• Nenhum resultado encontrado

Parte III – Modificações na forma de agregados devido a introdução de molécula sinalizadora

6. Conclusões

Nossos resultados mostram que o EPS está presente como cobertura celular em estágios muito precoces de adesão celular de X.fastidiosa subsp. pauca. Procedimentos de lavagem não foram capazes de eliminar completamente EPS, indicando uma forte interação com a membrana celular bacteriana. Medições de espectroscopia de força em células individuais e pequenos biofilmes mostram que o stiffness do sistema EPS / célula diminui com o tempo de crescimento e que as regiões polares são menos rígidas do que o corpo bacteriano. Estes resultados concordam bem com a hipótese de mudanças locais na composição de EPS de X.fastidiosa em regiões de tamanho micrométrico, sugeridas a partir de estudos anteriores com medidas de potencial de superfície [13].

A flexibilidade associada com materiais mais macios na região do polo da célula pode explicar a estabilidade do movimento oscilante de células isoladas, aderidas verticalmente, observadas nos experimentos em ambientes microfluídicos. Ao menor valor de stiffness da matriz EPS para biofilmes com maior tempo de crescimento também explica o caráter maleável da matriz, que permite o transporte celular e o eventual desprendimento de EPS e células, observado nos microcanais. Estas últimas experiências foram realizadas sob fluxos simulando condições de xilema, e também corroboram a interpretação de resultados anteriores de crescimento bacteriano estático [13].

Além disso, este tipo de investigação poderia ser utilizado para identificar marcadores que desencadeiam a variação da composição de EPS e assim diferentes estágios para a formação de biofilmes. A resposta elástica observada neste trabalho indica uma maior flexibilidade nos pontos de ligação da superfície celular, o que pode ser importante para a adaptação célula- hospedeiro, afetando desde a transmissão celular de/para o vetor de insetos até a migração celular através de vasos de xilema em plantas.

Quanto aos experimentos em ambiente microfluídicos verificamos que houve um aumento na densidade bacteriana devido ao confinamento celular promovido pelo microambiente. Além disso, utilizando microcanais tratados quimicamente com a adesina XadA1, presente nos estágios iniciais de adesão bacteriana, identificamos seu papel como moduladora da adesão bacteriana à superfície e na interação célula/célula. Quantificamos a força de adesão associada à sua presença na superfície; foram observados valores 2 vezes maiores se comparados à superfície controle. Verificamos ainda em estudos preliminares que a presença de DSF afeta a

forma dos agregados bacterianos e promove um aumento da área coberta por células individuais, agregados e biofilmes, podendo favorecer de alguma maneira a adesão bacteriana.

Diante dos resultados apresentados nesta tese, poderiam ser feitas algumas modificações nas condições experimentais para extrair mais informações sobre o sistema analisado. Poderíamos por exemplo destacar, o uso de microscópio confocal com z-stack para monitorar a forma dos agregados durante os experimentos nos microcanais impressos. Porém, além de uma melhor caracterização do perfil difusivo nos microcanais acoplados por membrana, são também necessárias alterações na forma como é feita a adesão vidro/PLA que permitam maior durabilidade dos dispositivos e consequentemente uma maior janela de monitoramento experimental.

Referências

[1] Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010;8:623–33.

doi:10.1080/0892701031000072190.

[2] Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural

environment to infectious diseases. Nat Rev Microbiol 2004;2:95–108.

doi:10.1038/nrmicro821.

[3] Watnick P, Kolter R. MINIREVIEW Biofilm, City of Microbes. J Bacteriol 2000;182:2675–9.

[4] Killiny N, Martinez RH, Dumenyo CK, Cooksey D a, Almeida RPP. The

exopolysaccharide of Xylella fastidiosa is essential for biofilm formation, plant virulence, and vector transmission. Mol Plant Microbe Interact 2013;26:1044–53. doi:10.1094/MPMI-09-12-0211-R.

[5] Retchless AC, Labroussaa F, Shapiro L, Stenger DC, Lindow SE, Almeida RPP. Genomic Insights into Xylella fastidiosa Interactions with Plant and Insect Hosts. Genomics Plant-Associated Bact., 2014, p. 177–202. doi:10.1007/978-3-642-55378-3.

[6] Cariddi C, Saponari M, Boscia D, De Stradis A, Loconsole G, Nigro F, et al. Isolation of a Xylella fastidiosa strain infecting olive and oleander in Apulia, Italy. J Plant Pathol 2014;96:425–9. doi:10.4454/JPP.V96I2.024.

[7] Alves E, Leite B, Pascholati SF, Ishida ML, Andersen PC. Citrus sinensis leaf petiole and blade colonization by Xylella fastidiosa: details of xylem vessel occlusion. Sci Agric 2009;66:218–24. doi:10.1590/S0103-90162009000200011.

[8] de Lima JEO, Miranda VS, Hartung JS, Brlansky RH, Coutinho A, Roberto SR, et al. Coffee leaf scorch bacterium: Axenic culture, pathogenicity, and comparison with Xylella fastidiosa of citrus. Plant Dis 1998;82:94–7. doi:10.1094/PDIS.1998.82.1.94.

[9] Chatterjee S, Almeida RPP, Lindow S. Living in two worlds: the plant and insect

lifestyles of Xylella fastidiosa. Annu Rev Phytopathol 2008;46:243–71.

doi:10.1146/annurev.phyto.45.062806.094342.

[10] Purcell AH, Hopkins DL. Fastidious xylem-limited bacterial plant pathogens. Annu Rev Phytopathol 1996;34:131–51. doi:10.1146/annurev.phyto.34.1.131.

[11] Almeida RPP, Purcell AH. Colonization on the Precibarium of Sharpshooter Vectors Relative to Transmission to Plants. Ann Entomol Soc Am 2006;99:884–90. doi:10.1603/0013-8746(2006)99[884:POXFCO]2.0.CO;2.

[12] Niza B, Coletta-Filho HD, Merfa M V., Takita MA, de Souza AA. Differential colonization patterns of Xylella fastidiosa infecting citrus genotypes. Plant Pathol 2015:1259–69. doi:10.1111/ppa.12381.

[13] Janissen R, Murillo DM, Niza B, Sahoo PK, Nobrega MM, Cesar CL, et al. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation. Sci Rep 2015;5:9856. doi:10.1038/srep09856.

[14] Lorite GS, de Souza AA, Neubauer D, Mizaikoff B, Kranz C, Cotta MA. On the role of extracellular polymeric substances during early stages of Xylella fastidiosa biofilm

formation. Colloids Surfaces B Biointerfaces 2013;102:519–25.

doi:10.1016/j.colsurfb.2012.08.027.

[15] Feil H, Feil WS, Lindow SE. Contribution of Fimbrial and Afimbrial Adhesins of Xylella fastidiosa to Attachment to Surfaces and Virulence to Grape. Phytopathology 2007;97:318. doi:10.1094/PHYTO-97-3-0318.

[16] De La Fuente L, Montanes E, Meng Y, Li Y, Burr TJ, Hoch HC, et al. Assessing adhesion forces of type I and type IV pili of Xylella fastidiosa bacteria by use of a microfluidic flow chamber. Appl Environ Microbiol 2007;73:2690–6. doi:10.1128/AEM.02649-06.

[17] Beaulieu ED, Ionescu M, Chatterjee S, Yokota K, Trauner D, Lindow S. Characterization of a diffusible signaling factor from Xylella fastidiosa. MBio 2013;4. doi:10.1128/mBio.00539-12.

[18] Meng Y, Li Y, Galvani CD, Hao G, Turner JN, Burr TJ, et al. Upstream Migration of Xylella fastidiosa via Pilus-Driven Twitching Motility. J Bacteriol 2005;187:5560–7. doi:10.1128/JB.187.16.5560.

[19] De La Fuente L, Burr TJ, Hoch HC. Mutations in type I and type IV pilus biosynthetic genes affect twitching motility rates in Xylella fastidiosa. J Bacteriol 2007;189:7507– 10. doi:10.1128/JB.00934-07.

attachment, biofilm formation, and twitching motility. Appl Environ Microbiol 2012;78:1321–31. doi:10.1128/AEM.06501-11.

[21] Cobine P a., Cruz LF, Navarrete F, Duncan D, Tygart M, de la Fuente L. Xylella fastidiosa Differentially Accumulates Mineral Elements in Biofilm and Planktonic Cells. PLoS One 2013;8:1–10. doi:10.1371/journal.pone.0054936.

[22] Dunne WM. Bacterial Adhesion: Seen Any Good Biofilms Lately? Society 2002;15:155–66. doi:10.1128/CMR.15.2.155.

[23] Van Oss CJ. Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J Mol Recognit 2003;16:177–90. doi:10.1002/jmr.618.

[24] Berne C, Ducret A, Hardy GG, Brun VY. Adhesins involved in attachment to abiotic

surfaces by gram-negative bacteria 2015;81:340–53. doi:10.1111/j.1365-

2958.2011.07616.x.Mechanisms.

[25] Toole GO, Kaplan HB, Kolter R. Biofilm Formation as Microbial Development. Annu Rev Microbiol 2000;54:49–79.

[26] Monds RD, O’Toole GA. The developmental model of microbial biofilms: ten years of

a paradigm up for review. Trends Microbiol 2009;17:73–87.

doi:10.1016/j.tim.2008.11.001.

[27] Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break

bacterial biofilms. Microbiol Mol Biol Rev 2009;73:310–47.

doi:10.1128/MMBR.00041-08.

[28] Beloin C, Roux A, Ghigo J. Escherichia coli biofilms Escherichia coli biofilms Escherichia coli biofilms 2010:1–31.

[29] Xavier J, Foster KR. Cooperation and conflict in microbial biofilms. Proc Natl Adac Sci USA 2007;104:876–81.

[30] Garrett TR, Bhakoo M, Zhang Z. Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 2008;18:1049–56. doi:10.1016/j.pnsc.2008.04.001.

[31] Orell A, Peeters E, Vassen V, Jachlewski S, Schalles S, Siebers B, et al. Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea.

ISME J 2013;768:1886–98. doi:10.1038/ismej.2013.68.

[32] Sauer K. The genomics and proteomics of biofilm formation. Genome Biol 2003;4:219. doi:10.1186/gb-2003-4-6-219.

[33] Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated

communities. Annu Rev Microbiol 2002;56:187–209.

doi:10.1146/annurev.micro.56.012302.160705.

[34] Ducret A, Valignat M, Mouhamar F, Mignot T, Theodoly O. Wet-surface – enhanced ellipsometric contrast microscopy identi fi es slime as a major adhesion factor during bacterial surface motility. PNAS 2012;109:2–7. doi:10.1073/pnas.1120979109/- /DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1120979109.

[35] Zhao K, Tseng BS, Beckerman B, Jin F, Gibiansky ML, Harrison JJ, et al. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature 2013;497:388–91. doi:10.1038/nature12155.

[36] Denny TP. Involvement of Bacterial Polysaccharides in Plant Pathogenesis. Annu Rev Phytopathol 1995;33:173–97.

[37] Guo X, Wang X, Liu J. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation. Sci Rep 2016;6:28391. doi:10.1038/srep28391.

[38] Harz M, Rösch P, Peschke K-D, Ronneberger O, Burkhardt H, Popp J. Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and

dependence on their cultivation conditions. Analyst 2005;130:1543–50.

doi:10.1039/b507715j.

[39] Harz M, Kiehntopf M, Stöckel S, Rösch P, Straube E, Deufer T, et al. Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro-Raman spectroscopy. J Biophotonics 2009;2:70–80. doi:10.1002/jbio.200810068.

[40] Chan J, Winhold H, Corzett M, Ulloa J, Cosman M, Balhorn R, et al. Monitoring Dynamic Protein Expression in Living E. Coli. Bacterial Cells by Laser Tweezers Raman Spectroscopy. Cytometry A 2007;71:468–74. doi:10.1002/cyto.a.

the chemical composition of single bacterial cells by confocal Raman microspectroscopy. Anal Chem 2000;72:5529–34. doi:10.1021/ac000718x.

[42] Ivleva NP, Wagner M, Szkola A, Horn H, Niessner R, Haisch C. Label-free in situ SERS imaging of biofilms. J Phys Chem B 2010;114:10184–94. doi:10.1021/jp102466c.

[43] Gao M, Zheng H, Ren Y, Lou R, Wu F, Yu W. A crucial role for spatial distribution in bacterial quorum sensing. Nat Publ Gr 2016:1–10. doi:10.1038/srep34695.

[44] Parsek MR, Greenberg EP. Sociomicrobiology: The connections between quorum sensing and biofilms. Trends Microbiol 2005;13:27–33. doi:10.1016/j.tim.2004.11.007.

[45] Miller MB, Bassler BL. Quorum Sensing in Bacteria. Annu Rev Microbiol 2001;55:165– 99. doi:10.1146/annurev.micro.55.1.165.

[46] Dokukin ME, Guz N V., Gaikwad RM, Woodworth CD, Sokolov I. Cell surface as a fractal: Normal and cancerous cervical cells demonstrate different fractal behavior of surface adhesion maps at the nanoscale. Phys Rev Lett 2011;107:1–4. doi:10.1103/PhysRevLett.107.028101.

[47] Barnard L, Pathologist F, Ash EC, Biologist F, Division F, Health F. Distribution of Xylella fastidiosa in Oaks Florida and its association with growth decline in Quercus laevis. Plant Dis 1998.

[48] Simpson AJ, Reinach FC, Arruda P, Abreu FA, Acencio M, Alvarenga R, et al. The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. Nature 2000;406:151–9. doi:10.1038/35018003.

[49] Marques LLR, Ceri H, Manfio GP, Reid DM, Olson ME. Characterization of Biofilm

Formation by Xylella fastidiosa In Vitro. Plant Dis 2002;86:633–8.

doi:10.1094/PDIS.2002.86.6.633.

[50] Chagas CM, Rossetti V, Beretta MJG. Electron-Microscopy Studies of a Xylem-Limited Bacterium in Sweet Orange Affected with Citrus Variegated Chlorosis Disease in Brazil. J Phytopathol Zeitschrift 1992;134:306–12. doi:10.1111/j.1439-0434.1992.tb01238.x.

[51] Coletta-Filho H Della. Diversidade e estrutura genética de populações de Xylella fastidiosa analisada atrav´s de RAPD e VNTR. 2002.

[52] Alves E. Xylella fastidiosa –. 2003.

[53] Roper MC, Greve LC, Labavitch JM, Kirkpatrick BC. Detection and visualization of an exopolysaccharide produced by Xylella fastidiosa in vitro and in planta. Appl Environ Microbiol 2007;73:7252–8. doi:10.1128/AEM.00895-07.

[54] Sahoo PK, Janissen R, Monteiro MP, Cavalli A, Murillo DM, Merfa MV, et al. Nanowire arrays as cell force sensors to investigate adhesin-enhanced holdfast of single cell

bacteria and biofilm stability. Nano Lett 2016:acs.nanolett.6b01998.

doi:10.1021/acs.nanolett.6b01998.

[55] Taiz L, Zeiger E, Moller IM, Murphy A. Plant Physiology and Development. vol. 117. 2015. doi:10.3119/0035-4902-117.971.397.

[56] Buchanan BB, Gruissem W, Jones RL. Biochemistry and molecular biology of plants. 2002.

[57] Diggle SP, Allen RJ, Gordon V. Role of Multicellular Aggregates in Biofilm Formation. Am Soc Microbiol 2016;7:1–11. doi:10.1128/mBio.00237-16.

[58] Caserta R, Takita M a., Targon ML, Rosselli-Murai LK, De Souza a. P, Peroni L, et al. Expression of xylella fastidiosa fimbrial and afimbrial proteins during biofilm formation. Appl Environ Microbiol 2010;76:4250–9. doi:10.1128/AEM.02114-09.

[59] Mathur AB, Collinsworth AM, Reichert WM, Kraus WE, Truskey G a. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as

determined by atomic force microscopy. J Biomech 2001;34:1545–53.

doi:10.1016/S0021-9290(01)00149-X.

[60] Dao M, Lim CT, Suresh S. Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 2003;51:2259–80. doi:10.1016/j.jmps.2003.09.019.

[61] Bausch a R, Möller W, Sackmann E. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys J 1999;76:573–9. doi:10.1016/S0006- 3495(99)77225-5.

[62] Hallstrom W, Lexholm M, Suyatin DB, Hammarin G, Hessman D, Samuelson L, et al. Fifteen-piconewton force detection from neural growth cones using nanowire arrays. Nano Lett 2010;10:782–7. doi:10.1021/nl902675h.

[63] Gupta M, Kocgozlu L, Sarangi BR, Margadant F, Ashraf M, Ladoux B. Micropillar substrates: A tool for studying cell mechanobiology. Methods Cell Biol., vol. 125, Elsevier Ltd; 2015, p. 289–308. doi:10.1016/bs.mcb.2014.10.009.

[64] Lim CT, Zhou EH, Li a., Vedula SRK, Fu HX. Experimental techniques for single cell and single molecule biomechanics. Mater Sci Eng C 2006;26:1278–88. doi:10.1016/j.msec.2005.08.022.

[65] Chen J. Nanobiomechanics of living cells : a review Nanobiomechanics of living cells : a review 2014.

[66] Guicciardi S, Balbo A, Sciti D, Melandri C, Pezzotti G. Nanoindentation characterization

of SiC-based ceramics. J Eur Ceram Soc 2007;27:1399–404.

doi:10.1016/j.jeurceramsoc.2006.05.057.

[67] Vinckier A, Semenza G. Measuring elasticity of biological materials by atomic force microscopy. FEBS Lett 1998;430:12–6. doi:10.1016/S0014-5793(98)00592-4.

[68] Tripathy S, Berger EJ. Measuring viscoelasticity of soft samples using atomic force microscopy. J Biomech Eng 2009;131:94507. doi:10.1115/1.3194752.

[69] Benitez R, Toca-herrera JL. Looking at cell mechanics with atomic force microscopy: Experiment and theory. Microsc Res Tech 2014;0. doi:10.1002/jemt.22419.

[70] Dokukin ME, Sokolov I. On the measurements of rigidity modulus of soft materials in nanoindentation experiments at small depth. Macromolecules 2012;45:4277–88. doi:10.1021/ma202600b.

[71] Sokolov I. Atomic force microscopy in cancer cell research. Cancer Nanotechnol., vol. 1, 2007, p. 1–17.

[72] Xu W, Mezencev R, Kim B, Wang L, McDonald J, Sulchek T. Cell Stiffness Is a Biomarker of the Metastatic Potential of Ovarian Cancer Cells. PLoS One 2012;7. doi:10.1371/journal.pone.0046609.

[73] Vadillo-Rodriguez V, Beveridge TJ, Dutcher JR. Surface viscoelasticity of individual gram-negative bacterial cells measured using atomic force microscopy. J Bacteriol 2008;190:4225–32. doi:10.1128/JB.00132-08.

007-4342-7.

[75] Marti O. Measurements of adhesion and pull-off forces with the AFM. Handb. Mod.

Tribol., 2001, p. 617–40.

doi:doi:10.1201/9780849377877.ch17\n10.1201/9780849377877.ch17.

[76] Notbohm J, Poon B, Ravichandran G. Analysis of nanoindentation of soft materials with an atomic force microscope. J Mater Res 2012;27:229–37. doi:10.1557/jmr.2011.252.

[77] Ebenstein DM, Wahl KJ. A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves. J Colloid Interface Sci 2006;298:652–62. doi:10.1016/j.jcis.2005.12.062.

[78] Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature 2014;507:181–9. doi:10.1038/nature13118.

[79] Velve-Casquillas G, Le Berre M, Piel M, Tran PT. Microfluidic tools for cell biological research. Nano Today 2010;5:28–47. doi:10.1016/j.nantod.2009.12.001.

[80] Yi C, Li CW, Ji S, Yang M. Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 2006;560:1–23. doi:10.1016/j.aca.2005.12.037.

[81] Hol FJH, Dekker C. Zooming in to see the bigger picture: Microfluidic and nanofabrication tools to study bacteria. Science (80- ) 2014;346:1251821–1251821. doi:10.1126/science.1251821.

[82] Weibel DB, Diluzio WR, Whitesides GM. Microfabrication meets microbiology. Nat Rev Microbiol 2007;5:209–18. doi:10.1038/nrmicro1616.

[83] Zhang Z, Perozziello G, Boccazzi P, Sinskey AJ, Geschke O, Jensen KF. Microbioreactors for Bioprocess Development. JALA - J Assoc Lab Autom 2007;12:143–51. doi:10.1016/j.jala.2006.10.017.

[84] Tian WC, Finehout E. Microfluidics for biological applications. 2009. doi:10.1007/978- 0-387-09480-9.

[85] Sia SK, Whitesides GM. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 2003;24:3563–76. doi:10.1002/elps.200305584.

[86] Cheung LS-L, Zheng X, Wang L, Baygents JC, Guzman R, Schroeder J a, et al. Adhesion dynamics of circulating tumor cells under shear flow in a bio-functionalized

microchannel. J Micromechanics Microengineering 2011;21:54033. doi:10.1088/0960- 1317/21/5/054033.

[87] Wu Z, Nguyen NT. Convective-diffusive transport in parallel lamination micromixers. Microfluid Nanofluidics 2005;1:208–17. doi:10.1007/s10404-004-0011-x.

[88] Li PCH. Microfluidic lab-on-a-chip for chemical and biological analysis and discovery. vol. 94. 2005.

[89] Ho CMB, Ng SH, Li KHH, Yoon Y-J. 3D printed microfluidics for biological applications. Lab Chip 2015;15:3627–37. doi:10.1039/C5LC00685F.

[90] Batchelor GK (George K. An introduction to fluid dynamics. Cambridge University Press; 1999.

[91] Kirby B. Micro- and Nanoscale Fluid Mechanics. 2010.

[92] Guyon E, Hullin J-P, Petit L, Mitescu CD. Physical Hydrodynamics. 2001.

[93] Kim J, Park HD, Chung S. Microfluidic approaches to bacterial biofilm formation. Molecules 2012;17:9818–34. doi:10.3390/molecules17089818.

[94] Fromm J. Cellular aspects of wood formation. Springer; 2013.

[95] Ionescu M, Zaini P a., Baccari C, Tran S, da Silva AM, Lindow SE. Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to

surfaces. Proc Natl Acad Sci 2014;111:E3910–8. doi:10.1073/pnas.1414944111.

[96] Caserta R, Picchi SC, Takita MA, Tomaz JP, Lino Pereira WE, Machado M, et al. Expression of Xylella fastidiosa RpfF in citrus disrupts signalling in Xanthomonas citri subsp citri and thereby its virulence. Mol Plant Microbe Interact 2014;27:1241–52. doi:10.1094/MPMI-03-14-0090-R.

[97] Ionescu M, Baccari C, Da Silva AM, Garcia A, Yokota K, Lindow SE. Diffusible signal factor (DSF) synthase RpfF of Xylella fastidiosa is a multifunction protein also required for response to DSF. J Bacteriol 2013;195:5273–84. doi:10.1128/JB.00713-13.

[98] Epshteyn AA, Maher S, Taylor AJ, Holton AB, Borenstein JT, Cuiffi JD. Membrane- integrated microfluidic device for high-resolution live cell imaging. Biomicrofluidics 2011;5:1–6. doi:10.1063/1.3647824.

[99] Vereshchagina E, Glade DM, Glynn M, Ducrée J. Integration of Polycarbonate Cell Culture Membranes Into a Polymer-Based Microfluidic Platform for Rapid Drug. 16th Int. Conf. Miniaturized Syst. Chem. Life Scences, 2012, p. 1855–7.

[100] Neeves KB, Diamond SL. A membrane-based microfluidic device for controlling the

flux of platelet agonists into flowing blood. Lab Chip 2008;8:701.

doi:10.1039/b717824g.

[101] Gaal G, Mendes M, de Almeida TP, Piazzetta MHO, Gobbi ÂL, Riul A, et al. Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing. Sensors Actuators, B Chem 2017;242:35–40. doi:10.1016/j.snb.2016.10.110.

[102] Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming 3D-printing revolution in microfluidics. Lab Chip 2016;16:1720–42. doi:10.1039/C6LC00163G.

[103] Morgan AJL, San Jose LH, Jamieson WD, Wymant JM, Song B, Stephens P, et al. Simple and versatile 3D printed microfluidics using fused filament fabrication. PLoS One 2016;11:1–17. doi:10.1371/journal.pone.0152023.

[104] Orelma H, Teerinen T, Johansson LS, Holappa S, Laine J. CMC-modified cellulose

biointerface for antibody conjugation. Biomacromolecules 2012;13:1051–8.

doi:10.1021/bm201771m.

[105] Laine J, Nummelin S, Kontturi E, Ikkala O, Filpponen I, Rosilo H. Double click technology 2014.

[106] Chen S, Li L, Zhao C, Zheng J. Surface hydration: Principles and applications toward

low-fouling/nonfouling biomaterials. Polymer (Guildf) 2010;51:5283–93.

doi:10.1016/j.polymer.2010.08.022.

[107] Moreau ALD, Janissen R, Santos CA, Peroni LA, Stach-Machado DR, de Souza AA, et al. Highly-sensitive and label-free indium phosphide biosensor for early phytopathogen diagnosis. Biosens Bioelectron 2012;36:62–8. doi:10.1016/j.bios.2012.03.038.

[108] Phosphate-buffered saline (PBS): Cold Spring Harb Protoc 2006;2006:pdb.rec8247. doi:10.1101/pdb.rec8247.

[109] Niza B, Merfa M V, Alencar VC, Menegidio FB, Nunes LR, Machado MA, et al. Draft Genome Sequence of 11399 , a Transformable Citrus-Pathogenic Strain of Xylella fastidiosa 2016;4:9–10. doi:10.1128/genomeA.01124-16.Copyright.

[110] Moran-Mirabal JM. Advanced-Microscopy Techniques for the Characterization of Cellulose Structure and Cellulose-Cellulase Interactions. Cellul. - Fundam. Asp., 2013, p. 1–44. doi:10.5772/2705.

[111] Combs CA. Fluorescence microscopy: A concise guide to current imaging methods. Curr Protoc Neurosci 2010:1–19. doi:10.1002/0471142301.ns0205s00.

[112] Webb DJ, Brown CM. Epi-fluorescence Microscopy. Methods Mol Biol 2013;931:169– 86. doi:10.1007/978-1-62703-056-4.

[113] Hill M. The Handbook of Infrared and Raman characteristic of organic compunds. vol. 4225. 1998. doi:10.1021/ac60283a713.

[114] Chrimes AF, Khoshmanesh K, Stoddart PR, Mitchell A, Kalantar-zadeh K. Microfluidics and Raman microscopy: current applications and future challenges. Chem Soc Rev 2013;42:5880–906. doi:10.1039/c3cs35515b.

[115] Yadav AK, Singh P. A Review on Structure of Glasses by Raman Spectroscopy. RSC Adv 2015;5:67583–609. doi:10.1039/C5RA13043C.

[116] Leite F, Herrmann P. Application of atomic force spectroscopy (AFS) to studies of adhesion phenomena: a review. At Force Microsc Adhes Stud 2005;4243:3–42. doi:10.1163/1568561054352667.

[117] Abramovitch DY, Andersson SB, Pao LY, Schitter G. A tutorial on the mechanisms, dynamics and control of AFM 2007:3488–502.

[118] Wizard N. A practical guide to AFM force spectroscopy and data analysis. JPK Tech Note 2012:1–8.

[119] Instruments JPK. NanoWizard 3 - User Manual 2012.

[120] Noy A, Vezenov D V., Lieber CM. CHEMICAL FORCE MICROSCOPY. Annu Rev Mater Sci 1997;27:381–421. doi:10.1146/annurev.matsci.27.1.381.

[121] Hutter J, Bechhoefer J. Calibration of atomic force microscope tips. Rev Sci Instrum 1993;64:1868. doi:10.1063/1.1143970.

[122] Burnham N a, Chen X, Hodges CS, Matei G a, Thoreson EJ, Roberts CJ, et al. Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 2002;14:1–6. doi:10.1088/0957-4484/14/1/301.

[123] Hutter JL, Bechhoefer J. Calibration of atomic-force microscope tips. Rev Sci Instrum 1993;64:1868–73. doi:10.1063/1.1143970.

[124] Cappella B, Dietler G. Force-distance curves by atomic force microscopy. Surf Sci Rep 1999;34:1–104. doi:10.1016/S0167-5729(99)00003-5.

[125] GNU, Licence GP. Gwyddion – Free SPM (AFM, SNOM/NSOM, STM, MFM, …) data analysis software n.d.

[126] Health NI. ImageJ n.d.

[127] Rupert G. Miller J. Beyond ANOVA, Basics of Applied Statistics (Wiley Series in Probability and Statistics). John Wiley & Sons, Inc.; 1986.

[128] Bewick V, Cheek L, Ball J. Statistics review 9: One-way analysis of variance. Crit Care 2004;8:130–6. doi:10.1186/cc2836.

[129] Hollander M, Wolfe AD, Chicken E. Nonparametric statistical methods. vol. 2. 2014. doi:10.1002/.

[130] Möller J, Emge P, Vizcarra IA, Kollmannsberger P, Vogel V. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces. New J Phys 2013;15. doi:10.1088/1367-2630/15/12/125016.

[131] Rösch, P. Harz, M., Peschke, K., Ronneberger. O., Burkhardt, H., Popp J. Identification of Single Eukaryotic Cells with Micro-Raman Spectroscopy. Biopolymers 2006;82:312– 6. doi:10.1002/bip.

[132] Gatzeva-topalova PZ, Warner LR, Pardi A, Carlos M. Probing Nanostructures of Bacterial Extracellular Polymeric Substances (EPS) versus Culture Time by Raman Microspectroscopy and Atomic Force Microcopy. Biopolymers 2011;18:1492–501. doi:10.1016/j.str.2010.08.012.Structure.

[133] Souza LCA, Wulff NA, Gaurivaud P, Mariano AG, Virgílio ACD, Azevedo JL, et al. Disruption of Xylella fastidiosa CVC gumB and gumF genes affects biofilm formation