• Nenhum resultado encontrado

Rev. Bras. Hematol. Hemoter. vol.38 número4

N/A
N/A
Protected

Academic year: 2018

Share "Rev. Bras. Hematol. Hemoter. vol.38 número4"

Copied!
7
0
0

Texto

(1)

w w w . r b h h . o r g

Revista

Brasileira

de

Hematologia

e

Hemoterapia

Brazilian

Journal

of

Hematology

and

Hemotherapy

Original

article

Identification

of

the

MYST3-CREBBP

fusion

gene

in

infants

with

acute

myeloid

leukemia

and

hemophagocytosis

Francianne

Gomes

Andrade

a

,

Elda

Pereira

Noronha

a

,

Rosania

Maria

Baseggio

b

,

Teresa

Cristina

Cardoso

Fonseca

c

,

Bruno

Marcelo

Rocha

Freire

d

,

Isis

M.

Quezado

Magalhaes

e

,

Ilana

R.

Zalcberg

a

,

Maria

S.

Pombo-de-Oliveira

a,∗ aInstitutoNacionaldeCâncer(INCA),RiodeJaneiro,RJ,Brazil

bHospitalRegionaldoMatoGrossodoSulRosaPedrossian(HRMS),CampoGrande,MS,Brazil

cHospitalManoelNovais,SantaCasadeMisericórdiadeItabuna(HMN-SCMI),Itabuna,BA,Brazil

dHospitalSantaIzabel,Salvador,BA,Brazil

eHospitaldaCrianc¸aJosedeAlencar(HCB),Brasília,DF,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received25June2015 Accepted16June2016 Availableonline26July2016

Keywords: Infantleukemia Acutemyeloidleukemia t(8;16)(p11;p13)

MYST3-CREBBP(or,MOZ-CBP) Hemophagocytosis

a

b

s

t

r

a

c

t

Background:AcutemyeloidleukemiapresentingtheMYST3-CREBBPfusiongeneisarare subgroupassociatedwithhemophagocytosisinearlyinfancyandmonocyticdifferentiation. Theaimofthisstudywastodefinetherelevantmolecularcytogeneticcharacteristicsofa uniqueseriesofearlyinfancyacutemyeloidleukemiacases(≤24monthsold),basedonthe presenceofhemophagocytosisbyblastcellsatdiagnosis.

Methods:Aseriesof266infantcasesofacutemyeloidleukemiawasthereferencecohortfor thepresentanalysis.Acutemyeloidleukemiacaseswithhemophagocytosisbyblastcells werereviewedtoinvestigatethepresenceoftheMYST3-CREBBPfusiongenebyfluorescence insituhybridization(FISH)andreversetranscriptionpolymerasechainreaction.

Results:Elevencaseswithhemophagocytosiswereidentifiedwithhemophagocytic lympho-histiocytosisbeingruledout.Sixcaseswereclassifiedasmyelomonocyticleukemia,threeas AML-M7andtwoasAML-M2.Infivecases,thepresenceoftheMYST3-CREBBPfusiongene identifiedbymolecularcytogeneticswasconfirmedbyfluorescenceinsituhybridization. AllpatientsreceivedtreatmentaccordingtotheBerlin–Frankfürt–Münsteracutemyeloid leukemiaprotocolsandonlyoneoutofthefivepatientswiththeMYST3-CREBBPfusion geneisstillalive.

Conclusions: Ourfindings demonstrate thatthepresence of hemophagocytosisin acute myeloid leukemia was not exclusively associated to the MYST3-CREBBP fusion gene. Improvementsinmolecularcytogeneticsmayhelptoelucidatemorecomplexchromosomal rearrangementsininfantswithacutemyeloidleukemiaandhemophagocytosis.

©2016Associac¸ ˜aoBrasileiradeHematologia,HemoterapiaeTerapiaCelular.Published byElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondingauthorat:ProgramadeHematologia-OncologiaPediatrico,InstitutoNacionaldeCâncer(INCA),RuaAndréCavalcanti,

37,20231-050RiodeJaneiro,RJ,Brazil.

E-mailaddress:mpombo@inca.gov.br(M.S.Pombo-de-Oliveira).

http://dx.doi.org/10.1016/j.bjhh.2016.06.005

(2)

Introduction

Distinct cytogenetic subgroups of acute myeloid leukemia (AML) have been associated with age-specific frequencies and the incidence of unbalanced aberrations; in particu-lar complex karyotypes increase sharply with age.1 AML presenting the reciprocal translocation (8;16)(p11;p13) that generates the MYST3-CREBBP (former named as MOZ-CBP) fusiongeneismostlyobservedinadultpatients.2Thefusion of the MYST3 and CREBBP genes occurs when both show histone acetyltransferase activities leading to the activa-tionofseveraltargets involvedintranscriptionalregulation and cell cycle control.2–4 The evidence of AML with the MYST3-CREBBPfusiongene inchildrenwasreportedbythe InternationalBerlin–Frankfurt–Munster(I-BFM)studygroup.5 Sixty-twopediatricAMLwereidentifiedinwhichkaryotype recordsrevealed t(8;16)(p11;p13)intheAMLobservedatan earlyage,monocytedifferentiation[French–American–British classification(FAB)AML-M5]andpresenceof hemophagocy-tosis;allofwhichareassociatedwithverypooroutcomes.5 Furthermore,theMYST3-CREBBPfusiongeneassociatedwith disseminated intravascular coagulation and high mortality rates was observed in a series of French AML patients.6 Theseparticularclinical,cytological,cytogenetic,and molec-ular characteristics of AML with MYST3-CREBBP led to the suggestionofaunique categoryinthe World Health Orga-nization (WHO) classification due to the poor prognosis.7 Among the clinical spectrum conditions, hemophagocytic lymphohistiocytosis (HLH) should be included as differen-tialdiagnosis. However,HLH presentsphagocyte activation causedbyimmunedisordersthatcompromiseTcell/natural killercellsandthenormalmonocyte-macrophagelineage.8

Anaccuratecaseidentificationrequirestheevaluationof morphological, cytogenetic and molecular features follow-ingcorrelationofobtainedparameters,includingserological tests.Inthisstudy,theavailabilityofauniqueseriesofearly onset AML cases prompted us to search for AML- MYST3-CREBBPcases and todefine relevant molecularcytogenetic characteristics.

Methods

Subjects

A series of 266 infant AML (i-AML) cases enrolled in the BrazilianCollaborativeStudyGroupofInfantAcuteLeukemia (BCSGIAL)from2003to2012isthereferencecohortandsubject forthepresentanalysis.9Theselectioncriteriawereinfants (≤24monthsold)withadiagnosisofAMLandthepresence ofhemophagocytosisbyleukemicblasts(Figure1). Addition-ally,48i-AMLcaseswithoutthehemophagocyticfeatureinthe diagnosticsampleswererandomlyselectedtocomparewith i-AMLcaseswithhemophagocytosisbyblastcells.

Hemophagocytosiswasdefinedasthepresenceof phago-cytosisofredcells,lymphocytesand/orplateletsonlybyblast cells.Themorphologicalfindings were discussed by physi-cians (RMB, TCCF, BF, IMQM) and cytologists (EPN, MSPO); clinical and laboratorial data were checked in each case fortheconsistencyofinclusioncriteria.Gender, age,white

blood cell count (WBC), hemoglobin levels, platelet count, central nervous system (CNS) involvement, chloroma and cutaneous leukemia,FABclassificationaswellas the pres-enceofhemophagocytosisbyleukemicblastswerecarefully reviewed.ExclusioncriteriaincludedsecondaryAML,down’s syndrome,HLHand/orhemophagocyticsyndromeassociated withimmunedisordersandunexplainedfever.Frozen sam-plesfrombonemarrow(BM)aspirates,peripheralbloodand smearsofi-AMLcaseswereselectedforfurthercytogenetic and molecular studiesaccording totheavailability ofgood biologicalmaterial.

Allchildrenweretreatedoutofclinicaltrials,butfollowing internationalAMLprotocols.

Characterizationofleukemiacells

Leukemia classification ofAMLwas basedon criteria pub-lished by the WHO.7 Thediagnosis of AML-M7 was based on the presenceofCD41/CD61and CD42markerson blast cells identified by immunophenotyping. Karyotypes of BM aspirates were tested before any chemotherapy treatment. Chromosomeswereidentifiedandanalyzedasrecommended bytheInternationalSystemofHumanCytogenetic Nomen-clature(ISCN)2005.10

Reversetranscriptionpolymerasechainreaction

Total RNAfrom BMmononuclearcells atthetime of diag-nosiswaspurifiedusingtheTRIzolreagentaccordingtothe manufacturer’sinstructions(Gibco/BRL,LifeTechnologies,CA, USA).Briefly,2␮goftotalRNAwasreverse-transcribedusing

theFirst-StrandcDNASynthesisKitTM(AmershamPharmacia BiotechInc.,NJ,USA).TheintegrityofcDNAwasexaminedby amplifyingafragmentoftheGAPDH geneusingpreviously describedprimersandcDNAwasusedastemplatesin sub-sequent polymerase chain reaction (PCR) assays. All cases were investigatedforthe presenceoftheRUNX1-RUNX1T1, CBFˇ-MYH11, BCR-ABL1, MLL-AFF1 and MLL-MLLT3 fusion genes.11–12

DetectionoftheMYST3-CREBBPandreverseCREBBP-MYST3 fusiontranscriptswereconductedasdescribedelsewhere.13 Single PCRreactions todetect MYST3-CREBBPfusion trans-criptstypeI(MYST3exon16-CREBBPexon3)andtypeII(MYST3 exon16-CREBBPexon4),aswellasthetypeICREBBP-MYST3 fusiontranscript(CREBBPexon2-MYST3exon17)were per-formed using the primers listed inTable 1. Asemi-nested reaction,adaptedfromSchmidtetal.,wasrequiredtodetect typeItranscripts.13SamplesfromconfirmedAMLcaseswith MYST3-CREBBP were added as positive controls for type I transcripts.PCRproductsforMYST3-CREBBPtranscripts(type I-II) were separated by electrophoresisin 1.5% agarose gel and subsequently purified using NucleoSpin Gel and PCR Clean-upkits(Macherey-Nagel,VWRInternational,Oslo, Nor-way). Amplicons were mixed with the Big Dye terminator v3.1Kit(AppliedBiosystems)andforwardorreverseprimers and sequencedinan ABI3130xl GeneticAnalyzer (Applied Biosystems).

(3)

Figure1–MorphologyofAML-M4withhemophagocytosisbyblastcells.Bonemarrowaspirationstainedby May–Grunwald–Giemsashowsmyeloblastandmonoblastcellswithphagocytosisofredcellsandlymphocytes.

Fluorescenceinsituhybridization

Fluorescencein situ hybridization (FISH)for the MLL rear-rangements was performed at the time of diagnosis with freshbiological materialusing a commercial LSIMLL Dual Color, Break Apart Rearrangement probe (Cytocell Ltd., Cambridge, UK) according to the manufacturer’s instruc-tions.TheMYST3-CREBBPFISHwasperformedininterphase nuclei preparedfrom frozenviable cells of available cases using bacteria-derived artificial chromosome (BAC). These cloneswere retrieved from the human genome high reso-lution BAC re-arrayed clone set available in a web format

(http://bacpac.chori.org) and selected according to physical

andgeneticmappingdatareportedonEnsemblBrowser

web-site(http://www.ensembl.org).DNAwasextractedandprobes

were labeled and hybridized by Blue Genome (Cambridge, UK),withSpectrumOrangeorSpectrumGreenandvalidated as a FISH probe set on normal controls. The clones used wereRP11-231D20(chr8:42184655-42188062)andRP11-108L9 (chr8:41832025-41864392)flanking the MYST3 gene (orange) and RP11-387O21 (chr16:3918191-4104380) and RP11-461A8 (chr16:3663996-3693579) flanking the CREBBP gene (green). Procedureswereperformedaccordingtothemanufacturer’s instructions. The first step was FISH mapping of clones on normal cells from healthy blood donors in order to confirmtheirchromosomallocation.Cut-offvalueswere cal-culatedas6±3%offusiongenesignalsin100–300interphase nuclei.

Ethicalconsiderations

Treatmentwasapprovedbylocallawsandregulationsaswell as bythe InstitutionalReview Boardsof each participating center.Medicalinformedconsentwasobtainedinaccordance withtheDeclarationofHelsinki.Thisstudywasapprovedby theResearchEthicsCommitteeattheInstitutoNacionalde CâncerinRiodeJaneiro,Brazil(CEP/CAEE:186.688).

Results

Theclinical-demographiccharacteristicsoftheelevencases that fulfilled the selection criteria are shown in Table 2. All patientspresentedhepatosplenomegaly andthreewere reportedtohavechloromaandoneCNSdisease.The major-ity of the patients were male (72.7%) with a median age of12 months(range:0–23months). TheWBCcountvaried from 5.7 to111.1×109/Lwith a medianof35.9×109/L; six caseswerediagnosedasmyelomonocyticleukemia(M4/M5), threecasesasAML-M7andtwoasAML-M2.Serologicaltests for viral infections (Epstein–Barr virus,parvovirus B19 and humanimmunodeficiency virus)and coagulation examina-tionswerewithinnormalranges.NoinfectionstriggeringHLH werefoundinanyoftheelevencases.

Using the selected BAC clones of the MYST3-CREBBP fusion gene, three types of hybridization patterns were observed (Figure 2). The first, separated signals of the

Table1–Sequencesoftheprimersusedforreversetranscriptionpolymerasechainreaction.

Designation Sequence(from5′to3) Position

MOZ3558F GAGGCCAATGCCAAGATTAGAAC MOZexon16

CBP1201R GTTGCAATTGCTTGTGTGGGTAC CBPexon5

MOZ3536F CCTTTTGAAGATTCTGACTCCG MOZexon16

CBP404R CCTCGTAGAAGCTCCGACAGTT CBPexon3

CBP96F CGCTCGCTCCTCTCCCTCGCAG CBPexon2

MOZ3953R TGGAAACGATGGGCTCAATGACGC MOZexon17

CBP174F GGGCTGTTTTCGCGAGCAGGTG CBPexon2

(4)

Table2–Demographicandclinicalcharacteristicsofselectedi-AMLcases.

Case Age(Mo.) Gender Clinicalfeatures Hb(g/dL) WBC(×109/L) Platcount (×109/L)

Hemoph* FAB Conclusion Outcome

1 12 F Hepatosplenomegaly 5.68 111.1 40.0 + M4 AML-M4

MYST3-CREBPP

Deceased

2 11 M Hepatosplenomegaly 4.0 25.4 26.0 + M5 AML-M5 Alive

3 <1 F Hepatosplenomegaly Chloroma

10.7 8.6 29.0 + M4 AML-M4

MYST3-CREBPP

Deceased

4 12 M Hepatosplenomegaly 4.2 36.8 35.0 + M2 AML-M2

MYST3-CREBPP

Alive

5 18 M Hepatosplenomegaly Chloroma

7.0 5.7 3.0 +/− M5 AML-M5

MYST3-CREBPP

Deceased

6 23 M Hepatosplenomegaly 4.6 42.4 57.0 +/− M7 AML-M7

MYST3-CREBPP

Alive

7 10 M Hepatosplenomegaly Chloroma

10.7 35.0 229.0 + M2 AML-M2 Alive

8 13 M Hepatosplenomegaly 6.2 61.6 45.0 + M5 AML-M5 Alive

9 22 M Hepatosplenomegaly CNSPOS

5.0 25.9 31.0 + M7 AML-M7 Deceased

10 12 M Hepatosplenomegaly 5.5 45.0 100.0 + M5 AML-M5 Deceased

11 11 F Hepatosplenomegaly 7.0 8.5 20.0 + M7 AML-M7 Deceased

F:female;M:male;(*),Hemoph:hemophagocytosis(range:5–27%blastswithphagocytosis);Hb:hemoglobinconcentration;i-AML:infantacute myeloidleukemia;Mo:months;FAB:French–American–Britishclassification;NOS:nototherwisespecified;Plat:plateletcount;WBC:white bloodcellcount.

probe combinations RP11-231D20/RP11-108L9 and

RP11-387O21/RP11-461A8onchromosomes8and 16respectively,

were observed as four different signals: two red and two

greendistinctsignalsconsistentwithnormalchromosomes

(Figure 2A). Second, a single fusion pattern was observed

(onefusion,oneredandonegreen)consideredasarandom co-localizedsignal(Figure2B).Lastly,adualfusionsignalwas foundin15–37%oftheinterphasenucleianalyzedwhichwas consistentwithabreakpointinMYST3andCREBBP(Figure2C). TheRT-PCRtechniquewasperformedin55samples;seven sampleswerefrom i-AMLwithhemophagocytosis(Table3) and48samplesfromi-AMLwithouthemophagocytosis.The RT-PCRpatternwasdifferent toexpected(∼1000bp) inone case,witha∼900bpproductobserved(#1).Infivecases(#3, #5,#6, #7 and #10), RT-PCRwas negative fortype I and II transcripts. Despite accurate mapping ofthe translocation breakpoints,attemptstoamplifythe transcripts,aswell as the CREBPP-MYST3 were not successful. In four cases (#2, #4, #8 and #9), RT-PCR was not performed due to lack of

suitablebiologicalmaterial.Discrepancieswere observedin threecases(#3,#5and#6)inwhichdualfusionsignalswere foundin15–18%and34%oftheinterphasenucleianalyzed and RT-PCR results were negative. In all the i-AML cases withouthemophagocytosis,theRT-PCRresultswerenegative

(Figure3).

As shown in Table 3, the diagnosis of the MYST3-CREBBP fusion gene was based on the FISH results only or combined with the RT-PCR results. Five cases were diagnosedasAML-MYST3-CREBBPandclinicallaboratorial fea-turesare summarized:theypresentedhepatosplenomegaly, skinlesions and/orlocalizedchloroma; hematologicaltests revealed FAB AML-M2, M4, M5, or M7; the presence of hemophagocytosis byblastcells variedfrom5to25%.The immunophenotyping profile showed cells positive for the CD34,CD33/CD13/CD14/CD11b/CD14/CD15,CD64,CD56 anti-gens; in three patients, the blast cells were positive for CD61/CD41a/CD42b/CD56;karyotypingwassuccessfulinfour cases;onecase(#1)revealeda46,XX,der(16),t(16;?)(p13;?)

Figure2–FISHpatternofMYST3-CREBBPprobes.Threetypesofhybridizationpatternswereobserved:tworedandtwo

(5)

Table3–Immunophenotyping,cytogenetic,fluorescenceinsituhybridization(FISH)andreversetranscription polymerasechainreaction(RT-PCR)ofinfantacutemyeloidleukemiacaseswithhemophagocytosis.

Case Immunophenotype Cytogenetics FISH(%) RT-PCRa Conclusion

1. CD33/CD13/CD14/CD11bpos 46,XX,der(16)t(16;?)(p13;?)35 37 Type-I MYST-CREBPP

2. CD34/CD33/CD13/CD4pos/CD14neg. 46,XY10 9 NT

3. CD33CD33/CD13/CD14/CD11bneg NT 18 NEG MYST-CREBPP

4. CD33/CD13/CD7/CD117/CD56pos NT 10 NT MYST-CREBPP

5. CD34/CD33/CD13/CD14pos/CD15/CD16pos NT 34 NEG MYST-CREBPP

6. CD34/CD33/CD13posCD61/CD41a/CD42b/CD56pos NT 15 NEG MYST-CREBPP

7. CD34/CD33/CD13/CD117pos NT 6 NEG

8. CD34/CD33/CD13/CD117/CD14neg 45,XY,t(8;8)(q21;1p25)10 8 NT

9. CD34/CD33/CD13,CD56pos,CD61Neg 46,XY,16H+12 6 NT

10. NT NT 9 NEG –

11. CD42/CD61 NT 9 Type-I Undetermineda

–:Considerednegative;NT:nottested;NEG:Negative.

a UndeterminedbecausetheFISHcut-offvalueswerecalculatedas6±3%offusiongenesignals,anddiscordantresultwiththeRT-PCR,the

type-Ifragmentlengthwasnotasexpected.

Figure3–AgarosegelimagesofRT-PCRforMYST3-CREBBPfusiongenes.GelA,showspositivereactionsforthe MYST3-CREBBPfusiongene.Samples2(A)and19(B)arethepositivecontrolsineachreaction.Sample1(AandB)isthe

negativecontrol(H2Oonly).Samples3and5(A)arefrompatients#1and#11.IngelB,allsamplesarenegativeforthe

MYST3-CREBBPfusiongene;M:standardmarker(100basepairs)

withoutidentifiedpartnersontheshortarmofchromosome 16.

NoneoftheelevenAMLcasespresentedwiththeR UNX1-RUNX1T1, CBFb-MYH11, BCR-ABL1, MLL-AFF1, MLL-MLLT1, KRAS,FLT3orc-KITmutations.

ThepatientsreceivedAMLtreatmentaccordingtotheBFM AML-2004protocolandonlyoneoutoffivepatientswiththe AMLMYST3-CREBBPfusiongeneisstillalive.

Discussion

ChromosomalabnormalitiesinchildhoodAMLarefrequent; theMYST3-CREBBPrearrangement,however,isnot.1,17 Here, wereport forthe firsttime the presenceofMYST3-CREBBP rearrangement in five out of eleven (36.4%) AML cases withhemophagocytosis foundin aBrazilian i-AML cohort. Themorphologicalobservationofhemophagocytosiswasan importantvariablefortheselectioncriteriatoinvestigatethe MYST3-CREBBPfusiongene.Clinically,thesecasesappearto havedistinctdiseasemanifestationswithskinnodules,CNS involvementand chloroma.1,5,18 As pointed out by Hatano et al., other chromosomal abnormalities in AML, such as t(16;21)(p11;q22),karyotypes involving the 8p11 breakpoint, t(8;19)(p11;q32),complexrearrangementsandother chromo-somal translocations are associated with the presence of

hemophagocytosis by blast cells.19 This supports our data showinganabsenceoftheMYST3-CREBBPfusiongeneinfour casesinthisstudy.Accordingtotheliterature,inthe major-ity ofpatientsdescribed withmyelomonocytic morphology, thepresenceofCD56cellularexpressionpredictsan associa-tionwithhemophagocytosisandinvolvementoftheleukemia cutis.1,5,19–22

Thetechnique used toidentifythis chromosomal alter-ation was FISH because conventional karyotyping was not alwaysavailable.Failuretoobtainmitosiswasapitfall. Multi-colorkaryotypingtechnologiessuchasmulticolor-FISHwould certainlyelucidatesuchsubtlechromosomalrearrangements ifmitosisweresuccessfullyobtained.Basedonhematological signs,wechosetocarryouttheFISHmethodfollowedby RT-PCRasalaboratorialstrategytosearchfortheMYST3-CREBBP fusiongene.TheFISHanalysisshowedafusionsignalabove thecutoffvalueforthespecificMYST3andCREBBPprobeson interphasenuclei,suggestingthepresenceofaMYST3-CREBBP fusionchimerainfivecases.Thisfindingindicatesapossible generationofMYST3-CREBBP,sincebothchromosomeregions representedbytheclonesthatcontaintheMYST3andCREBBP genesappearedco-localized.Inonecase,RT-PCRforthetype I fusiontranscriptfollowed bydirectsequencingshowed a

(6)

adultswithMYST3-CREBBPAML.16,23Lowexpressionor insta-bilityofthechimerictranscripts24andRNAdegradationmight explaintheabsenceofamplificationbyRT-PCR.

Recently, Panagopoulos et al. described an AML with hemophagocytosisandwithtwotranslocationswith break-pointsthatsuggestothercandidategenesdifferenttoMYST3 andCREBBP.25Theystudiedthepatients’leukemiccellsnot only by karyotyping, FISH and RT-PCR, but also using the modern RNA-seqtechniqueand programsthat are specific forfusiongenes.Interestingly,thetechniquesinitiallyfailed to detect the biologically important MYST3-CREBBP fusion, althoughitwasmanuallyretrievablefromtheraw sequenc-ingdata,suggestingthatadditionalinformationaboutclinical, morphological,andmolecularcytogeneticfeaturesshouldbe takenintoaccountwhensearchingfornewlydescribedcrucial fusiongenesintypicalhematologicmalignancies.25

One important point should be discussed is related to AML-MYST3-CREBBP and the differential diagnosis of a hemaphagocytic syndrome such as HLH, which is a severe hyperinflammatory condition with clinical symp-tomsthatincludefever,cytopenias,hepatosplenomegaly,and hemophagocytosis.26However,thishemophagocytosisinBM ismorphologicalinbenignmacrophages.HLH,when occur-ringinyoungchildren,isassociatedwithinheritedgenetic defectsanddiagnostic criteriacombinebothbiological fea-tures, includingnaturalkiller cell activity andhigh-soluble interleukin-2-receptorlevels.27

AMLcasesyoungerthantwoyearsoldwith hemophago-cytosis should be investigated for the presence of the MYST3-CREBBPandotherchromosomalalterations.Inthe I-BFMAMLstudygroup,morethan50%oftheMYST3-CREBBP caseswerefoundininfantsand thefrequencyof congeni-talcaseswassignificantlyhigher.5Oneofourcasesdescribed hereinwascongenitalleukemia.Someauthorsconsiderthat congenital AML-MYST3-CREBBP may be a self-limiting dis-ease reaching spontaneous remission. A ‘watch-and-wait’ policyshouldbeconsideredincongenitalpatientswithmild clinical symptoms provided that close long-term monitor-ing is used.5,28–30 However, casesfrom our cohort suffered fromaggressivediseasewithdismaloutcomes.Interestingly, the genomic landscape of childhood AML-MYST3-CREBBP has a specific signature clustered close to AML with MLL rearrangements.5,31,32Thesimilarityconsistsinthe character-isticpatternofup-regulationofHOXA9,HOXA10,andcofactor MEIS1anddown-regulationofotherhomeoboxfamilygenes.32 Thehigh frequency ofAML-MYST3-CREBBP in infants(≤24 months) and congenital casessupportthe hypothesis that leukemia occurs duringthe in utero lifeand as inthe MLL rearrangementsmodeltheyshouldbeexplored forabetter understandingofAMLleukemogenesis.

Conflict

of

interests

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

Theauthorsthankthephysicians’partoftheBrazilian Col-laborativeStudyGroupofInfantAcuteLeukemia(BCSGIAL)

fromdifferentBrazilianregionsforsupportingtheprojectby sendinggeneralandclinicaldataofi-AML.

TheauthorsaregratefultoDr.TarsisPaivaVieiraforFISH technicalsupport,BrunodeAlmeidaLopesforimageedition andDr.GerhardFukaforcriticalandEnglishrevisionofthe manuscript.TheauthorsarealsoindebttoDr.OskarHaas fromAnnaKinderspital,MedicalUniversityVienna,Vienna, AustriawhokindlyprovidedtheAML-MYST3-CREBBPsample touseaspositivecontrols.

MSPOwassupportedbyFAPERJ(#E-26/101.562/2010).

r

e

f

e

r

e

n

c

e

s

1.BacherU,KernW,SchnittgerS,HiddemannW,HaferlachT,

SchochC.Population-basedage-specificincidencesof

cytogeneticsubgroupsofacutemyeloidleukemia.

Haematologica.2005;90(11):1502–10.

2.HaferlachT,KohlmannA,KleinHU,RuckertC,DugasM,

WilliamsPM,etal.AMLwithtranslocationt(8;16)(p11;p13)

demonstratesuniquecytomorphological,cytogenetic,

molecularandprognosticfeatures.Leukemia.

2009;23(5):934–43.

3.KatsumotoT,AikawaY,IwamaA,UedaS,IchikawaH,Ochiya

T,etal.MOZisessentialformaintenanceofhematopoietic

stemcells.GenesDev.2006;20(10):1321–30.

4.BorrowJ,StantonVPJr,AndresenJM,BecherR,BehmFG,

ChagantiRS,etal.Thetranslocationt(8;16)(p11;p13)ofacute

myeloidleukemiafusesaputativeacetyltransferasetothe

CREB-bindingprotein.NatGenet.1996;14(1):33–41.

5.CoenenEA,ZwaanCM,ReinhardtD,HarrisonCJ,HaasOA,de

HaasV,etal.Pediatricacutemyeloidleukemiawith

t(8;16)(p11;p13),adistinctclinicalandbiologicalentity:a

collaborativestudybythe

International-Berlin-Frankfurt-MunsterAML-studygroup.

Blood.2013;122(15):2704–13.

6.GervaisC,MuratiA,HeliasC,StruskiS,EischenA,LippertE,

etal.Acutemyeloidleukemiawith8p11(MYST3)

rearrangement:anintegratedcytologic,cytogeneticand

molecularstudybythegroupefrancophonedecytogénétique

hématologique.Leukemia.2008;22(8):1567–75.

7.VardimanJW,ThieleJ,ArberDA,BrunningRD,BorowitzMJ,

PorwitA,etal.The2008revisionoftheWorldHealth

Organization(WHO)classificationofmyeloidneoplasmsand

acuteleukemia:rationaleandimportantchanges.Blood.

2009;114(5):937–51.

8.DelavigneK,BérardE,BertoliS,CorreJ,DuchayneE,DemurC,

etal.Hemophagocyticsyndromeinpatientswithacute

myeloidleukemiaundergoingintensivechemotherapy.

Haematologica.2014;99(3):474–80.

9.Pombo-de-OliveiraMS,KoifmanS,VasconcelosGM,

EmerencianoM,deOliveiraNovaesC.Developmentand

perspectiveofcurrentBrazilianstudiesontheepidemiology

ofchildhoodleukemia.BloodCellsMolDis.2009;42(2):121–5.

10.ShafferLG,TommerupN.ISCN2005–aninternationalsystem

ofhumancytogeneticnomenclature.Switzerland:S.Karger;

2005.

11.vanDongenJJ,MacintyreEA,GabertJA,DelabesseE,RossiV,

SaglioG,etal.StandardizedRT-PCRanalysisoffusiongene

transcriptsfromchromosomeaberrationsinacuteleukemia

fordetectionofminimalresidualdisease.Reportofthe

BIOMED-1ConcertedAction:investigationofminimal

residualdiseaseinacuteleukemia.Leukemia.

1999;13(12):1901–28.

12.JansenMW,CorralL,vanderVeldenVH,Panzer-GrümayerR,

(7)

infantacutelymphoblasticleukemiaisrelatedtothe

occurrenceandtypeofMLLgenerearrangement.Leukemia.

2007;21(4):633–41.

13.SchmidtHH,StrehlS,ThalerD,StrunkD,SillH,LinkeschW,

etal.RT-PCRandFISHanalysisofacutemyeloidleukemia

witht(8;16)(p11;p13)andchimericMOZandCBPtranscripts:

breakpointclusterregionandclinicalimplications.Leukemia.

2004;18(6):1115–21.

14.BornholdtJ,HansenJ,SteinicheT,DictorM,AntonsenA,

WolffH,etal.K-rasmutationsinsinonasalcancersin

relationtowooddustexposure.BMCCancer.2008;8:53–63.

15.YamamotoY,KiyoiH,NakanoY,SuzukiR,KoderaY,

MiyawakiS,etal.ActivatingmutationofD835withinthe

activationloopofFLT3inhumanhematologicmalignancies.

Blood.2001;97(8):2434–9.

16.NakaoM,YokotaS,IwaiT,KanekoH,HoriikeS,KashimaK,

etal.InternaltandemduplicationoftheFLT3genefoundin

acutemyeloidleukemia.Leukemia.1996;10(12):1911–8.

17.RubnitzJE,InabaH.Childhoodacutemyeloidleukemia.BrJ

Haematol.2012;159(3):259–76.

18.CatovskyD,MatutesE.Theclassificationofacuteleukemia.

Leukemia.1992;6Suppl.2:1–6.

19.HatanoK,NagaiT,MatsuyamaT,SakaguchiY,FujiwaraS,Oh

I,etal.Leukemiacellsdirectlyphagocytosebloodcellsin

AML-associatedhemophagocyticlymphohistiocytosis:acase

reportandreviewoftheliterature.ActaHaematol.

2015;133(1):98–100.

20.JekarlDW,KimM,LimJ,KimY,HanK,LeeAW,etal.CD56

antigenexpressionandhemophagocytosisofleukemiccells

inacutemyeloidleukemiawitht(16;21)(p11;q22).IntJ

Hematol.2010;92(2):306–13.

21.ByrdJC,EdenfieldWJ,ShieldsDJ,DawsonNA.Extramedullary

myeloidcelltumorsinacutenonlymphocyticleukemia:a

clinicalreview.JClinOncol.1995;13(7):1800–16.

22.KuwabaraH,NagaiM,YamaokaG,OhnishiH,KawakamiK.

SpecificskinmanifestationsinCD56positiveacutemyeloid

leukemia.JCutanPathol.1999;26(1):1–5.

23.RozmanM,CamosM,ColomerD,VillamorN,EsteveJ,Costa

D,etal.TypeIMOZ/CBP(MYST3/CREBBP)isthemost

commonchimerictranscriptinacutemyeloidleukemiawith

t(8;16)(p11;p13)translocation.GenesChromosomesCancer.

2004;40(2):140–5.

24.GilesRH,DauwerseJG,HigginsC,PetrijF,WesselsJW,

BeverstockGC,etal.DetectionofCBPrearrangementsin

acutemyelogenousleukemiawitht(8;16).Leukemia.

1997;11(12):2087–96.

25.PanagopoulosI,TorkildsenS,GorunovaL,TierensA,

TjønnfjordGE,HeimS.Comparisonbetween

karyotyping-FISH-reversetranscriptionPCRand

RNA-sequencing-fusiongeneidentificationprogramsinthe

detectionofKAT6A-CREBBPinacutemyeloidleukemia.PLoS

ONE.2014;9(5):e96570.

26.JankaGE.Hemophagocyticsyndromes.BloodRev.

2007;21(5):245–53.

27.HenterJI,HorneA,AricóM,EgelerRM,FilipovichAH,

ImashukuS,etal.HLH-2004:diagnosticandtherapeutic

guidelinesforhemophagocyticlymphohistiocytosis.Pediatr

BloodCancer.2007;48(2):124–31.

28.WongKF,YuenHL,SiuLL,PangA,KwongYL.t(8;16)(p11;p13)

predisposestoatransientbutpotentiallyrecurringneonatal

leukemia.HumPathol.2008;39(11):1702–7.

29.TeruiK,SatoT,SasakiS,KudoK,KamioT,ItoE.Twonovel

variantsofMOZ-CBPfusiontranscriptsinspontaneously

remittedinfantleukemiawitht(1;16;8)(p13;p13;p11),anew

variantoft(8;16)(p11;p13).Haematologica.2008;93(10):1591–3.

30.SainatiL,BolcatoS,CocitoMG,ZanescoL,BassoG,Montaldi

A,etal.Transientacutemonoblasticleukemiawith

reciprocal(8;16)(p11;p13)translocation.PediatrHematol

Oncol.1996;13(2):151–7.

31.CamósM,EsteveJ,JaresP,ColomerD,RozmanM,VillamorN,

etal.Geneexpressionprofilingofacutemyeloidleukemia

withtranslocationt(8;16)(p11;p13)andMYST3-CREBBP

rearrangementrevealsadistinctivesignaturewithaspecific

patternofHOXgeneexpression.CancerRes.

2006;66(14):6947–54.

32.SerravalleS,MelchiondaF,AstolfiA,LibriV,MasettiR,

PessionA.AnovelspecificsignatureofpediatricMOZ-CBP

Imagem

Table 1 – Sequences of the primers used for reverse transcription polymerase chain reaction.
Figure 2 – FISH pattern of MYST3-CREBBP probes. Three types of hybridization patterns were observed: two red and two green signals (A); a single fusion pattern, with one red and one green signal remaining (B); and a dual fusion signal (C).
Table 3 – Immunophenotyping, cytogenetic, fluorescence in situ hybridization (FISH) and reverse transcription polymerase chain reaction (RT-PCR) of infant acute myeloid leukemia cases with hemophagocytosis.

Referências

Documentos relacionados

The present study therefore aims to evaluate the incidence of infection by the herpes virus in patients submitted to autologous HSCT in respect to the early suspension of

14 The primary objec- tive of this study was to determine whether the collection of progenitor cells using G-CSF alone is sufficient to per- form at least one ASCT, compared with

The immature platelet fraction is a useful marker for predicting the timing of platelet recovery in patients with cancer after chemotherapy and hematopoietic stem cell

Unrelated donor reduced-intensity allogeneic hematopoietic stem cell transplantation for relapsed and refractory Hodgkin lymphoma.. Biol Blood

Methods: A cohort of 91 Brazilian MDS patients, including patients with ring sideroblasts in the bone marrow, were screened for mutations in the SF3B1 hotspots (exons 12–15) by

Cost-minimization analysis favours intravenous ferric carboxymaltose over ferric sucrose or oral iron as preoperative treatment in patients with colon cancer and iron

The histo-blood group carbohydrates synthesized from type 2 precursor oligosaccharides are intrinsic to the red blood cell membrane as they are expressed by red blood cell precur-

The recommended treatment for beta-thalassemia major involves regular red blood cell transfusions through- out life, usually administered every two to five weeks depending on