• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número3"

Copied!
5
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Protective

effect

of

Rheum

turkestanikum

root

against

doxorubicin-induced

toxicity

in

H9c2

cells

Azar

Hosseini

a,∗

,

Arezoo

Rajabian

b

aPharmacologicalResearchCenterofMedicinalPlants,SchoolofMedicine,MashhadUniversityofMedicalSciences,Mashhad,Iran

bDepartmentofPharmacology,SchoolofMedicine,MashhadUniversityofMedicalSciences,Mashhad,Iran

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15October2015 Accepted7February2016 Availableonline26March2016

Keywords: Apoptosis Cardioprotective Doxorubicin H9c2

Lipidperoxidation Reactiveoxygenspecies

a

b

s

t

r

a

c

t

Doxorubicinisachemotherapydrugbutitsclinicalusingislimitedbecauseofitscardiotoxicity. Reac-tiveoxygenspeciesplayanimportantroleinthepathologicalprocess.Theaimofthisstudyistoevaluate theprotectiveeffectofRheumturkestanicumJanisch.,Polygonaceae,againstdoxorubicin-induced apo-ptosisanddeathinH9c2cells.ThecellswereincubatedwithdifferentconcentrationsofR.turkestanicum

extractandN-acetylcysteineaspositivecontrolfor2h,followedbyincubationwith5␮Mdoxorubicin

for24h.CellviabilityandapoptoticinductionweredeterminedbyusingMTTandPIassays,respectively. Thelevelofreactiveoxygenspeciesandlipidperoxidationwasmeasuredbyfluorimetricmethods. Doxo-rubicinsignificantlydecreasedcellviabilitywhichwasaccompaniedbyanincreaseinROSproduction andlipidperoxidation.PretreatmentwithR.turkestanicumincreasedtheviabilityofcardiomyocytesand coulddecreaselipidperoxidationandreactiveoxygenspeciesgeneration.Also,R.turkestanicum atten-uatedapoptoticinduction.N-acetylcysteineat100␮Mreducedthelevelsofreactiveoxygenspecies

andlipidperoxidation.But,treatingH9c2cellswithN-acetylcysteinedidlittletoprotectH9c2cellsfrom doxorubicin-inducedcelldeath.R.turkestanicumexertsprotectiveeffectagainstoxidativestress-induced cardiomyocytesdamage.OurfindingsshowedthatR.turkestanicumcouldexertthecardioprotective effectsagainstdoxorubicin-inducedtoxicitypartlybyanti-apoptoticactivity.Also,N-acetylcysteine pre-ventedoxidativestressviareductionofreactiveoxygenspeciesandlipidperoxidation.N-acetylcysteine inducedlessprotectiveeffectsthanR.turkestanicumextractagainstdoxorubicin-inducedcytotoxicity.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Doxorubicin(DOX)asaneffectivechemotherapydrughas

seri-ousside effectssuchasdilatedcardiomyopathy andcongestive

heartfailure(Turakhiaetal.,2007).Therefore,usingthisdrugmust belimited.ThemechanismsofDOX-inducedcardiotoxicityarenot completelyunderstood,butmostevidencesindicatethatthe gen-erationofreactiveoxygenspecies(ROS)isinvolved(Bryantetal., 2007).IncreasedlevelofROSleadstoproteinandlipid

peroxida-tion,DNA damageand irreversiblecelldamage(Ghorbanietal.,

2015; Asadpour et al., 2014). ROS can directly impair contrac-tilefunction,activatehypertrophysignalingpathways,stimulate cardiac fibroblast proliferation and induce extracellular matrix remodeling(TakimotoandKass,2007;Tsutsuietal.,2011). Exces-siveROSalsocauseaccumulationofintracellularCa2+incardiac cellswhichincreasesthemitochondrialpermeabilityandleadsto

∗ Correspondingauthor.

E-mail:hoseiniaz@mums.ac.ir(A.Hosseini).

thereleaseofcytochromecintothecytoplasmandthefollowing apoptoticcascades(Pacheretal.,2001).Interestingly,some

nat-uralfoodshavebeenreportedtocontainsubstantialamountsof

antioxidantsandfreeradicalscavengingagents.Thesecompounds

diminishsomeside effectsof chemotherapeuticagents on

nor-malcellsbyreducingtheirgenotoxicity(Bryantetal.,2007).H9c2 myoblasts,aratembryoniccellline,whichhastheabilityto

dif-ferentiatebetweena skeletal orcardiac musclephenotype,can

beinstrumental in understanding DOXcytotoxicity in different

stages(Brancoetal.,2012).Therecent studieshaveshownthat someoftheherbsactagainstoxidativeinjury-related cardiotoxic-ity.Rheumspecies,Polygonaceae,havealonghistoryasmedicinal plantsintraditionalChinesemedicine.Themainactiveingredients oftheRheumspeciesareaseriesofanthraquinones,dianthrones,

glycosides and tannins. The anthraquinone derivatives include

emodin,rhein,chrysophanol,physcion,alizarin,citreorosein,and aloe-emodin(DorseyandKao,2007).R.turkestanicumJanisch.isa plantthatgrowswidelyincentralAsiaandalsoinnortheastofIran.

Traditionally, people use roots of R. turkestanicum as an

anti-diabetic and anti-hypertensive as well as anticancer agent

http://dx.doi.org/10.1016/j.bjp.2016.02.004

(2)

(DorseyandKao,2007).Recentstudieshaveshownotherspeciesof

RheumsuchasR.undulatumiscontaininganti-oxidantcompounds.

Rhapontigenin and rhaponticin are isolated from R. undulatum

scavengeROS,the1,1-diphenyl-2-picrylhydrazyl(DPPH)radical,

andhydrogenperoxide(H2O2)(Zhangetal.,2007).Also,these

com-poundsdecreasemembranelipidperoxidationandcellularDNA

damage,whicharethemaintargetsofoxidativestress-induced

cel-lulardamage(Zhangetal.,2007).Therecentstudyshowedsome

ofisolatedanti-oxidantcompoundsfromRheumspeciessuchas

R. emodiprotected H9c2 cells against H2O2 (Chai et al., 2012). Inthis study,theprotective effectof hydro-alcoholicextract of

R.turkestanicumonDOX-inducedcardiotoxicitywasevaluatedfor firsttime.

Materialandmethods

Reagents

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT),

thiobarbituricacid(TBA),2,7-dichlorofluorescindiacetate (DCFH-DA),propidiumiodide(PI),N-acetylcysteine(NAC),sodiumcitrate

and Triton X-100 were purchased from Sigma (St. Louis, MO,

USA).High-glucoseDulbecco’sModifiedEaglesMedium(DMEM),

penicillin-streptomycinand fetal bovineserumwere purchased

fromGibco.Trichloroaceticacid(TCA)andmalondialdehyde

bis-(dimethylacetal)(MDA)wereobtainedfromMerck(Darmstadt,

Germany).

Preparationofextracts

TherootofRheumturkestanicum Janisch.,Polygonaceae,was

collected from Chenar, a village in Zavin Rural District, Kalat

County,RazaviKhorasanProvince,Iran.Theplantwasidentified byM.R.Joharchi,fromFerdowsiUniversityofMashhadHerbarium.

Voucherspecimen(No.21377)wasdepositedinFerdowsi

Univer-sityofMashhadHerbarium.DriedR.turkestanicumroot(20g×3)

wasgroundintofinepowderandthen 50gofthispowderwas

subjectedtoextractionwith70%ethanolinaSoxhletapparatusfor 48h.Thehydro-alcoholicextractwasthendriedonawaterbath andkeptfrozeninlessthan−18◦Cforthefollowinguse.Theyield ofextractwas19%(w/w).Theextractwasdissolvedin dimethyl-sulfoxide(DMSO)toafinalconcentrationof50mg/mlbeforebeing usedincytotoxicityandapoptosisassays.

Cellculture

Rat heart cell line H9c2 wasobtained from American Type

Culture Collection (ATCCCRL-1446)and maintainedat 37◦C in

ahumidifiedatmospherecontaining5%CO2.Thecellswere

cul-turedinDMEMsupplemented with10%fetalbovineserumand

100units/mlpenicillinand100␮g/mlstreptomycin.Forthe

exper-iments,theywereseededin96-welland 24-wellcultureplates

forMTT/ROSandMDAassays,respectively.Forapoptosisassay,

cellswereseededat100,000/wellina24-wellplate.Alltreatments werecarriedoutintriplicate.Thecellswerepretreatedwithextract

(6–200␮g/ml)for2handthenincubationwascontinuedinthe

presenceoftheextractwith5␮Mdoxorubicinfor24h.Also,NAC

wasappliedaspositivecontrolat10and100␮M.

Cellviability

The cell viability was determined using a modified

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay as

describedpreviously(Mosmann,1983;Malichetal.,1997).Briefly,

MTTsolutioninphosphate-bufferedsaline(5mg/ml),wasadded

toeach wellatfinalconcentrationof0.05%.After3h,the

form-azanprecipitatewasdissolvedinDMSO.Theabsorbanceat570

and620nm(background)wasmeasuredusingaStatFAX303plate

reader.Theexperimentwascarriedoutintriplicate.

Lipidperoxidationassay

TheleveloflipidperoxidationwasestimatedbymeasuringMDA whichistheendproductoflipidperoxidation.Attheendof incu-bation,thecellswerescrapedandcentrifugedat13,000×gat4◦C for30min(BuegeandAust,1978).Then,400␮lofTCA(15%)and

800␮lofTBA(0.7%)wereaddedto500␮lofcellsamples.The

mix-turewasvortexedandthenheatedfor40mininaboilingwater

bath.Then,200␮lofthesamplewastransferredto96-wellplate

andthefluorescenceintensitywasreadwithexcitation/emission of480/530nm.Theexperimentwascarriedoutintriplicate.

Measurementofreactiveoxygenspecies

IntracellularROSlevelwasevaluatedusingafluorescentprobe,

DCF-DA (Wu and Yotnda,2011). Atthe end of incubation, the

cellsweretreated(30min)withDCFH-DA(10␮M)at4◦Cinthe

dark.Then,thefluorescenceintensitywasdetectedwith

excita-tion/emissionof485/530nm.Theexperiment wasperformedin

triplicate.

Apoptosis

ApoptoticcellsweredetectedbyusingPIstainingofthetreated

cellsfollowedbyflow cytometrytodetecttheso-calledsub-G1

peak.Briefly,H9c2cellswereculturedovernightina24-wellplate andpretreatedbyR.turkestanicumfor4handthentreatedwith DOXfor24h.Floatingandadherentcellswerethenharvestedand incubatedat4◦Covernightinthedarkwith500lofahypotonic buffer(50␮g/mlPIin0.1%sodiumcitrateplus0.1%TritonX-100).

Theexperimentwascarriedoutintriplicate(Nicolettietal.,1991).

Statistics

Alldatawereexpressedasmean±SEM.Statisticalanalysiswas performedusingonewayanalysisofvariance(ANOVA)followedby Tamhane’sT2posthoctest.Differenceswereconsideredsignificant atp<0.05.

Results

EffectofDOXoncellviability

Incubation ofthecells withdifferent concentrationsof DOX

(2.5–20␮M) showed that the cell viability reduced in a dose

dependentmanner(Fig.1).

EffectofR.turkestanicumextractoncellviability

Incubationwith6␮MDOXsignificantlydecreasedcellviability

to55±4.5%ofcontrol(p<0.001).Pretreatmentwith12–200␮g/ml

ofR. turkestanicum couldincrease theviabilityof H9c2cellsto 71±0.68% (p<0.05), 74.6±2.5% (p<0.01), 79±1.3% (p<0.001), 84±3.6%(p<0.001)and 88±1.3%(p<0.001) ofcontrol, respec-tively(Fig.2).However,atdoseof6␮g/ml,R.turkestanicumwas

notabletoprotectH9c2cellsagainstDOX-inducedcytotoxicity.

AlsopretreatmentofcellswithNACatdosesof10and100␮M,

protectedcellsagainstDOX(5␮M)atdoseof100␮M(69±1.8%,

(3)

0 20 40 60 80 100 120

20 10

5 2.5

Cont

Cell viability (% of control)

∗∗∗

∗∗∗ ∗∗∗

Concentration of DOX (µM)

Fig.1.Dose–responsecurveofDOXonviabilityofH9c2cells.Thecellsweretreated withdifferentconcentrations(2.5–20␮M)ofDOXfor24h.Thecellviabilitywas quantitatedbyMTTassay.Resultsaremean±SEMfromthreeindependent experi-ments.***p<0.001,*p<0.05versuscontrol.

0 20 40 60 80 100 120

Cell

viability

(%

of

control)

Concentration (µg/ml)

Cont DOX

NAC10µMNAC100µM

6 12 25 50

100 200 ###

∗∗∗ ∗∗ ∗

∗∗∗ ∗∗∗

DOX (5µM)

Fig.2.EffectofRheumturkestanicumextractandNAC(positivecontrol)on via-bility of H9c2cells. The cells were pretreated with different concentrations (25–200␮g/ml)oftheextractfor2h,thenexposedtodoxorubicin(DOX)for24h. ThecellviabilitywasquantitatedbyMTTassay.Resultsaremean±SEMfrom threeindependentexperiments.###p<0.001versuscontrol,*p<0.05,**p<0.01and

***p<0.001versusDOX.

EffectofR.turkestanicumonROSproduction

Asexpected,DOXcausedasignificantincreaseinthelevelof ROS inH9c2 cells (217±4.6% ofcontrol, p<0.001).The extract

at concentrations of 25, 50, 100 and 200␮g/ml was able to

decreaseintracellularROSlevelto186±5.2%(p<0.01),171±4.6% (p<0.001),146±1.1%(p<0.001)and132±2.6%(p<0.001)of con-trol,respectively(Fig.3).Also,NACatdoseof100␮Msignificantly

decreasedROSproduction(165±2.3%,p<0.001)(Fig.3).

EffectofR.turkestanicumextractonMDAlevel

The level of lipid peroxidationwas evaluated by measuring

of MDA level, which is the end product of lipid peroxidation.

As shown in Fig. 4, exposure of the cells to DOX resulted

in a significant increase of MDA level (168±6.5%, p<0.001)

as compared to control cells cultured in the absence of DOX

(100±1.3%). The content of MDA was significantly decreased

in the cells pretreated with 25␮g/ml (137±1.5%, p<0.01), 50␮g/ml(129±2.1%,p<0.001),100␮g/ml(117±3.3%,p<0.001), or200␮g/ml(110±4.1%,p<0.001)ofR.turkestanicum.Also,NAC

0 50 100 150 200 250

200 100 50 25 NAC100µM DOX

Cont

RO

S

(% of

con

tr

ol)

###

∗∗ ∗∗∗

∗∗∗ ∗∗∗

DOX (5µM)

∗∗∗

Fig.3.TheeffectsofRheumturkestanicumextractandNAC(positivecontrol)on intracellularROSlevelofunderdoxorubicintreatmentinH9c2cells.Thecellswere pretreatedwithdifferentconcentrations(25–200␮g/ml)oftheextractfor2h,then exposedtodoxorubicin(DOX)for24h.Resultsaremean±SEMfromthree inde-pendentexperiments.###p<0.001versuscontrol,**p<0.01and***p<0.001versus

DOX.

0 40 80 120 160 200

200 100 50 25 NAC100µM DOX

Cont

MD

A

(%

of

co

nt

rol)

DOX (5µM)

###

∗∗ ∗∗∗

∗∗∗ ∗∗∗

∗∗∗

Fig.4.TheeffectsofRheumturkestanicumextractandNAC(positivecontrol)on MDAcontentunderdoxorubicintreatmentinH9c2cells.Thecellswerepretreated withdifferentconcentrationsoftheextract(25–200␮g/ml)for2h,thenexposedto 5␮Mdoxorubicinandincubatedfor24h.Resultsarethemeans±SEMfromthree independentexperiments.###p<0.001versuscontrol,**p<0.01and***p<0.001

versusDOX.

atdoseof100␮MsignificantlydecreasedMDAcontent(120±2.8%,

p<0.001)(Fig.4).

EffectofR.turkestanicumonapoptoticcelldeath

TheproportionofapoptoticcellswasmeasuredwithPIstaining

ofDNAfragmentationbyflowcytometry.Theextractinduceda

sub-G1peak(oneofthereliablebiochemicalmarkersofapoptosis) inflowcytometryhistogramoftreatedcellscomparedtocontrol (Fig.5).

Discussion

Our findings showed doxorubicin increased cell death, ROS

generation, MDA production and induced apoptotic cell death.

R.turkestanicumdecreasedcytotoxiceffectsofdoxorubicinin car-diomyoblast cells. The extract increased cell viability, reduced

ROS and MDA production. Also, NAC as positive control,

pro-tected the cells against DOX via reduction of ROS and MDA

levels.

DOX,asananthracyclineantibiotic,hasbeenused incancer

therapy for three decades. However,the clinicaluseof DOX is

limitedbecauseofitincreasedriskofcardiotoxicity(Wenckeretal., 2003;Xinetal.,2009).Inaddition,DOXaffectonspecificenzymes,

(4)

512 64 64

0 0 0

100 101 Gm: 28.20 CV: 67.59 [0-637] 216

Gm: 10.51 CV: 60.12 [0-592] 7265

Gm: 7.78 CV: 66.28 [0-519] 4018

Gm: 6.98 CV: 68.24 [0-540] 6087 (60.9%) (2.2 %)

Gm: 11.09 CV: 51.73

[0-540] 4827(48.3 %) (40.2 %) (72.7%)

M1

FL2-H FL2-H FL2-H

M1 M1

M1 M1

M1

Control (2.2%) DOX (72.7%) 25µg/ml (60.9%)

50µg/ml (48.3%) 100µg/ml (40.2%)

Gm: 66.99 CV: 21.85 [0-665] 5397 (27.0 %)

200µg/ml (27%)

102 103 100

101 102 103

64

0

100 101 102 103

64

0

512

0 100 101 102 103

100 101 102 103

100 101 102 103 104

Fig.5.TheeffectoftheR.turkestanicumextractonapoptosisunderdoxorubicintreatmentinH9c2cellsusingPIstainingandflowcytometry.Resultsarethemeans±SEM fromthreeindependentexperiments.###p<0.001versuscontrol,**p<0.01and***p<0.001versusDOX.

accumulationofthesedefectsmayultimatelyresultinirreversible cardiacfailure(Tokarska-Schlattneretal.,2006).Themain

mech-anismof DOX-inducedcardiotoxicity is production ofROS as a

derivativeoftheDOXmetabolism(Liuetal.,2009;Zhangetal., 2009). However,superoxideradicals are involved in other ROS andgeneratehydroxylradicalandhydrogenperoxide(Bastetal., 2007).Cardiactissueissensitivetooxidativedamagebecauseof itshighoxidativemetabolismandlowantioxidantdefensesinthis organcomparedwithothers(Pintoetal.,1986;Shug,1987).Inthe presentstudyH9c2cellswereusedasapharmacologicalmodelto evaluatethepotentialcardioprotectiveeffectofR.turkestanicum

against doxorubicin. The results showed that R. turkestanicum

hasprotectiveeffect onH9c2cells against DOX-induced

oxida-tivestress.H9c2cells aremorphologicallysimilar toimmature

embryoniccardiomyocytes.Consideringthatthesecellspreserve

electricaland hormonalsignalpathwaysfoundin adultcardiac

cells (Sheng et al.,2010), theyare a usefulmodel for studying

oxidativestress-inducedcardiomyocytedamage(Winsteadetal.,

2005).Inthismodel,DOXsignificantlyincreasedlipid peroxida-tionandinducedtheapoptoticrate.Thesechangesaresimilarto theDOX-induceddeleteriouseffectsonnormalcardiaccellswhich leadtothelossofcardiomyocytesviability.Accordingtocurrent

reports, generatingROS by DOX causes mitochondrial damage,

whichmayleadtocardiomyocyteapoptosis,necrosis,ordeath.

Thestudieshave shown,somenatural substances,suchas

cur-cumin,naringenin-7-O-glucoside,andplantainosideDprevented DOX-inducedmitochondrialinjuriesincardiomyocytes(Kimetal., 2007;Hosseinzadehetal.,2011).Inourstudy,weusedDCFH-DAas anintracellularmethodofROSdetection.Theresultsdemonstrated thatR.turkestanicumcansignificantlyreducetheintracellularROS

production byDOX in H9c2cells. We alsomeasuredlipid

per-oxidation(MDAformation)inH9c2cells.ThereductionofMDA

contentsuggestedthatR.turkestanicumcanattenuatethe oxida-tivestressinducedbyDOXinH9c2cells.AlsoresultsshowedNAC aspotentanti-oxidantprotectedcellsagainstDOXviareductionof oxidative-stress.TherecentstudieshaveshownNACinhibitedROS

production,lipidperoxidation,andrestoredantioxidantenzyme

activitiesbuthadmodesteffectontheprotectionofDOX-induced

cardiaccelldeathascomparedtoothernaturalsourcesof antiox-idants(Shietal.,2009).NACinducedlessprotectiveeffectsthan

R.turkestanicumextractagainstDOX-inducedcytotoxicity. How-everprotectiveeffectsofextractmaybemediatedviamechanisms similartoNAC.

Conclusion

ThisstudyshowsthatR.turkestanicumisanovelpotent pro-tectiveagentagainstDOX-inducedcardiotoxicity,theprotective effectsmaybeduetoitsantioxidantproperties.Thiseffectis cor-relatedwithreducingoxidativestressandinhibitionofapoptosis

induction. Butmore investigations are needed toelucidate the

probableunderlyingmechanismsofthesetherapeuticeffects.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare

thatnoexperimentswereperformedonhumansoranimalsfor

thisstudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat nopatientdataappearinthisarticle.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgement

ThisworkwassupportedbyToxicologyMedicalResearch

(5)

References

Asadpour,E.,Ghorbani,A.,Sadeghnia,H.R.,2014.Water-solublecompoundsof let-tuceinhibitDNAdamageandlipidperoxidationinducedbyglucose/serum deprivationinN2acells.ActaPol.Pharm.71,409–413.

Bast,A.,Haenen,G.R.,Bruynzeel,A.M.,VanderVijgh,W.J.,2007.Protectionby flavonoidsagainstanthracyclinecardiotoxicity:fromchemistrytoclinicaltrials. Cardiovasc.Toxicol.7,154–159.

Branco,A.F.,Sampaio,S.F.,Moreira,A.C.,Holy,J.,Wallace,K.B.,Baldeiras,I.,Oliveira, P.J.,Sardão,V.A.,2012.Differentiation-dependentdoxorubicintoxicityonH9c2 cardiomyoblasts.Cardiovasc.Toxicol.12,326–340.

Bryant,J.,Picot,J.,Levitt,G.,Sullivan,I.,Baxter,L.,Clegg,A.,2007. Cardioprotec-tionagainstthetoxiceffectsofanthracyclinesgiventochildrenwithcancer:a systematicreview.HealthTechnol.Assess.11,1–84.

Buege,J.A.,Aust,S.D.,1978.Microsomallipidperoxidation.MethodsEnzymol.53, 302–310.

Chai,Y.Y.,Wang,F.,Li,Y.L.,Liu,K.,Xu,H.,2012.Antioxidantactivitiesofstilbenoids fromRheumemodiWall.Evid.BasedComplement.Altern.Med.,603678. Dorsey,J.F.,Kao,G.D.,2007.Aloe(-Emodin)forcancer?Morethanjustacomforting

salve.CancerBiol.Ther.6,89–90.

Ghorbani,A.,Asadpour,E.,Sadeghnia,H.R.,2015.Mechanismofprotectiveeffect oflettuceagainstglucose/serumdeprivation-inducedneurotoxicity.Nutr. Neu-rosci.18,103–109.

Hosseinzadeh,L.,Behravan,J.,Mosaffa,F.,Bahrami,G.,Bahrami,A.,Karimi,G.,2011. Curcuminpotentiatesdoxorubicin-inducedapoptosisinH9c2cardiacmuscle cellsthroughgenerationofreactiveoxygenspecies.FoodChem.Toxicol.49, 1102–1109.

Kim,D.S.,Woo,E.R.,Chae,S.W.,Ha,K.C.,Lee,G.H.,Hong,S.T.,Kwon,D.Y.,Kim, M.S.,Jung,Y.K.,Kim,H.M.,Kim,H.K.,Kim,H.R.,Chae,H.J.,2007.Plantainoside Dprotectsadriamycin-inducedapoptosisinH9c2cardiacmusclecellsviathe inhibitionofROSgenerationandNF-␬Bactivation.LifeSci.80,314–323. Liu,Z.,Song,X.D.,Xin,Y.,Wang,X.J.,Yu,H.,Bai,Y.Y.,Liu,J.H.,Zhang,C.N.,Hui,R.T.,

2009.Protectiveeffectofchrysoeriolagainstdoxorubicin-induced cardiotoxic-ityinvitro.Chin.Med.J.(Engl.)122,2652–2656.

Malich,G.,Markovic,B.,Winder,C.,1997.ThesensitivityandspecificityoftheMTS tetrazoliumassayfordetectingthein-vitrocytotoxicityof20chemicalsusing humancelllines.Toxicology124,179–192.

Mosmann,T.,1983.Rapidcolorimetricassayforcellulargrowthandsurvival: appli-cationtoproliferationandcytotoxicityassays.J.Immunol.Methods65,55–56. Nicoletti,I.,Migliorati,G.,Pagliacci,M.C.,Grignani,F.,Riccardi,C.,1991.Arapid andsimplemethodformeasuringthymocyteapoptosisbypropidiumiodide stainingandflowcytometry.J.Immunol.Methods139,271–279.

Pacher,P.,Csord ´as,G.,oczky,H.G.,2001.MitochondrialCa2+signalingandcardiac apoptosis.Biol.SignalsRecept.10,200–223.

Pinto, J.,Raiczyk, G.B.,Huang, Y.P.,Rivlin,R.S., 1986.New approaches tothe possiblepreventionofsideeffectsofchemotherapybynutrition.Cancer58, 1911–1914.

Sheng,R.,Gu,Z.L.,Xie,M.L.,Zhou,W.X.,Guo,C.Y.,2010.Epigallocatechingallate protectsH9c2cardiomyoblastsagainsthydrogendioxides-inducedapoptosis andtelomereattrition.Eur.J.Pharmacol.641,199–206.

Shi,R.,Huang,C.C.,Aronstam,R.S.,Ercal,N.,Martin,A.,Huang,Y.M.,2009.N-acetyl cysteineamidedecreasesoxidativestressbutnotcelldeathbydoxorubicinin H9c2cardiomyocytes.BMCPharmacol.15,7–15.

Shug,A.L.,1987.Protectionfromadriamycin-inducedcardiomyopathyinrats.Z. Kardiol.76,46–52.

Takimoto,E.,Kass,D.A.,2007.Roleofoxidativestressincardiachypertrophyand remodeling.Hypertension49,241–248.

Tokarska-Schlattner,M.,Zaugg,M.,Zuppinger,C.,Wallimann,T.,Schlattner,U.,2006. Newinsightsintodoxorubicin-inducedcardiotoxicity:thecriticalroleofcellular energetics.J.Mol.CellCardiol.41,389–405.

Tsutsui,H.,Kinugawa,S.,Matsushima,S.,2011.Oxidativestressandheartfailure. Am.J.Physiol.HeartCirc.Physiol.301,H2181–H2190.

Turakhia, S., Venkatakrishnan, C.D., Dunsmore, K., Wong, H., Kuppusamy, P., Zweier,J.L.,Ilangovan,G.,2007.Doxorubicin-induced cardiotoxicity:direct correlationofcardiacfibroblastandH9c2cellsurvivalandaconitase activ-ity with heat shock protein 27. Am. J. Physiol. HeartCirc. Physiol. 293, H3111–H3121.

Wencker,D.,Chandra,M.,Nguyen,K.,Miao,W.,Garantziotis,S.,Factor,S.M.,Shirani, J.,Armstrong,R.C.,Kitsis,R.N.,2003.Amechanisticroleforcardiacmyocyte apoptosisinheartfailure.J.Clin.Invest.111,1497–1504.

Winstead, M., Lucas, K., Dennis, E., 2005. Group IV cytosolic phospholipase A2 mediates arachidonic acid release inH9c2 rat cardiomyocytecells in response to hydrogen peroxide. Prostaglandins Other Lipid Mediat. 78, 55–66.

Wu,D.,Yotnda,P.,2011.Productionanddetectionofreactiveoxygenspecies(ROS) incancers.J.Vis.Exp.57,3357–3361.

Xin,H.,Liu,X.H.,Zhu,Y.Z.,2009.Herbaleonurineattenuatesdoxorubicin-induced apoptosisinH9c2cardiacmusclecells.Eur.J.Pharmacol.612,75–79. Zhang,R.,Kang,K.A.,Piao,M.J.,Lee,K.H.,Jang,H.S.,Park,M.J.,Kim,B.J.,Kim,J.S.,

Kim,Y.S.,Ryu,S.Y.,Hyun,J.W.,2007.RhapontigeninfromRheumundulatum pro-tectsagainstoxidative-stress-inducedcelldamagethroughantioxidantactivity. J.Toxicol.Environ.HealthA70,1155–1166.

Imagem

Fig. 4. The effects of Rheum turkestanicum extract and NAC (positive control) on MDA content under doxorubicin treatment in H9c2 cells
Fig. 5. The effect of the R. turkestanicum extract on apoptosis under doxorubicin treatment in H9c2 cells using PI staining and flow cytometry

Referências

Documentos relacionados

A remarkable increase in the lipid peroxidation levels in the leaves of salt- stressed vinal and a significant decrease in lipid peroxidation in salt-stressed, GB-treated plants

Phase-contrast micrographs of the neuritogenicity of P-19-derived neurons after 18 h of incubation in: (A) P19SM ( ␣ -MEM + 10%, v/v FBS + 10 ␮ M Ara-C) without treatment (control),

methanolic extract, hexane (84.28% spilanthol) and dichloromethane (approximately 100% spilanthol).. fractions on the

sieberi and artemisinin were examined on human umbilical vein endothelial cells using a three-dimensional angiogenesis assay ( in vitro model) and in the chick chorioallantoic

mansoni adult proteins were mainly enriched in Gene Ontology (GO) biological processes such as: metabolic pro- cess (45.5%), cellular process (22.7%), localization (13.6%),

Using GC–MS, phytochemical analyses of the dichloromethane extract showed the presence of triterpenoids and fatty acids, while flavonoids and caffeoylquinic acids were shown to occur

Concerning the diabetic wound healing effect of the methanol extracts of the eight investigated Aloe species, results obtained in the present study suggested that treatment of

Thus, our results demonstrated that increased lipid peroxidation and altered antioxidant defense could be related to the development of oxidative stress and diabetic osteopenia