• Nenhum resultado encontrado

Rev. bras. ortop. vol.50 número1

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. ortop. vol.50 número1"

Copied!
8
0
0

Texto

(1)

w w w . r b o . o r g . b r

Original

article

Is

there

a

difference

in

the

positioning

of

sliding

screws

between

stable

and

unstable

extracapsular

fractures?

Pedro

José

Labronici

a,∗

,

Rodrigo

Freitas

da

Silva

a

,

Ana

Maria

Santos

Viana

a

,

Saulo

Santos

Blunck

a

,

José

Sergio

Franco

b

,

Sergio

Ricardo

Neto

a

,

Robinson

Esteves

Santos

Pires

c,d

,

Roberto

Canto

e

aProf.Dr.DonatoD’ÂngeloOrthopedicsandTraumatologyService,HospitalSantaTeresa,Petrópolis,RJ,Brazil

bDepartmentofOrthopedicsandTraumatology,SchoolofMedicine,FederalUniversityofRiodeJaneiro,RiodeJaneiro,RJ,Brazil cFederalUniversityofMinasGerais,BeloHorizonte,MG,Brazil

dHospitalFelícioRocho,BeloHorizonte,MG,Brazil eUniversityofUberlândia,Uberlândia,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received3January2014 Accepted27February2014 Availableonline24February2015

Keywords:

Femoralfractures Hipfractures Bonescrews

a

b

s

t

r

a

c

t

Objective:Toanalyzethetip–apexdistance(TAD),cervicodiaphysealangleandGardenangle instableandunstableextracapsularfracturesofthefemurtreatedwithaplateandsliding screw.

Method:Hipradiographsinanteroposterior(AP)andlateralviewon117patientswere eval-uated.Thefractureswereclassifiedasstableorunstable,usingtheAOclassification,and thereductionachievedwasassessedinaccordancewiththefollowingcriteria:TAD>3cm; Gardenalignmentindex(AP)<160◦;andAPcervicodiaphysealvarusangle<125.Whentwo

ormorecriteriawerepresent,thequalityoftheosteosynthesiswasclassifiedas“notideal”.

Results:ThepatientswithunstablefracturespresentedAPcervicodiaphysealanglesthat weresignificantlygreater(p=0.05)thaninthosewithstablefractures.Thepatientswith unstablefracturespresentedlateralcervicodiaphysealanglesthatweresignificantlysmaller (p=0.05)thaninthosewithstablefractures.Therewerenosignificantdifferencesinthe remainderofthecriteriaevaluated.

Conclusion:Thisstudydidnotfindanysignificantdifferencesinthemeasurements evalu-ated,exceptinrelationtothecervicodiaphysealangle.Satisfactoryreductionwasachieved bothforthestableandfortheunstablefractures,whenweusedaplateandslidingscrew totreatproximalextracapsularfracturesofthefemur.

©2015SociedadeBrasileiradeOrtopediaeTraumatologia.PublishedbyElsevierEditora Ltda.Allrightsreserved.

WorkdevelopedattheProf.Dr.DonatoD’ÂngeloOrthopedicsandTraumatologyService,HospitalSantaTeresa,andatthePetrópolis SchoolofMedicine,Petrópolis,RJ,Brazil.

Correspondingauthor.

E-mail:plabronici@globo.com(P.J.Labronici).

http://dx.doi.org/10.1016/j.rboe.2015.02.002

(2)

Existe

diferenc¸a

no

posicionamento

do

parafuso

deslizante

entre

as

fraturas

extracapsulares

estáveis

e

instáveis?

Palavras-chave:

Fraturasdofêmur Fraturasdoquadril Parafusosósseos

r

e

s

u

m

o

Objetivo: Analisaradistânciaponta-ápice(DPA),oângulocervicodiafisárioeoângulode Gardenemfraturasextracapsularesinstáveiseestáveisdofêmurtratadascomplacae parafusodeslizante.

Método: Foramavaliadasradiografiasdoquadrilnasincidênciasemanteroposterior(AP) eperfilde117pacientes.Asfraturasforamclassificadascomoestáveiseinstáveis,pela classificac¸ãoAO,eareduc¸ãoobtidafoiavaliadadeacordocomoscritériosdedistância ponta-ápice(DPA>3cm),índicedealinhamentodeGarden(AP)<160◦eângulo

cervicodi-afisário(AP)emvaro<125◦.Quandodoisoumaiscritériosestavampresentes,aqualidade

daosteossíntesefoiclassificadacomo«nãoideal».

Resultados: OspacientescomfraturainstávelapresentaramCDAP(p=0,05) significativa-mentemaiordoqueosestáveis.Ospacientescomfraturainstável apresentaramoCD Perfil(p=0,05)significativamentemenordoqueoscomfraturaestável.Nãohouvediferenc¸a significativaentreorestantedoscritériosavaliados.

Conclusão: Esteestudonãoencontroudiferenc¸asignificativaentreasmedidasavaliadas, excetooângulocervicodiafisário.Foiconseguidaumareduc¸ãosatisfatória,tantonas frat-urasestáveiscomonasinstáveis,quandousamosplacaeparafusodeslizantenasfraturas proximaisextracapsularesdofêmur.

©2015SociedadeBrasileiradeOrtopediaeTraumatologia.PublicadoporElsevier EditoraLtda.Todososdireitosreservados.

Introduction

Plates and sliding screwsare currently the implants most oftenusedforfixation ofintertrochantericfractures ofthe femur.1Thisisbecauseofanintrinsiccharacteristicoftheir

design,whichmakesitpossibletocollapsethefracturewith controlledimpactionintoastableposition,while maintain-ingaconstantcervicodiaphysealangle,withoutpenetration ofthefemoralhead.2–4 Theplateandslidingscrewjointhe

limbtogetherwithoutmakingcuts,soastoresistpenetration andthethreadedscrewincreasesthefixationintheproximal fragment.Thegreatadvantageofthisisthatthescrewcan beinserteddeeplywithoutanydangerthatthejointmight becomeperforatedlateron,althoughtheplacementneedsto bepreciseinordertoavoidfailures.5

Themostcommon cause offailure offixationof extra-capsular fractures that are treatedwith plates and sliding screwsrelatestosituationsinwhichthescrewinthefemoral headcutsout.The incidenceofthissituation ranges from 5.3%to16.8%.1,2,6–8Itoccurswhenthecervicodiaphysealangle

collapsesinvarusandthethreadedscrewextrudessuperiorly throughthefemoralhead.2,3Baumgaertneretal.2introduced

theconceptofthetip–apexdistance(TAD)asastrong progno-sticfactorforthiscomplication.

TADwasdefinedbyBaumgaertneret al.2 asthesumof

thedistanceinmillimeters, onradiographsin anteroposte-rior(AP)andlateralviews,fromthetipofthethreadedscrew to the apex of the femoral head, with appropriate correc-tionformagnification.2,6,9IthasbeendemonstratedthatTAD

greaterthan2.5cmisassociatedwithincreasedriskofimplant failure2,6,9 with greater occurrenceofcut-out.1–3,6,9,10 Some

studieshavesuggestedthatvalueslowerthan2cmoughtto betheideal.1

TheaimofthepresentstudywastoanalyzeTAD, cervi-codiaphysealangleandGardenangleinstableandunstable extracapsularfracturestreatedwithaplateandslidingscrew.

Materials

and

methods

BetweenMay1998andJuly2011,408patientswithunstable and stableextracapsular fractures ofthefemurunderwent surgicaltreatmentbymeansofreductionandfixationusing aplateandslidingscrewatHospitalSantaTeresa, Petrópo-lis,stateofRiode Janeiro.Amongthese,291patientswere excludedbecausetheypresentedradiographswithincorrect viewsordidnotpresentoneoftheviewsneededfor analy-sisontheTADmeasurements;orbecausetheywereunder60 yearsofage;orbecausetheypresentedpathologicalfractures andtreatmentwithcephalomedullarynails.Allthepatients wereoperatedonatractiontable.

Thetechnicalqualityoftheosteosynthesiswasanalyzed by means of observation and using radiographs produced during the immediate postoperative period. According to Baumgaertneretal.2,6 TADwasdescribedasthesumofthe

(3)

Fig.1–Stableintertrochantericfractureofthefemurtreatedwithaplateandslidingscrew.

indicatesthedegreeofrotationofthefemoralhead.Inthe anteroposterior projection, the cervicocephalic trabeculae formanangleof160–175◦ withthemedialcorticalboneof

thefemoraldiaphysis;inthelateralprojection,thealignment ofthetrabeculaeshouldbe180◦.FromtheGardenalignment

index,adequatereductionistakentobeatrabecularangleof between160◦and180,bothinAPandinlateralview.

TheAOclassificationforhipfractureswasused,12andthis

wassubdividedintostablefractures(31A1)orunstable frac-tures(31A2)(Figs.1and2).Thequalityoftheosteosynthesis wasclassifiedas“ideal”or“notideal”,inaccordancewiththe followingcriteria:(1)TAD>3cm;(2)Gardenalignmentindex (AP)<160◦;and(3)cervicodiaphysealangle(AP)invarus<125.

Whentwoormorecriteriawerepresent,thequalityofthe osteosynthesiswasclassifiedas“notideal”.

Table1presentsthecharacterizationofthemean,standard

deviation(SD),medianandminimumandmaximumofthe numericalvariablesofthetotalsampleofthisstudy.

Amongthe 117 records examined, 74 (63.2%) related to unstablefractures,59(50.4%)tofracturesontherightsideand 66(56.4%)tofracturesinfemales.

Table1–Descriptionofthenumericalvariablesinthe

totalsample.

Variable Mean SD Median Minimum Maximum

AP 1.21 0.43 1.20 0.20 2.50

Lateral 1.18 0.44 1.10 0.10 2.20

TAD 2.39 0.84 2.20 0.30 4.10

GardenAP 162.7 8.4 162 125 178

Gardenlateral 173.1 4.8 174 160 180

CDAP 135.5 11.3 134 112 170

CDlateral 171.5 5.8 172 150 180

Source:HospitalSantaTeresa,Petrópolis,stateofRiodeJaneiro, Brazil.

SD,standarddeviation;AP,anteroposterior;TAD,tip–apexdistance; CD,cervicodiaphysealangle.

Statistical

methodology

Thedescriptiveanalysispresentedtheobserveddataintables, intheformofmeans,standarddeviationsandmedians.

The inferential analysis consistedofthe nonparametric Mann–Whitney test for comparing the numerical variables betweenthesubgroupsofstableandunstablefracturesand the2(Chi-square)testforcategoricalvariables.

A nonparametric method was used because the vari-ables didnotpresent normal(Gaussian) distribution,given that the hypothesis ofnormality wasrejected through the Kolmogorov–Smirnovtest.

Thecriterion used fordeterminingsignificancewas the levelof5%.Thestatisticalanalysiswasprocessedusingthe SAS6.11software(SASInstitute,Inc.,Cary,NC,USA).

Results

Toshowanydifferencesamongthestudyvariables,Table2

presents themeans,standard deviations(SD)andmedians of the variables according to stability (unstable or stable) and the corresponding descriptive level (p-value) from the Mann–Whitneytest.

Itwasobservedthattherewerenosignificantdifferences inthevariablesstudiedbetweenthetwogroupsoffractures, asillustratedinFigs.3–5.

(4)

Fig.2–Unstableintertrochantericfractureofthefemurtreatedwithaplateandslidingscrew.

similartothatofthesubgroupwithstablefractures(60.5%), withp=0.50.

It was also observed that there were differences in the study variables between the two groups of fractures (unstableand stable),separately accordingto side(rightor left).

Tables 3 and 4 presented the means, standard

devia-tions(SD)andmediansofthevariablesaccordingtostability (unstableorstable)andthecorrespondingdescriptivelevels (p-values) ofthe Mann–Whitney test,for theleft and right sides,respectively.

Itwasobservedthatthepatientswithunstablefractures presented AP cervicodiaphyseal angles that were signifi-cantlygreaterthanthoseofthepatientswithstablefractures (p=0.05),asshowninFig.6.Therewerenostatistically sig-nificantdifferencesin theother variables betweenthetwo subgroups.

Itwasalsoseenthatthepatientswithunstablefractures presentedlateralcervicodiaphysealanglesthatwere signifi-cantlysmallerthanthoseofthepatientswithstablefractures

Stable fracture Unstable fracture

180

170

160

150

140

130

120

Garden (degrees)

Lateral AP

Fig.3–Comparisonbetweenstableandunstablefractures usingtheGardenangle.

Table2–Analysisonvariablesaccordingtostability.

Variable Unstable(n=74) Stable(n=43) p-Valuea

Mean±SP Median Mean±SD Median

AP 1.23±0.43 1.2 1.17±0.43 1.2 0.58

Lateral 1.22±0.44 1.1 1.11±0.45 1 0.19

TAD 2.45±0.83 2.2 2.28±0.85 2.2 0.33

GardenAP 163.0±8.8 164 162.1±7.9 162 0.32

Gardenlateral 172.8±5.0 174 173.7±4.4 174 0.44

CDAP 135.6±11.6 133 135.5±10.8 134 0.87

CDlateral 170.7±6.5 170 172.9±4.1 172 0.093

Source:HospitalSantaTeresa,Petrópolis,stateofRiodeJaneiro,Brazil.

(5)

Table3–Analysisonthevariablesaccordingtothestabilityoftherightside.

Variable Unstable(n=41) Stable(n=18) p-Valuea

Mean±SP Median Mean±SP Median

AP 1.20±0.44 1.2 1.13±0.37 1.15 0.66

Lateral 1.17±0.40 1 1.04±0.36 1.05 0.38

TAD 2.37±0.79 2.2 2.17±0.67 2.25 0.46

GardenAP 164.3±7.2 164 161.9±6.3 162 0.21

Gardenlateral 173.1±4.9 174 173.6±4.3 174.5 0.81

CDAP 137.0±11.4 135 131.4±7.6 128 0.053

CDlateral 171.9±5.4 172 172.9±3.7 172.5 0.50

Source:HospitalSantaTeresa,Petrópolis,stateofRiodeJaneiro,Brazil.

AP,anteroposterior;TAD,tip–apexdistance;CD,cervicodiaphysealangle;SD,standarddeviation. a Mann–Whitneytest.

Stable fracture Unstable fracture

180

170

160

150

140

130

120

110

100

CD (degrees)

Lateral AP

Fig.4–Comparisonbetweenstableandunstablefractures usingthecervicodiaphysealangle(CD).

(p=0.05),asshowninFig.6.Therewerenostatistically sig-nificantdifferences intheother variables betweenthe two subgroupsofpatients.

Stable fracture Unstable fracture

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

TAD

Fig.5–Comparisonbetweenstableandunstablefractures usingthetip–apexdistance(TAD).

The subgroup with unstable fractures was seen to present lateral cervicodiaphyseal angles that were signifi-cantlysmallerthanthoseofthesubgroupwithstablefractures (p=0.05),asshowninFig.7.Therewerenostatistically

sig-Table4–Analysisonthevariablesaccordingtothestabilityoftheleftside.

Variable Unstable(n=33) Stable(n=25) p-Valuea

Mean±SP Median Mean±SP Median

AP 1.28±0.42 1.2 1.20±0.48 1.2 0.61

Lateral 1.28±0.47 1.2 1.15±0.51 1 0.28

TAD 2.56±0.87 2.4 2.35±0.96 2.1 0.34

GardenAP 161.5±10.3 164 162.3±9.0 162 0.96

Gardenlateral 172.5±5.1 172 173.8±4.5 172 0.33

CDAP 133.8±11.7 130 138.4±11.9 140 0.19

CDlateral 169.2±7.5 170 172.8±4.5 172 0.058

Source:HospitalSantaTeresa,Petrópolis,stateofRiodeJaneiro,Brazil.

(6)

Stable fracture Unstable fracture

180

175

170

165

160

155

150

145

140

135

130

125

CD (degrees)

Lateral AP

Fig.6–Comparisonbetweenstableandunstablefractures usingthecervicodiaphysealangle(CD),rightside.

Stable fracture Unstable fracture

180

175

170

165

160

155

150

145

140

135

130

125

CD

(degrees)

Lateral AP

Fig.7–Comparisonbetweenstableandunstablefractures usingthecervicodiaphysealangle(CD),leftside.

nificantdifferencesin theother variables betweenthetwo subgroupsatthe5%level.

Fig.8showstheincidenceofthestableandunstable frac-turesrelatingtothe117patientsanalyzed.

Fig.9showstheidealandnon-idealreductionsinthestable andunstablefractures.

Itwasseenthat79%ofthestablefracturesand81%ofthe unstablefracturespresentedidealreductions.

Discussion

Inoursetting,themajorityofintertrochantericfracturesare still treated using plates and sliding screws. The success of treatments using this type of implant depends on the impactionofthe headand necksegments intheproximal

0% 10% 20% 30% 40% 50% 60% 70%

Stable n=43 Unstable n=74

Stable n=43 Unstable n=74

Fig.8–Comparisonofabsolutenumbersbetweenstable andunstablefractures.

regionofthefemur,intoastableposition.Afterthishasbeen achieved,theloadonthefracturewillbesharedbetweenthe boneandimplantandthebonewillabsorbapproximately75% ofthe load transmitted.13 Kaufer14 described fivevariables

thatcouldaffecttheresistanceofthecombinationofimplant andfracturefragment:(1)bonequality;(2)fragment geome-try;(3)fracturereduction;(4)implantmodel;and(5)implant choice.Amongthese,thelastthreeareunderthecontrolof thesurgeon.Accordingtotheliterature,complications relat-ingtotheplateandslidingscrewoccurinaround16–23%of thecases.Therefore,adequateplacementofthescrewis fun-damentallyimportant.15–17Thesecomplicationsmayinclude

lossofthereduction,pseudarthrosis,skewedconsolidation withvarusdeformityofthefemoralneck,shorteningorscrew cut-out.7,16,18–23Ourmainobjectiveherewastoanalyzethe

positionsoftheplate andslidingscrewthroughcomparing stableandunstableintertrochantericfractures.

Despitethemechanicaladvantagesofplatesand sliding screws,slidingscrewcut-outremainsasignificantproblem, especially incasesof unstable fractures.However,internal

0 10 20 30 40 50 60 70 80

Stable Unstable

Non-ideal reduction Ideal reduction

(7)

fixationofstableintertrochantericfractureshasshownlow incidenceofcomplications.5,7,24

Many authors have triedto quantify the positioning of theslidingscrew.25–27Clawson5recommendedthatthescrew

should be placed6mm from the subchondral bone. Some authorshavedescribedthelocationofthescrewinrelation tothedistancefromthecentralaxisofthefemoralheadand neck,onAPandlateralradiographs.25–27Thescrew

penetra-tiondepth hasbeen calculatedaccordingtothenumber of turnsthatwouldbeneededtoadvancethescrewinsidethe bone.Thenine-zonesystemusedbyKyleetal.24didnot

rep-resentthescrewpenetrationdepth.Larssonetal.28tookinto

considerationthedirectionanddepthofthescrewanddivided thefemoralheadintoperpendicularaxesandtheremaining quadrantsinto11 zonesinbothradiographs.Bridleet al.29

usedsimilaraxes,butdividedeachradiographintonineareas. Parker30usedaproportionaltechniquefordefiningthe

direc-tionofthescrew,butnotitsdepth,inbothradiographicviews. The two mainmethods forquantifying the positioning ofthe screwthathavebeendescribed are theproportional methoddescribedbyParker30andthetip–apexdistance(TAD)

methoddescribedbyBaumgaertneretal.,apudEvans31and

Garden.32Thelattermethodhasbeenshowntobeauseful

intraoperativeindicatorforscrewpositioningatdepthandfor centralplacementinthe femoralhead.Thisisperhapsthe mostimportantindicatorforpreciseplacementofthescrew and hasbeen shown in several studies tohave prognostic value after treatments for intertrochanteric fractures.2,17,33

TAD<2.5cmhasbeenreportedtorepresentagood progno-sisfortheresults.However,somestudieshavetakentheview thattheidealwouldbeTAD<2cm.2,17,33

Several authors have reported that failures are practi-cally nonexistent in relation to fixation of stable two-part intertrochantericfractures.7,34Themostcommonmechanical

complicationafterusingaplateandslidingscrewis progres-sivecollapseinvarusthroughthefemoralhead,withproximal migrationandpossiblyscrewcut-outinthehead.6,7Adequate

positioningofthescrewinsidetheheadprotectsagainstthese complications.6,7 Nonetheless, divergencesofopinion exist

inrelationtoinstability.26,34–36LindskogandBaumgaertner37

demonstratedthatageandunstablefractureswerealso inde-pendent factors for a prognosis of cut-out. Baumgaertner etal.6 reportedcut-outratesrangingfrom 4%to20%,with

higherratesinunstable fractures.Haidukewych38 reviewed

unstablefractures (AO/OTAtypesA3.1 andA3.3)and found complicationrates ofup to56% (consistingof cut-outand pseudarthrosis)whenaplate and slidingscrewwere used. Ourresultsshowedthattherewasnosignificantdifference inTADbetweenstablefractures (2.28±0.85cm) and unsta-blefractures(2.45±0.83cm).OurTADresultsof2.39±0.84cm remainedwithinthelimitdeterminedbyBaumgaertner,i.e. below2.5cm.OurdatadonotsupportthehypothesisthatTAD mightbehigher(therebyfavoringcomplications)incasesof unstablefracturesbecauseofpossibledifficultyinreducing suchfractures.

Studiesoncadaversandradiographicstudieshave demon-stratedthatthemeancervicodiaphysealangleinthegeneral populationis127±7◦.39,40 Nosignificantdifferencesin

rela-tion to side and gender have been demonstrated, despite culturaldifferences.41TheAPradiographicevaluationofthe

cervicodiaphysealanglewasshowntobemoreprecisewhen thefemurwasinternallyrotatedat10◦,giventhatexternal

rotationmightleadtoanapparentincreaseinthe cervicodi-aphysealangle.42Thepresentstudydemonstratedthatgood

reductionisanimportantfactorforavoidingcomplications. However,sincenointra-orinterobservercomparisonswere made,wecannotconcludethattherewasnosignificant differ-enceincervicodiaphysealangleonAPradiographs,between stableand unstablepatients(135.5±10.8◦ and135.6±11.6,

respectively),oronlateral-viewradiographs(172.9±4.1◦ and

170.7±6.5◦,respectively).

Somestudieshaveindicatedthatcorrectreductionof frac-tures seenonradiographs, especiallyinAPview,and good correctionofthetrabecularangletoaround165–170◦are

asso-ciatedwithreductionoftheriskofcut-out.41,43Pervezetal.1

confirmedthevalueoffracturereductiononradiographsinAP view,withanincreaseincut-outratesincasesoffracturesthat had beenreducedinvarus.Fracture reductionand implant positioningaredirectlyrelated.Therefore,correctreduction ofthefractureisaprerequisiteforimplantplacement.44

WeobservedthatthecervicodiaphysealangleinAPview wassignificantlygreaterinunstablefracturesandthatthere wasatendencytowardreductioninvalgus.Wealsoobserved inlateral viewthat thecervicodiaphysealanglewas signif-icantly smallerinunstable fractures,which suggestedthat therewasatendencytowardposteriorcollapse.

Conclusion

Theresultsfromthisstudyconfirmedthatthereareno sig-nificant differences between the measurements evaluated, exceptthecervicodiaphysealangle.Moreover,bothforstable andforunstablefractures,goodreductionisanimportant fac-torforavoidingcomplicationswhenplatesandsidingscrews areusedforextracapsularfracturesofthefemur.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

r

e

f

e

r

e

n

c

e

s

1.PervezH,ParkerMJ,VowlerS.Predictionoffixationfailure

afterslidinghipscrewfixation.Injury.2004;35(10):994–8.

2.BaumgaertnerMR,CurtinSL,LindskogDM,KeggiJM.The

valueofthetip–apexdistanceinpredictingfailureoffixation

ofperitrochantericfracturesofthehip.JBoneJointSurgAm.

1995;77(7):1058–64.

3.LorichDG,GellerDS,NielsonJH.Osteoporoticpertrochanteric

hipfractures:managementandcurrentcontroversies.Instr

CourseLect.2004;53:441–54.

4.JacobsRR,ArmstrongHJ,WhitakerJH,PazellJ.Treatmentof

intertrochanterichipfractureswithacompressionhipscrew

andanailplate.JTrauma.1976;16(8):599–603.

5.ClawsonDk.Trochantericfracturestreatedbythesliding

screwplatefixationmethod.JTrauma.1964;4:737–52.

6.BaumgaertnerMR,SolbergBD.Awarenessoftip–apex

distancereducesfailureoffixationoftrochantericfractures

(8)

7. DavisTR,SherJL,HorsmanA,SimpsonM,PorterBB,

CheckettsRG.Intertrochantericfemoralfractures.Mechanical

failureafterinternalfixation.JBoneJointSurgBr.

1990;72(1):26–31.

8. JensenJS,TøndevoldE,MossingN.Unstabletrochanteric

fracturestreatedwiththeslidingscrew-platesystem.A

biomechanicalstudyofunstabletrochantericfracturesIII.

ActaOrthopScand.1978;49(4):392–7.

9. StapleySA,KumarBA,ParkerMJ.Thepredictionoffixation

failureofintertrochantericfracturesofthefemurusingthe

slidinghipscrew:whichisthebestmethod?JBoneJointSurg

Br.2000;82Suppl.1:56.

10.WaltonNP,Wynn-JonesH,WardMS,WimhurstJA.Femoral

neck-shaftangleinextra-capsularproximalfemoralfracture

fixation:doesitmakeaTADofdifference?Injury.

2005;36(11):1361–4.

11.LyTV,SwiontkowskiMF.Treatmentoffemoralneckfractures

inyoungadults.JBoneJointSurgAm.2008;90(10):2254–66.

12.MarshJL,SlongoTF,AgelJ,BroderickJS,CreeveyW,DeCoster

TA,etal.Fractureanddislocationclassificationcompendium

–2007:OrthopaedicTraumaAssociationclassification,

database,andoutcomescommittee.JOrthopTrauma.2007;21

Suppl.10:S1–133.

13.FrankelVH,BursteinAH.Orthopedicsbiomecanics.The

applicationofengineeringtothemusculoskeletalsystem.

Philadelphia:LeaandFebiger;1970.

14.KauferH.Mechanicsofthetreatmentofhipinjuries.Clin

OrthopRelatRes.1980;(146):53–61.

15.BannisterGC,GibsonAG,AckroydCE,NewmanJH.The

fixationandprognosisoftrochantericfractures.A

randomizedprospectivecontrolledtrial.ClinOrthopRelat

Res.1990;(254):242–6.

16.SimpsonAH,VartyK,DoddCA.Slidinghipscrews:modesof

failure.Injury.1989;20(4):227–31.

17.WolfgangGL,BryantMH,O’NeillJP.Treatmentof

intertrochantericfractureofthefemurusingslidingscrew

platefixation.ClinOrthopRelatRes.1982;(163):148–58.

18.KauferH,MatthewsLS,SonstegardD.Stablefixationof

intertrochantericfractures.JBoneJointSurgAm.

1974;56(5):899–907.

19.KyleRF.Fracturesoftheproximalpartofthefemur.JBone

JointSurgAm.1994;76:924–50.

20.MadsenJE,NaessL,AuneAK,AlhoA,EkelandA,StrømsøeK.

Dynamichipscrewwithtrochantericstabilizingplateinthe

treatmentofunstableproximalfemoralfractures:a

comparativestudywiththeGammanailandcompression

hipscrew.JOrthopTrauma.1998;12(4):241–8.

21.LiuM,YangZ,PeiF,HuangF,ChenS,XiangZ.Ameta-analysis

oftheGammanailanddynamichipscrewintreating

peritrochantericfractures.IntOrthop.2010;34(3):323–8.

22.NordinS,ZulkifliO,FaishamWI.Mechanicalfailureof

dynamichipscrew(DHS)fixationinintertrochanteric

fractureofthefemur.MedJMalaysia.2001;56Suppl.D:12–7.

23.SaarenpääI,HeikkinenT,RistiniemiJ,HyvönenP,LeppilahtiJ,

JalovaaraP.Functionalcomparisonofthedynamichipscrew

andtheGammalockingnailintrochanterichipfractures:a

matched-pairstudyof268patients.IntOrthop.

2009;33(1):255–60.

24.KyleRF,GustiloRB,PremerRF.Analysisofsixhundredand

twenty-twointertrochanterichipfractures.JBoneJointSurg

Am.1979;61(2):216–21.

25.DohertyJHJr,LydenJP.Intertrochantericfracturesofthehip

treatedwiththehipcompressionscrew:analysisof

problems.ClinOrthopRelatRes.1979;(141):184–7.

26.GreiderJLJr,HorowitzM.Clinicalevaluationofthesliding

compressionscrewin121hipfractures.SouthMedJ.

1980;73(10):1343–8.

27.MulhollandRC,GunnDR.Slidingscrewplatefixationof

intertrochantericfemoralfractures.JTrauma.

1972;12(7):581–91.

28.LarssonS,FribergS,HanssonLI.Trochantericfractures.

Mobility,complications,andmortalityin607casestreated

withthesliding-screwtechnique.ClinOrthopRelatRes.

1990;(260):232–41.

29.BridleSH,PatelAD,BircherM,CalvertPT.Fixationof

intertrochantericfracturesofthefemur.Arandomised

prospectivecomparisonoftheGammanailandthedynamic

hipscrew.JBoneJointSurgBr.1991;73(2):330–4.

30.ParkerMJ.Cutting-outofthedynamichipscrewrelatedtoits

position.JBoneJointSurgBr.1992;74(4):625.

31.EvansEM.Trochantericfractures;areviewof110cases

treatedbynail-platefixation.JBoneJointSurgBr.

1951;33(2):192–204.

32.GardenRS.Low-anglefixationinfracturesofthefemoral

neck.JBoneJointSurgBr.1961;43:647–63.

33.LevyRN,CapozziJD,MontMA.Intertrochanterichip

fractures.In:BrownerD,JupiterJ,LevineA,TaftonP,editors.

Skeletaltrauma:fractures,dislocations,ligamentousinjuries.

Philadelphia:Saunders;1992.p.1442–84.

34.WatsonJT,MoedBR,CramerKE,KargesDE.Comparisonof

thecompressionhipscrewwiththeMedoffslidingplatefor

intertrochantericfractures.ClinOrthopRelatRes.

1998;(348):79–86.

35.ChirodianN,ArchB,ParkerMJ.Slidinghipscrewfixationof

trochanterichipfractures:outcomeof1024procedures.

Injury.2005;36(6):793–800.

36.LarssonS,FribergS,HanssonLI.Trochantericfractures.

Influenceofreductionandimplantpositiononimpaction

andcomplications.ClinOrthopRelatRes.1990;(259):

130–9.

37.LindskogDM,BaumgaertnerMR.Unstableintertrochanteric

hipfracturesintheelderly.JAmAcadOrthopSurg.

2004;12(3):179–90.

38.HaidukewychGJ.Intertrochantericfractures:tentipsto

improveresults.JBoneJointSurgAm.2009;91(3):

712–9.

39.IsaacB,VettivelS,PrasadR,JeyaseelanL,ChandiG.Prediction

offemoralneck-shaftanglefromthelengthofthefemoral

neck.ClinAnat.1997;10(5):318–23.

40.ReikerasO,HoisethA,ReigstadA,FonstelienE.Femoralneck

angles:aspecimenstudywithspecialregardtobilateral

differences.ActaOrthopScand.1982;53(5):775–9.

41.ParkerMJ.Valgusreductionoftrochantericfractures.Injury.

1993;24(5):313–6.

42.KayRM,JakiKA,SkaggsDL.Theeffectoffemoralrotationon

theprojectedfemoralneck-shaftangle.JPaediatrOrthop.

2000;20(6):736–9.

43.BonamoJJ,AccettolaAB.Treatmentofintertrochanteric

fractureswithaslidingnail-plate.JTrauma.1982;22(3):205–15.

44.LimaALP,AzevedoFilhoAJ,AmaralNP,FranklinCE,Giordano

V.Tratamentodasfraturasintertrocanterianascomplacae

Imagem

Fig. 1 – Stable intertrochanteric fracture of the femur treated with a plate and sliding screw.
Fig. 2 – Unstable intertrochanteric fracture of the femur treated with a plate and sliding screw.
Table 4 – Analysis on the variables according to the stability of the left side.
Fig. 6 – Comparison between stable and unstable fractures using the cervicodiaphyseal angle (CD), right side.

Referências

Documentos relacionados

Conclusion: In the group of patients evaluated, treatment of two-part surgical neck fractures by means of a locked metaphyseal intramedullary nail and angular stability

Between May 2009 and March 2014, seven patients with rotator cuff arthropathy developed septic arthritis of the glenohumeral joint and underwent surgical treatment by sur-

Conclusion: Surgical treatment by means of open reduction and internal fixation using a hook plate and screw proved to be an excellent option for treating mallet finger fractures

The aim of this study was to prove the efficiency of the DHS system for fixation of unstable fractures, with anatomical or valgus reduction, by means of a minimally invasive

The inclusion criteria consisted of patients who underwent surgical treatment by open reduction and internal fixation of unilateral closed ankle fractures with SER-type

Business model choice choice added to business Customer-driven new Model Hypothetical choice (in test) Analyze Learn Performance improvement Design the cause-and-effect

The total number of operatively treated neck fractures in geriatric patients increased between 2006 and 2015, with open reduction internal fixation/prosthetic placement code

We report our experience in the surgical treatment of six patients with unstable lesions involving the cervicothoracic junction at T1 and T2 vertebral bodies.. The patients