. For C

s D

2 PO

4

theritialtemperatureoftheparaeletri-ferroeletri

transitiondereasesataratedT d

=dp= 8:5 o

C/Kbar,

and for pressures larger than about 5:0{6:0kbar the

system orders antiferroeletrially. The Neel

tem-perature ofthe paraeletri-antiferroeletritransition

also dereases with pressure at a rate dT d

n =dp =

2:5 o

C/Kbar. Theferroeletri-antiferroeletri

tran-sitionlineintheT-pphasediagramwasobservedtobe

assoiatedwithaslopeofabout35 o

C/kbar. Thetriple

pointwasloatedatP d

=5:2kbarandT d

= 55:2 o

C.

A ompressible pseudo-spin Ising model Hamiltonian

isusedtoalulatethepressure-temperaturephase

di-agram of quasi-one-dimensional hydrogen-bonded

fer-roeletri rystals suh as CsD

2 PO

4

[15℄. Strong

ef-fetive interations, whih are treated exatly along

hains,andweakvolumedependentinterations,whih

are treatedin the mean eld approximation, between

hains, were assumed. In agreement with the

exper-imental ndings, the phase diagram exhibits a triple

pointandtransitionlinesbetweenferroeletri,

antifer-roeletriandparaeletriphases. However,theresults

suggestedthat the Ising model may be too simple to

aount forthe detailed form of thephase diagram of

CsD

2 PO

4 .

I thankmyolleaguesando-authorsR. Blinand

B.Zeks,fromtheInstitutJ.Stefan(Ljubljana)andJ.F.

Sampaio,A.S.T.PiresandJ.Plasak,fromthe

Depar-tamentodeFsia,UFMG(BeloHorizonte). Thiswork

waspartiallysupportedbyCNPq,FAPEMIG,FINEP,

andMCT(Brazilianagenies).

Referenes

[1℄ Forageneraldisussion see, amongothers,thelassi:

R.Blinand B.Zeks, SoftModes inFerroeletris and

Antiferroeletris (North-Holland,Amsterdam,1974).

[2℄ P.G.deGennes,SolidStateCommun1,132(1963);R.

Blin,J.Phys.Chem.Solids13,204(1960);R.K.Brout,

K.A.Muller, andH.Thomas,Sol.St.Commun.4,507

(1966).

[3℄ B.A.StrukovandA.P.Levanyuk,Ferroeletri

Phenom-enainCrystals(Springer,Berlin,1998).

[4℄ R.Blin,B.Zeks,J.F.Sampaio,A.S.T.Pires,andF.C.

SaBarreto,Phys.Rev.B20,1991(1979).

[5℄ A. Volkov, paper presented at the IV t

h International

MeetingonFerroeletriity,Leningrad,Sept.1977

(un-published).

[6℄ B.B.LavreniandJ.Petzelt,J.Chem.Phys.67,3890

(5)

[7℄ S.Nakashimaand M.Balkanski,Sol.St.Commun.19,

1225(1976).

[8℄ R. Blin, J. Slak, F.C. Sa Barreto, and A.S.T. Pires,

Phys.Rev. Lett. 42, 1000 (1979); A.S.T. Pires, Phys.

Rev.B25,4871(1982).

[9℄ Y. Uesuand J.Kobayashi, Phys.Stat. Sol. A 34,475

(1976).

[10℄ B.C. Frazer, D. Semmingsen,W.D. Ellenson, and G.

Shirane,Phys.Rev.B20,2745(1979).

[11℄ R. Blin, B. Zeks, A. Levstik, C.Filipi, J. Slak, M.

Burgar, I. Zupani, L.A. Shuvalov, and A. Baranov,

Phys.Rev.Lett.43,231(1979).

[12℄ J.A. Plasak,A.S.T. Pires, and F.C. Sa Barreto,Sol.

St.Commun.44,787(1982).

[13℄ K.GesiandK.Ozawa,J.Appl.Phys.(Japan)17,435

(1978).

[14℄ N.Yasuda,S.Fujimoto,M.Okamoto,andH.Shimizu,

Phys.Rev.B20,2755(1979).

[15℄ J.A. Plasak, F.C. SaBarreto, and S.R.Salinas, Sol.

Imagem

Figure 2. Eetive double-well potential, where an atom lies

Referências

Documentos relacionados

This work analyzes the emergene of log-periodi osillations in thermodynami funtions of Ising.. models on

In this paper we study damage spreading in a one-dimensional model under two dynamis introdued.. by Hinrihsen

We obtain the loal magnetization of a planar Ising model with defets of dierent types.. It

ritial behavior is haraterized at high magneti onentrations..

body transverse Ising model with random bonds and elds. The ouplings and the magneti elds are

transition in suh a model, and study the orresponding ritial temperature as the spin value ande. the

We present a Hamiltonian treatment of the Landau-Ginzburg theory of phase transitions in the.. ase of inommensurate ferroeletri systems like

Shemati phase diagrams for wetting transitions in the Ising-lattie gas model..