• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número3"

Copied!
7
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Distribution

of

phytoestrogenic

diarylheptanoids

and

sesquiterpenoids

components

in

Curcuma

comosa

rhizomes

and

its

related

species

Vichien

Keeratinijakal

a,b,∗

,

Sumet

Kongkiatpaiboon

c,∗ aDepartmentofAgronomy,FacultyofAgriculture,KasetsartUniversity,Bangkok,Thailand

bNationalCenterforAgriculturalBiotechnology,KasetsartUniversity,Bangkok,Thailand

cDrugDiscoveryandDevelopmentCenter,ThammasatUniversity(RangsitCampus),Pathumthani,Thailand

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30August2016 Accepted16December2016 Availableonline21March2017

Keywords:

WanChakModLoog Phytochemicals

Phytoestrogen-producingherb Diarylheptanoids

Sesquiterpenoids

a

b

s

t

r

a

c

t

CurcumacomosaRoxb.,Zingiberaceae,aphytoestrogen-producingherbwithvernacularlynamed“Wan ChakModLoog”inThailand,hasbeentraditionallyusedfortreatmentofgynecologicdiseasesandsold asfoodsupplementinthemarket.However,similarrhizomesofitsrelatedspeciesmayleadtothe confusionintheusesofthisplant.Thisstudywasaimedtoinvestigatethephytochemicalconstituentsof differentCurcumaspp.thatusedas“WanChakModLoog”.Characteristicmajorcompoundswereisolated andidentified.Phytochemicalanalysisof45CurcumasamplesrepresentingCurcumasp.,C.latifolia,andC. comosawereanalyzedandcomparedwiththeirphylogeneticrelationshipinferredbyAmplifiedFragment LengthPolymorphismanalysis.PhytoestrogendiarylheptanoidswerefoundinallsamplesofC.comosa

whilesesquiterpenoidsincludinghepatoxiczederonewerefoundinC.latifoliaandCurcumasp.samples. ©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

CurcumacomosaRoxb.,anindigenousmedicinalherb

vernac-ularlynamed “Wan Chak Mod Loog”in Thailand,is recognized

asa phytoestrogen-producingplantbelongingtofamily

Zingib-eraceae(Phupatanapongetal.,2001;Soontornchainaksaengand

Jenjittikul, 2010). Its roots have been used for the treatment

of fluatalence and gynecologic diseases such as premenstrual

syndrome(PMS),abnormalmenstruationand uterinepain.This

plantisconsideredasanactiveconstituentinvarioustraditional

woman drug preparation in South EastAsian countries. It has

estrogenic-likeactivity(Piyachaturawat etal.,1995a,b)andhas

beenextensivelyusedamongmenopausalwomen(Winuthayanon

etal.,2009a).Variouspharmacologicalactivitieshavealsobeen reported,e.g.anti-lipidemic(Piyachaturawatetal.,1995c,1999a), choleretic(Suksamrarnet al., 1997), estrogenic (Winuthayanon etal.,2009a,b;Bhukkhaietal.,2012),uterotroic(Piyachaturawat etal.,1995a),growthsuppressingonmale reproductiveorgans (Piyachaturawatetal.,1998),malefertility(Piyachaturawatetal.,

∗ Correspondingauthors.

E-mails:agrvck@ku.ac.th(V.Keeratinijakal),sumetk@tu.ac.th (S.Kongkiatpaiboon).

1999b), plasma cholesterol reduction (Piyachaturawat et al., 1999a),anti-inflammatory(Jantaratnotaietal.,2006;Sodsaietal., 2007), and anti-oxidant effect (Niumsakul et al., 2007). More-over,inovariectomizedratswithestrogendeficiency,thisplant

could protect bone loss and accelerate human osteoblast

pro-liferation and differentiation (Tantikanlayaporn et al., 2013a,b; Weerachayaphorn et al., 2011), enhance vascular relaxation (Intapadetal.,2009,2012),preventneuronlossandimprove learn-ingandmemoryfunction(Suetal.,2010,2011,2012a,b).

Phytochemical investigationof C. comosa revealed the

pres-enceof sesquiterpenoids(Xu etal., 2008; Qu et al., 2009) and diarylheptanoids(Suksamrarnetal.,2008).Diarylheptanoidsare ofinterestsincetheyexertedestrogenic-likeactivity(Suksamrarn etal.,2008;Winuthayanonetal.,2009a,b).However,itsC.comosa relatedspecies(e.g.C.latifoliaandC.elata)availableinthemarket alsohassimilarshapeofrhizomesandmayleadtotheconfusionin theusesofthisplant.Theinconsistencyofrawmaterialshampered theusage,development,and scientificresearchof theseplants. Therefore,aspecialconsiderationisneededwhenpurchasingthe

samplesfromthemarket.

In general,sesquiterpenoids mayexerta varietyof

pharma-cologicalproperties. However,hexaneextract ofrhizomesfrom C.elatacontaininghighproportionofsesquiterpenezederone(5) causedliverenlargementandscatteredwhitefociovertheorgans

http://dx.doi.org/10.1016/j.bjp.2016.12.003

(2)

V.Keeratinijakal,S.Kongkiatpaiboon/RevistaBrasileiradeFarmacognosia27(2017)290–296 291

atautopsy(Pimkaewetal.,2013).Zederone(5)andwasfoundtobe hepatotoxicinmice.However,itwasalsoisolatedfromC.comosa (Quetal.,2009).Whilethereisaverylargevariationinrhizome

morphologyof“WanChakModLoog”incultivation,the

pheno-typicplasticityofvegetativepartsof“WanChakModLoog”can

leadtothewrongtaxonomicassignment(Soontornchainaksaeng

andJenjittikul,2010).Therefore,thisstudyutilizedAmplified

Frag-mentLengthPolymorphism(AFLP)markerstechniquetoexamine

Curcumasamples(Keeratinijakaletal.,2010)togetherwiththeir morphologicalcharacteristicsandinvestigatedthebioactive con-stituentsofdifferentCurcumaspeciesthatareusedas“WanChak

ModLoog”.

InthecourseofidentifyingthegeneticdiversityofC.comosa

and its related species, the samples were collected from

dif-ferent provenances of Thailand (Keeratinijakal et al., 2010).

Additional samples were collected and 118 accessions were

used to elucidate the phylogenetic relationships.

Correspond-ing plant materials were cultivated under field conditions in

the National Corn and Sorghum Research Center of Kasetsart

Universityin theeast ofThailand.Majorconstituentswere iso-latedandidentified.Afterbeingcultivatedinthesamecondition

and harvested inthesame age,thechemical constituents

phy-toestrogen diarylheptanoids and sesquiterpenoids of different

Curcumasamplewereanalyzed.Theresultscouldidentifythemost productiveplantwithhighcontentsofactivephytoestrogen

con-stituents withnon-toxic compounds.The present papershould

providea basis for furtherpharmaceutical developmentof this plant.

Materialsandmethods

Plantmaterials

Atotalof118accessionsofCurcumaspp.,locallycalled“Wan ChakModLoog”,wascollectedinourpreviousstudy(Keeratinijakal etal.,2010)togetherwithsomeadditionalcollectionsfrom culti-vatedsitesthroughoutThailand.Allsamplesweregrownatthe

National Corn and Sorghum Research Center of Kasetsart

Uni-versity,Pakchong, Nakhon-Ratchasima province,Thailand.AFLP

analysis was conducted in order to identify and elucidate the

phylogeneticrelationships.Thefollowing characteristicsin each accessionwereobserved:plantheight,shapeofmasterrhizome, insidecolorofmasterrhizome,presenceofsessiletubers,presence ofredpathalongthemidrib,inflorescenceandflower morphol-ogy as described in our previous paper (Keeratinijakal et al., 2010).

Chemicals

HPLCgradeacetonitrilewaspurchasedfromFisherScientific (UK).DeionizedwaterwaspurifiedbyWaterProPS(Labconco,MO, USA).Allreagentswereofanalyticalgradeifnotstatedotherwise.

Extractionandisolation

TherhizomesofCurcumasamplesweredriedinanovenat60◦C,

andpulverized.Eachsamplewasstoredinanairtightplastic con-tainerandkeptinthedryplaceuntilused.Thesuccessiveextraction wasdoneby Soxhletextractorusinghexane, ethylacetate, and ethanol,respectively.Eachextractwasfilteredandthesolventwas

evaporatedtodrynessusingrotaryevaporatorandhighvacuum

pump.Fractionationwasdoneoncolumnchromatographyusing

solventmixturesofhexaneandethylacetatewithincreasing polar-ity.EachfractionwasmonitoredwithTLC,combinedandfurther

purifiedwithcolumnchromatography.

Fresh rhizomesof mixed Curcuma sp.and C. latifolia(75kg) yielded6.5kgofdriedcoursepowder.Successiveextractionusing Soxhletextractoryieldedthehexane,ethylacetate,andethanol

extracts of 150.32, 210.75 and 375.69g, respectively. Hexane

extractwassubjectedtocolumnchromatography(Mercksilicagel 60No.107734,particlesize0.063–0.20mm)withsolventmixtures ofhexane–ethyl acetate(ratiofrom10:0to0:10)with increas-ing polarity, yielding seven fractions (CLH1–CLH7) of 2.35mg, 1.87g,25.98g,34.56g,12.85g,28.14g,and47.96g,respectively.

Ethyl acetate extract was subjected to column

chromatogra-phy withsolventmixtures of hexane–ethylacetate (ratio from

10:0 to 0:10), and ethyl acetate–methanol (ratio from 10:0 to

0:10),withincreasingpolarity,yieldingfivefractions(CLA1–CLA5) of 1.45, 15.68, 35.84, 49.70, and 67.73g, respectively. Ethanol

extract was subjectedto column chromatography with solvent

mixturesofhexane–ethylacetate(ratiofrom10:0to0:10),and ethyl acetate–methanol (ratiofrom10:0 to0:10)with increas-ing polarity, yielding six fractions (CLE1–CLE6) of 3.45, 26.78, 28.40, 32.50, 69.25, and 56.76g, respectively. Further

purifica-tion wasdone using column chromatography (Mercksilica gel

60 No. 107734, particle size 0.063–0.20mm). Fraction CLH-3

using hexane–ethyl acetate(95:5) as an eluent yielded

germa-crone (1) (20mg). Fraction CLH-4 using hexane–ethyl acetate (9:1) asaneluent yielded furanodienone(2)(35mg) and curz-erenone(3)(44mg).FractionCLH-4usinghexane–ethylacetate (85:15)asaneluentyieldedcurdione(4)(75mg).Fraction CLH-5usinghexane–ethylacetate(8:2)asaneluentyieldedzederone (5)(7.8mg).

FreshrhizomesofmixedC.comosa(10kg)yieldeddriedcourse

powder of 2kg. Successive extraction using Soxhlet extractor

yieldedthehexane,ethylacetate,andethanolextractsof95.30, 150.10and275g,respectively.Hexaneextractwassubjectedto

columnchromatography (Mercksilicagel60 No.107734,

parti-cle size0.063–0.20mm)withsolventmixtures ofhexane–ethyl

acetate(ratiofrom10:0to0:10)withincreasingpolarity, yield-ingfivefractions(CCH1–CCH5)of2.25mg,0.97g,30.15g,28.45g, and10.55g,respectively.Ethylacetateextractwassubjectedto

columnchromatography withsolventmixturesofhexane–ethyl

acetate(ratiofrom10:0to0:10),andethylacetate–methanol(ratio from10:0to0:10)withincreasingpolarity,yieldedfivefractions (CCA1–CCA5)of2.48,5.46,20.45,32.15,and15.38g,respectively. Ethanolextractwassubjectedtocolumnchromatographywith sol-ventmixturesofhexane–ethylacetate(ratiofrom10:0to0:10),and ethylacetate–methanol(ratiofrom10:0to0:10)withincreasing polarity,yieldingfourfractions(CCE1–CCE5)of4.45,27.16,29.56, and33.54g,respectively.Furtherpurificationwasconductedusing

columnchromatography (Mercksilicagel60 No.107729,

parti-clesizelessthan0.063mm).FractionCCH-4usinghexane–ethyl acetate(75:25)asaneluent,yielded 1,7-diphenyl-(6E)-6-hepten-3-ol(6)(30mg).FractionCCE-3usinghexane–ethylacetate(40:60) asaneluent,yielded1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol(7) (25mg).

NMRandMS:Each purecompoundwasdissolvedin 99.98%

CDCl3 orin99.8%methanol(ca.5mg in0.7ml)andtransferred

into5mmNMRsampletube(Promochem,Wesel,Germany).

Spec-tra wererecorded bytheBrukerTopspinsoftware ona Bruker

Avance 400 spectrometer (Bruker, Rheinstetten, Germany). In

methanol-d4 smallamountsofmethanol-d1 wereusedas inter-nalstandardfor1H(

(3)

1,7-diphenyl-(6E)-6-hepten-3-ol(6)(Suksamrarnetal.,2008),and 1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (7) (Suksamrarn et al., 2008).

Determinationofphytochemicalconstituentscontentsin

Curcumasamples

HPLC was performed on an Agilent 1100 series equipped

withaChemstationsoftware,degasserG1322A,quaternarypump

G1322A,thermoautosamplerG1329/1330A,columnovenG1316A,

anddiodearraydetectorG1315A.Theseparationwascarriedout onaSorbaxreversed-phaseC-18column(250×4.6mmi.d.,5␮m). Mobilephasesystemwas(A)deionizedwaterand(B)acetonitrile. Gradientelutionwasusedbylinearincreasingof mobilephase compositionsfrom50%to90%BinAfor25minand90%BinAfor 5min.Thecolumnwasequilibratedwith50%BinAfor5minprior eachanalysis.Theflow-ratewassetat1ml/minatambient tem-perature.Injectionvolumewas10␮l.Thedetectionwasmonitored at260nm.

EachCurcumasamplewaspreparedfromthreerhizomes cul-tivatedinthesamefieldconditionandageatNationalCornand SorghumResearchCenter.Therhizomesweresliced,driedin60◦C

hot air oven for 20h, ground, and passed through a sieve (60

mesh).Eachsample wasaccurately weighed(10g) and

succes-sivelyextractedwithhexaneandethanol(200mleach)for6husing Soxhletextractor.Theextractwasfilteredandevaporatedto dry-nessusingrotaryevaporator.Thesamplesolutionwaspreparedby accuratelyweighingeachextractanddissolvinginmethanol.Prior totheHPLCinjection,eachsolutionwasfilteredthrougha0.45␮m nylonmembranefilter.

Stocksolutionsofstandardcompounds1–7werepreparedby accuratelyweighinganddissolvingthecompoundsinacetonitrile toobtainthe final concentrationof 1000␮g/ml. Working solu-tionsofstandardcompoundswereobtainedbydilutingthestock standardsolutions withacetonitriletoachievethedesired con-centrations.Calibrationcurves were constructedfromthe peak areaversustheamountofthestandardsbyleastsquareregression acrosstherangeof50–1000␮g/ml.

Resultsanddiscussion

Rhizomesof118Curcumasampleswerecollectedfromvarious

localities of Thailand.Identification wasdone usingthe

ampli-fied fragment length polymorphism (AFLP) markers and their

morphologicalcharacteristicsasdescribedinourpreviousstudy (Keeratinijakaletal.,2010).Phylogenetictreeillustratingthe rela-tionshipamong118accessionsasinferredbyAFLPanalysiswas showninFig.1.Thesampleswereclassifiedintofourmajorclusters, i.e.Curcumaspp.(ClusterI),C.latifolia(ClusterII),C.elata(Cluster III),andC.comosa(ClusterIV).Theclusteringoftheaccessionsbased ongeneticsimilaritydidnotcorrelatewiththeregionoforiginof thesamples(Keeratinijakaletal.,2010).

InthecourseofphytochemicalanalysisofCurcumasamples,

45selectedsamplesrepresentingCurcumasp.,C.latifolia,andC. comosawerecultivatedattheNationalCornandSorghumResearch Center,Thailand.Allsamplesweregrownatthesamecondition

and harvested at theage of 8 months.C. elata, a knownplant

containingtoxiccompoundzederone(5)(Pimkaewetal.,2013), hasbeenneglectedduetoitslowpotentialonfurther

develop-ment.Characteristic majorcompounds wereisolated, andtheir

structureselucidatedbyNMRandMSanalyses.Theyhavebeen

identifiedasgermacrone(1),furanodienone(2),curzerenone(3), curdione(4), zederone (5), 1,7-diphehyl-(6E)-6-hepten-3-ol (6), and1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol(7).Compounds1–5 areclassifiedassesquiterpenoidswhilecompounds6–7are diaryl-heptanoids.

Comparativeanalysisofthemajorcomponentswasdoneusing

high-performanceliquidchromatography(HPLC)technique

cou-pledwithdiodearraydetector(DAD).UV-spectraobtainedfrom DADcouldconfirmthespecificityofanalytes.Onthebasisofthese findings,twoclear-cutphytochemicalaccumulationtrendscould bedistinguished(Fig.2).Diarylheptanoidphytoestrogens6–7were foundinallsamplesofC.comosa(clusterIV)butnotdetectedinC. latifoliaandCurcumasp.(clusterI–III).Sesquiterpenoids1–5were foundinC.latifoliaandCurcumaspp.(clusterI–III)butnotdetected inC.comosa(clusterIV).Aknowntoxiccompoundzederone(5) wasfoundinallsamplesofC.latifoliaandCurcumaspp.butnot

detectedinC.comosa.Compound

1,7-diphenyl-(6E)-6-hepten-3-one (D2) hasnot been analyzedin this study. However, it has

beenfoundtogetherwithcompounds6–7invarioussamplesof

C.comosa(Suksamrarnetal.,2008).

Sesquiterpenoids1–5werenotfoundinC.comosainourstudy. Since“WanChakModLoog”inThailandcanbeassignedinto vari-ousCurcumaspecies,taxonomicidentificationshouldbecarefully doneduetothevariationinmorphologydependingoncultivation andgeographicaldifference(SoontornchainaksaengandJenjittikul, 2010).However,severalcultivatedplantsinThailandwere mis-takenforsimilarplantspeciessuchasCurcumasp.orC.latifolia insteadofC.comosawhichcontainsthetoxiccomponentzederone (5). The recommendation on using correct plant materials for specificmedicinalpurposesandlarge-scaleproductionshouldbe made.

Despitethecomprehensiveoverviewofvariousphytochemical

(4)

V.Keeratinijakal,S.Kongkiatpaiboon/RevistaBrasileiradeFarmacognosia27(2017)290–296 293 Cluster I 1 2 3 4 5 6 8 10 31 32 37 42 43 33 38 36 47 48 49 50 54 55 41 14 91 97 100 101 105 110 115 112 111 114 106 116 103 118 63 76 77 84 80 88 85 89 79 83 18 19 20 21 23 25 30 60 94 107 93 13 24 12 62 71 109 78 102 98 113 34 46 52 57 66 67 72 92 104 56 61 82 81 35 7 9 11 15 26 17 22 28 29 39 44 45 51 58 59 53 64 65 68 69 73 74 75 87 70 90 95 96 108 40 16 27 86 99 117 Cluster II Cluster III Cluster IV C . comosa C . latif olia Curcuma spp . C. elata

Fig.1.Phylogenetictreeillustratingtherelationshipamong118accessionsasinferredbyAFLPanalysis.

1–7in Curcuma sampleswereshown in Table2.However,the methodhasnotbeenvalidatedandfurtheroptimizationto maxi-mizetheseparationandspeedforroutineanalysisisinprogress. Theco-chromatographicallyquantitativeanalyzescouldenablethe comparisonofeachsample.Amongstthesamplestudy,C.comosa variety29gavehighestcontentof1,7-diphenyl-(6E)-6-hepten-3-ol (6)andvariety15gavehighestcontentof 1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol(7)withoutdetectabletoxicsesquiterpenoids 1–5.

“Wan Chak Mod Loog” in the different cultivars of

Thai-land has been assigned to different C. comosa, C. elata, C.

latifolia,andCurcuma sp.(Soontornchainaksaengand Jenjittikul, 2010; Keeratinijakaletal.,2010).Theyhave beenusedas food supplementandThaitraditionalmedicinefortreatmentof

abnor-mality of the uterus and ovarian hormone deficit. The present

study demonstrates the phytoestrogenic diarylheptanoids and

sesquiterpenoids-containingspecieswhichcouldshedsomelight onthecorrectusesoftheseplants.Ourresultscouldbeusedasa

Table1

Calibationcurvesofcompounds(1)–(7).

Compounds Equation Correlationcoefficient(r2)

(5)

V.

Keeratinijakal,

S.

Kongkiatpaiboon

/

Revista

Brasileira

de

Farmacognosia

27

(2017)

290–296

Table2

Percentageofcompounds1–7inCurcumaspp.

Species SampleNo. Content(mg/g)

1 2 3 4 5 6 7

C.comosa 7 – – – – – 10.5321 11.0490

9 – – – – – 13.5346 12.1291

11 – – – – – 11.4672 8.7025

15 – – – – – 13.4491 16.1910

16 – – – – – 13.7456 11.7699

17 – – – – – 12.6640 10.5897

22 – – – – – 10.9100 13.0040

26 – – – – – 9.4777 13.9868

27 – – – – – 10.8922 13.7833

28 – – – – – 11.8533 10.4879

29 – – – – – 17.8707 13.9429

39 – – – – – 11.8671 12.7361

40 – – – – – 13.9232 13.7214

45 – – – – – 10.8725 12.8123

51 – – – – – 10.4936 11.7267

53 – – – – – 7.7451 6.9547

58 – – – – – 8.9132 9.6968

65 – – – – – 12.7290 11.3671

87 – – – – – 10.4617 9.6654

90 – – – – – 9.4295 6.6308

96 – – – – – 10.1766 7.9710

99 – – – – – 12.2783 13.3476

108 – – – – – 11.4772 10.4794

117 – – – – – 12.3013 10.6693

C.latifolia 104 2.8098 0.0096 0.0772 0.0807 11.5061 – –

Curcumasp. 13 1.7880 – – – 13.2415 – –

14 0.8305 – – – 10.6561 – –

21 3.4354 – – – 9.4357 – –

24 0.2527 – – – 2.5481 – –

25 5.7551 – – – 7.9040 – –

30 3.5471 – – – 5.7558 – –

47 2.2337 – – – 11.3616 – –

60 1.4745 – – – 13.2356 – –

63 2.6914 – – – 10.4765 – –

77 5.8431 – 0.0906 0.0799 14.5061 – –

(6)

V.Keeratinijakal,S.Kongkiatpaiboon/RevistaBrasileiradeFarmacognosia27(2017)290–296 295

0.025

0.020

0.015

0.010

0.005

0.000

0.00

2.00

1.50

1.00

0.50

0.00

5.00 10.00 15.00

A

B

20.00 25.00

Minutes 7

6 4

5

2

1 3

AU

AU

30.00 35.00 40.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

Fig.2.HPLCchromatographicfingerprintof(A)Curcumalatifoliaextract(sampleNo.104)and(B)C.comosaextract(sampleNo.44).Compoundsidentification:1(retention time,tR30.7min)germacrone;2(tR23.4min)furanodienone;3(tR21.2min)curzerenone;4(tR19.8min)curdione;5(tR18.4min)zederone;6(tR22.7min)

1,7-diphenyl-(6E)-6-hepten-3-ol;7(tR21.8min)1,7-diphenyl-(4E,6E)-6-heptadien-3-ol.HPLCcondition:Agilent1100series,column:SorbaxRP-C18(250×4.6mmi.d.,5␮m),mobile

phase:(A)waterand(B)acetonitrile,gradientelutionsystem:50–90%(B)in(A)for25minand90%(B)in(A)for5min,flowrate1ml/min,ambienttemperature,injection volume10␮l,detection260nm.

guidelineforconsumersaswellasfarmerswhomustusetheright cultivars forthe rightmedicinalpurposes.Moreover,C. comosa variety29and15providedthehighestdiarylheptanoidscontents amongtheothersampleswhichcouldbeusedforbreedingand furtherdevelopmentaspharmaceuticalproducts.

Authors’contributions

VKcontributionincludedcollectingsamples,designingand per-forminglaboratorywork,analyzing theresults,and supervision of thelaboratorywork. SKcontributionincluded analyzingthe resultsandpreparingthepaper.Alltheauthorshavereadthefinal manuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

ThisworkwassupportedbytheNationalResearchCouncilof Thailand(NRCT)andNationalCenterforAgriculturalBiotechnology (NCAB).

References

Bhukkhai,K., Suksen,K., Bhummaphan,N.,Janjorn,K.,Thongon,N., Tantikan-layaporn,D.,Piyachaturawat,P.,Suksamrarn,A.,Chairoungdua,A.,2012.A

phytoestrogendiarylheptanoidmediatesestrogenreceptor/Akt/glycogen syn-thasekinase3␤protein-dependentactivationoftheWnt/␤-cateninsignaling pathway.J.Biol.Chem.287,36168–36178.

Hariyama,K.,Gao,J.F.,Ohkura,T.,Kawamata,T.,Litaka,Y.,Guo,Y.T.,Inayama,S., 1991.Aseriessesquiterpeneswitha7␣-isopropylsidechainandrelated com-poundsisolatedfromCurcumawenyujin.Chem.Pharm.Bull.39,843–853.

Hikino,H.,Agatsuma,K.,Takemoto,T.,1968.Structureofcurzerenone, epicurz-erenoneandisofranogermacrene(curzerene).TetrahedronLett.9,2855–2858.

Hikino, H.,Konno, C.,Agatsuma, K., Takemoto,T., 1975. Sesquiterpenes. Part XI VII. Structure, configuration,conformation and thermal rearrangement offuranodienone,isofuranodienone,curzerenone,epi-curzerenoneand pyro-curzerenonesesquiterpenesofCurcumazedoaria. J.Chem.Soc.Perk.T.11, 478–484.

Intapad,S.,Suksamrarn,A.,Piyachaturawat,P.,2009.Enhancementofvascular relaxationinrataortabyphytoestrogensfromCurcumacomosaRoxb.Vasc. Pharmacol.51,284–290.

Intapad,S.,Saengsirisuwan,V.,Prasannarong,M.,Chuncharunee,A.,Suvitayawat, W.,Chokchaisiri,R.,Suksamrarn,A.,Piyachaturawat,P.,2012.Long-termeffect ofphytoestrogensfromCurcumacomosaRoxb.onvascularrelaxationin ovariec-tomizedrats.J.Agric.FoodChem.60,758–764.

Jantaratnotai,N.,Utaisincharoen,P.,Piyachaturawat,P.,Chongthammakun,S., San-varinda,Y.,2006.InhibitoryeffectofCurcumacomosaonNOproductionand cytokineexpressioninLPS-activatedmicroglia.LifeSci.78,571–577.

Keeratinijakal,V.,Kladmook,M.,Laosatit,K.,2010.Identificationand characteri-zationofCurcumacomosaRoxb.,phytoestrogens-producingplant,usingAFLP markersandmorphologicalcharacteristics.J.Med.Plant.Res.4,2651–2657.

Niumsakul,S.,Hirunsaree,A.,Wattanapitayakul,S.,Junsuwanitch,N.,Prapanupun, K.,2007.AnantioxidativeandcytotoxicsubstanceextractedfromCurcuma comosaRoxb.J.ThaiTrad.Altern.Med.5,24–29.

Phupatanapong,L.,Chayamarit,K.,Butaweekhun,T.,2001.ThaiplantnamesbyTem Smitinand,2nded.Prachachon,Bangkok,pp.160.

Pimkaew,P.,Suksen,K.,Somkid,K.,Chokchaisiri,R.,Jariyawat,S.,2013.Zederone, asesquiterpenefromCurcumaelataRoxb,ishepatotoxicinmice.Int.J.Toxicol. 32,454–462.

(7)

Piyachaturawat,P.,Ercharuporn,S.,Suksamrarn,A.,1995b.Estrogenicactivityof Curcumacomosaextractinrats.AsiaPac.J.Pharmacol.10,121–126.

Piyachaturawat, P., Teeratagolpisa, C., Toskulkao, C., Suksamrarn, A., 1995c.

HypolipidemiceffectofCurcumacomosainmice.Artery22,233–241.

Piyachaturawat,P.,Timinkul,A.,Chauncharunee,A.,Suksamrarn,A.,1998.Growth suppressingeffectofCurcumacomosaextractonmalereproductiveorgansin immaturerats.Pharm.Biol.36,44–49.

Piyachaturawat,P.,Charoenpiboonsin,J.,Toskulkao,C.,Suksamrarn,A.,1999a.

ReductionofplasmacholesterolbyCurcumacomosaextractin hypercholes-terolaemichamsters.J.Ethnopharmacol.66,199–204.

Piyachaturawat,P.,Timinkul,A.,Chaunchararunee,A.,Suksamrarn,A.,1999b.Effect ofCurcumacomosaextractonmalefertilityinrats.Pharm.Biol.37,22–27.

Qu,Y.,Xu,F.,Nakamura,S.,Matsuda,H.,Pongpiriyadacha,Y.,Wu,L.,Yoshikawa,M., 2009.SesquiterpenesfromCurcumacomosa.J.Nat.Med.63,102–104.

Shibuya,H.,Hamamoto,Y.,Cai,Y.,Kitakawa,I.,1987.Areinvestigationofthe struc-tureofzederone,afuranagermacrane-typesesquiterpernefromzedoary.Chem. Pharm.Bull.35,924–927.

Soontornchainaksaeng,P.,Jenjittikul,T.,2010.Chromosomenumbervariationof phytoestrogen-producingCurcuma(Zingiberaceae)fromThailand.J.Nat.Med. 64,370–377.

Sodsai,A.,Piyachaturawat,P.,Sophasan,A.,Suksamrarn,A.,Vongsakul,M.,2007.

SuppressionbyCurcumacomosaRoxb.ofpro-inflammatorycytokinesecretion inphorbol-12-myristate-13-acetatestimulatedhumanmononuclearcells.Int. Immunopharmacol.7,524–531.

Su,J.,Sripanidkulchai,K.,Wyss,J.M.,Sripanidkulchai,B.,2010.Curcumacomosa improveslearningandmemoryfunctiononovariectomizedratsinalong-term Morriswatermazetest.J.Ethnopharmacol.130,70–75.

Su,J.,Sripanidkulchai,B.,Sripanidkulchai,K.,Piyachaturawat,P.,Wara-aswapati, N.,2011.EffectofCurcumacomosaandestradiolonthespatialmemoryand hippocampalestrogenreceptorinthepost-trainingovariectomizedrats.J.Nat. Med.65,57–62.

Su,J.,Sripanidkulchai,K.,Hu,Y.,Sripanidkulchai,B.,2012a.Curcumacomosa pre-ventstheneuronlossandaffecttheantioxidativeenzymesinhippocampusof ethanol-treatedrats.Pak.J.Biol.Sci.15,367–373.

Su,J.,Sripanidkulchai,K.,Suksamrarn,A.,Hu,Y.,Piyachaturawat,P.,Sripanidkulchai, B.,2012b.Pharmacokineticsandorgandistributionofdiarylheptanoid phytoes-trogensfromCurcumacomosainrats.J.Nat.Med.66,468–475.

Suksamrarn,A.,Eiamong,S.,Piyachaturawat,P.,Byrne,L.T.,1997.A phloracetophe-noneglucosidewithchloreticactivityfromCurcumacomosa.Phytochemistry 45,103–105.

Suksamrarn,A.,Ponglikitmongkol,M.,Wongkrajang,K.,Chindaduang,A., Kitti-danairak,S.,Jankam,A.,Yingyongnarongkul,B.,Kittipanumat,N.,Chokchaisiri, R., Khetkam, P., Piyachaturawat, P., 2008. Diarylheptanoids, new phy-toestrogens from the rhizomes of Curcuma comosa: isolation, chemical modificationand estrogenic activityevaluation.Bioorgan. Med.Chem.16, 6891–6902.

Tantikanlayaporn, D.,Robinson, L.J., Suksamrarn, A., Piyachaturawat, P., Blair, H.C., 2013a.A diarylheptanoid phytoestrogenfrom Curcumacomosa, 1,7-diphenyl-4,6-heptadien-3-ol,accelerateshumanosteoblastproliferationand differentiation.Phytomedicine20,676–682.

Tantikanlayaporn,D.,Wichit,P.,Weerachayaphorn,J.,Chairoungdua,A., Chun-charunee,A.,Suksamrarn,A.,Piyachaturawat,P.,2013b.Bonesparingeffectof anovelphytoestrogendiarylheptanoidfromCurcumacomosaRoxb.in ovariec-tomizedrats.PLoSOne8(11),e78739.

Weerachayaphorn, J.,Chuncharunee, A., Mahagita, C., Lewchalermwongse, B., Suksamrarn, A., Piyachaturawat, P., 2011. Aprotective effect of Curcuma comosaRoxb.onbonelossinestrogendeficientmice.J.Ethnopharmacol.137, 956–962.

Winuthayanon,W.,Piyachaturawat,P.,Suksamrarn,A.,Ponglikitmongkol,M.,Arao, Y.,Hewitt,S.C.,Korach,K.S.,2009a.Diarylheptanoidphytoestrogensisolated fromthemedicinalplantCurcumacomosa:biologicalactionsinvitroandinvivo indicateestrogenreceptor-dependentmechanisms.Environ.HealthPersp.117, 1155–1161.

Winuthayanon,W.,Suksen,K.,Boonchird,C.,Chuncharunee,A.,Ponglikitmongkol, M.,Suksamrarn,A.,Piyachaturawat,P.,2009b.Estrogenicactivityof diarylhep-tanoidsfromCurcumacomosaRoxb.requiresmetabolicactivation.J.Agric.Food Chem.59,840–845.

Xu,F.,Nakamura,S.,Qu,Y.,Matsuda,H.,Pongpiriyadacha,Y.,Wu,L.,Yoshikawa,M., 2008.StructuresofnewsesquiterpenesformCurcumacomosa.Chem.Pharm. Bull.56,1710–1716.

Imagem

Fig. 1. Phylogenetic tree illustrating the relationship among 118 accessions as inferred by AFLP analysis.
Fig. 2. HPLC chromatographic fingerprint of (A) Curcuma latifolia extract (sample No. 104) and (B) C

Referências

Documentos relacionados

Effect of BV on apoptosis of glioblastoma cells is shown in Fig. Flow cytometry analysis revealed that in control condition only 14 ± 5% of glioblastoma cells were in apoptosis

After treatment with compounds 1 and 2 at 20 and 60 ␮ g/ml for 48 h, WST-1 assay revealed a decrease in cell proliferation in all four human lung cancer cell lines in a

In addition, isolated isoflavones were also assayed, all of which significantly inhibited neutrophil migration, especially biochanin A ( 1 ), which was able to inhibit chemotaxis by

The total polysaccharides fraction (TPL-Xa: 8.1% yield) presented 43% carbohydrate (21% uronic acid) and resulted in two main fractions after chromatography (FI: 12%, FII: 22%

caracasana demonstrated low toxicity and almost no hemolytic effect, we decided to investigate which extract frac- tion would be responsible for the antispasmodic activity

A signifi- cant drop in feed consumption was observed in animals treated at 4 × and 8 × doses, which had a significant impact on the final body weight for the 8 × group and on the

In order to further analyze the consequences of the use of Hp during gestation, this work investigated the possible action in the adult offspring born from mothers treated with the

After subjecting the rats to permanent middle cerebral artery occlusion (pMCAO) for 6 h, at doses of 100 and 200 mg/kg, dichloromethane fraction from white pepper and long