• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número3"

Copied!
7
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Antispasmodic

activity

from

Serjania

caracasana

fractions

and

their

safety

Fabiana

L.

Silva

a,b

,

Joelmir

L.V.

da

Silva

c

,

Juciléia

M.

Silva

c

,

Luiza

S.A.

Marcolin

d

,

Viviane

L.A.

Nouailhetas

e

,

Massayoshi

Yoshida

f

,

Pedro

H.

Vendramini

g

,

Marcos

N.

Eberlin

g

,

José

M.

Barbosa-Filho

a

,

Paulo

R.H.

Moreno

b,∗

aLaboratóriodeTecnologiaFarmacêutica,UniversidadeFederaldeParaíba,JoãoPessoa,PB,Brazil bInstitutodeQuímica,UniversidadedeSãoPaulo,SãoPaulo,SP,Brazil

cDepartamentodeSaúdeII,FaculdadedeFarmácia,UniversidadeNovedeJulho,SãoPaulo,SP,Brazil dDepartamentodeSaúdeIII,FaculdadedeMedicina,UniversidadeNovedeJulho,SãoPaulo,SP,Brazil eDepartamentodeBiofísica,UniversidadeFederaldeSãoPaulo,SãoPaulo,SP,Brazil

fCentrodeBiotecnologiadaAmazônia,Manaus,AM,Brazil

gThoMSonMassSpectrometryLaboratory,InstitutodeQuímica,UniversidadedeCampinas,Campinas,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30September2016

Accepted20December2016

Availableonline10February2017

Keywords:

Antispasmodicactivity

Compoundsisolation

GC–MS

Hemolyticassay

Ileumrat

Extracttoxicity

a

b

s

t

r

a

c

t

Inapreviousstudy,wereportedtheantispasmodicandgastroprotectiveeffectsoftheSerjania

cara-casana(Jacq.)Willd.,Sapindaceae,extract.Inthepresentstudy,weevaluatedtheLD50,hemolyticand

antispasmodicactivitiesofitsfractionsandcharacterizeditsmajorconstituentsbyisolationandGC–MS. Theanimals showednon-toxicsymptomswithoraldosesup to2000mg/kg, suggestingasafeoral administration.Furthermore,alowhemolyticactivitywasdetectedforthesaponinfraction. Antispas-modicactivityofthefractionswasevaluatedthroughcarbachol-inducedcontractionsinratileum.The hexanefractionwasthemostpotent(IC5068.4±5.9␮g/ml)followedbythedichloromethanefraction (IC50161.3.4±40.7␮g/ml).Butanolfractionwasthelesseffective(IC50219.8±60.3␮g/ml).The phyto-chemicalstudyoftheS.caracasanafractionsaffordedtheisolationoffriedelin,␤-amyrin,allantoinand quercitrin.ThisisthefirsttimethatthepresenceofallantoinandquercitrinintheSerjaniagenushasbeen reported.AmongtheisolatedcompoundsandthosecharacterizedbyGC–MS,␤-amyrinand␤-sitosterol werepresentinthemostactivefractions,hexaneanddichloromethane,andtheymayberelatedtoits antispasmodicactivity.Inaddition,spathulenolwasonlyfoundinthehexanefractionanditspresence mightjustifythehighestantispasmodicactivityobservedforthisfraction.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Serjaniacaracasana(Jacq.)Willd.,Sapindaceae,isusedfor weav-ing baskets and rustic ropes, mostly because it is considered ichthyotoxic.ThisbeliefcomesfromitssimilaritywithS.lethalis, which is knownto contain hemolyticsaponins (Teixeira et al., 1984).Infact,allpreviouspublicationsaboutS.caracasana(Aragão andValle,1973;XavierandMors,1975;CordeiroandValle,1975; Maia-Braggioetal.,1978)usedS.lethalisinstead,asitwaslater confirmed(Teixeiraetal.,1984).

∗ Correspondingauthor.

E-mail:prmoreno@iq.usp.br(P.R.Moreno).

SomeSerjaniaspeciesareusedinfolkmedicinesuchasS.comata

(rheumatism),S.lethalis(kidneypain,anti-inflammatory),S.erecta

(gastricpain,anti-inflammatory),S.marginata(gastricpain)andS. triquetra(diuretic)(ChávezandDelgado,1994;Guarin-Netoetal., 2000;Agraetal.,2008;Péricoetal.,2015).Basedonthesepopular uses,ourgrouphaspreviouslydemonstratedthattheS.caracasana

hydroethanolicextractshowedagastroprotectiveeffectby inhib-itinggastriculcerinductionandaninvitroantispasmodicactivity (Silvaetal.,2012).

Inthisstudy,wefurtherevaluatedtheantispasmodicactivity toidentifythecompoundsresponsibleforthiseffect.Theextract safety was initially evaluated through the determination of its medianlethaldose(LD50)andthesearchforhemolyticsaponins inthebutanolfraction.

http://dx.doi.org/10.1016/j.bjp.2016.12.002

0102-695X/©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

(2)

Materialsandmethods

Chemicalmaterials

StandardsampleofsaponinsofQuillajasaponariawasakind courtesyofProf.Dr.CarmenQueiroga.Thecitratedbovineblood waspurchased attheUSP VeterinaryHospital(USP-Brazil). Sil-ica gel 60 F254 TLC aluminum sheets were purchased from MerckCompany.Allothersreagentsandsolventswereanalytical grade.

Plantmaterial

The aerial parts of Serjania caracasana (Jacq.) Willd., Sapin-daceae,werecollectedatthebaseofPicodoJabre(7◦1534.27′′ S,37◦238.53′′W),Paraiba,Brazilduringfructificationperiod(June, 2009)byDr.JoseanF.Tavares(UFPB).Theplantmaterialwas identi-fiedbyProf.Dr.MariadeFátimaAgra(UFPB).Avoucherspecimen (No.M.F.Agraetal.,6963)wasdepositedintheHerbariumProf. LauroPiresXavier(JPB),atthesameUniversity.

Phytochemicalanalysis

Spectroscopicpropertiesoftheisolatedcompounds

NMR analysis was performed in an Agilent INOVA-500 (500MHz)spectrometer.Highresolutionmassspectrawere per-formedonaMicroTOFLCmassspectrometerfromBrukerDaltonics andIRspectrawasrecordedwithaBomeminstrument.The struc-turesoftheisolatedcompoundsweredeterminedby1Hand13C NMR spectroscopy,using one and two-dimensionaltechniques, togetherwithIRandHRMSdatabycomparisonwithdata previ-ouslypublishedforthesecompounds.

Gaschromatography–massspectrometry(GC–MS)analysis

The hexane and CH2Cl2 fractions had their chemical com-position analyzed by gas chromatography–mass spectrometry (GC/MS),performedusingaShimadzuGCMS-QP2010Ultrasystem, withafusedsilicacapillarycolumncoatedwith5% polyphenyl-siloxane/95% dimethylpolysiloxane (Rxi®-5ms,10m×0.10mm ID×0.10␮mfilmthickness), electronionizationsystem operat-ingat70eVwithaninterfacetemperatureof 260◦C,scan time of 0.1scans/s and acquisition mass range of 35.0–500.0Da. For theGCanalysis,theinjectiontemperaturewassetat250◦C,the oventemperatureprogram was100◦C for 1min,100–290C at 15◦C/min,maintaining290Cfor15minwithheliumasacarrier gas(0.42ml/min).Thecompoundidentificationwasperformedby comparingthemassspectrawiththeWileylibraryandliterature data(Adams,2007)togetherwiththeco-injectionofstandards.The relativecompositionwasobtainedfromtheelectronicintegration measurementsusingflameionizationdetection(300◦C)without takingintoaccountrelativeresponsefactors,inthesameconditions describedabove.

Extractpreparation

Thepowderedair-driedaerialpartsofS.caracasana(1916g) were extracted exhaustively with 96% aqueous ethanol solu-tionat roomtemperature.The combinedextractswerefiltered and concentrated under reduced pressure at 40◦C afford-ing a hydroethanolic extract (202.84g; 10.6% extraction yield) (EtOH).

Extractfractionationandcompoundisolation

TheEtOHextract(200g)wassuspendedinMeOH–H2O(70:30, v/v) mixture, and it wassubsequently fractionedwith hexane, CH2Cl2 andBuOH.Eachsolventfractionwasthenevaporatedto drynessunderreducedpressuretogivehexane(31.53g;15.8%),

CH2Cl2 (21.9g;10.96%)andBuOH(44.50g;22.2%)fractions.The CH2Cl2andBuOHfractionswereseparatelysubjectedtoCCon sil-icagelusingstepgradientsofhexane–EtOAcandEtOAc–MeOH. Columnfractionsthatpresentedonlyonemajorcompoundwere resubmitted tothe samechromatographic separation to obtain thepurifiedcompounds.CH2Cl2fractionyieldedfourcompounds (friedelin(1),␤-amyrin(2),stigmasteroland␤-sitosterol),while BuOHfractionaffordedonecompound(␤-sitosterolglucoside).A remainingpartoftheBuOHfractionwassuspendedwith300ml ofMeOH.Thesolutionwasfilteredandinsolublepartreserved. Diethyletherwascarefullyaddedintothesolutionuntilsome pre-cipitationstarted,and thenitwasplacedin thefreezer(−22◦C for24h).Theprecipitateformedwasremovedbyfiltration,and reserved.Thisprocesswasrepeatedtwice.Thepooledprecipitates weresolubilizedwithMeOHandconcentratedunderreduced pres-sureat40◦C,togiveBuOH-1fraction.Theremainingorganicphase wasevaporatedunderreducedpressuretodrynesstogive BuOH-2fraction.TheBuOH-2fractionwassubjectedtoCConsilicagel usingstepgradientsofCHCl3–MeOHandafterfixedsolventsystem (CHCl3–acetone–formicacid,75:16.5:8.5(v/v))(Ikedaetal.,1991) toobtain27fractionscombinedaccordingtotheirTLCprofilesinto fifteenmajorfractions(Fr1–Fr15).FromfractionFr7obtained allan-toin(3)asprecipitateaftersolventdrying.FractionFr8waspurified bypreparativeTLC(CHCl3–MeOH,80:20(v/v))togivequercitrin (4).

Friedelin(1).5.6mg,0.03%yield;amorphouspowder;IRmax (KBr)cm−1:3000,2848,1714;1HNMR(500MHz,CDCl

3):1.16(3H,

s,H-28),1.03(3H,s,H-27),0.99(3H,s,H-26),0.98(3H,s,H-30),0.93 (3H,s,H-29),0.86(3H,slap,H-23),0.85(3H,s,H-25),0.70(3H,s, H-24).13CNMRdatawereconsistentwiththosepreviouslyreported (Akihisaetal.,1992).

␤-Amyrin(2).169.8mg,1.05% yield;white powder;IRmax (KBr)cm−1:3299,2946,2852,1034;1HNMR(500MHz,CDCl

3): 5.16 (1H, t, J=3.6Hz, H-12), 3.20 (1H, dd, J=11.15, 4.5, H-3), 1.11 (3H, s, H-27), 0.97 (3H, s, H-23), 0.94 (3H, s, H-26), 0.91 (3H, s, H-24), 0.80 (3H, s, H-28), 0.76 (3H, s, H-25). 13C NMR datawereconsistentwiththosepreviouslyreported(Diasetal., 2011).

Stigmasterol. 37.8mg, 0.24% yield; white powder;1H NMR (500MHz;CDCl3):5.33(1H,sl,H-6),5.13(1H,dd,H-23),5.00(1H,

dd,H-22),3.50(2H,m,H-3).13CNMRdatawereconsistentwith thosepreviouslyreported(Kojimaetal.,1990).

␤-Sitosterol. 21.4mg, 0.13% yield; white powder; 1H NMR (500MHz;CDCl3):5.33(1H,sl,H-6),3.50(2H,m,H-3).13CNMR datawereconsistentwiththosepreviouslyreported(Kojimaetal., 1990).

␤-Sitosterolglucoside.3.2mg,0.04%yield;amorphous pow-der; 1H NMR (500MHz,Py-d

5): 5.32(1H, sl, H-6), 5.04 (1H, d, H-1′),4.55(1H,map,H-6),4.28(1H,sap,H-4),3.99(1H,m, H-3),2.70/2.45(1H,m,H-4),0.98(3H,d,H-21),0.94(3H,sl,H-19), 0.91(3H,sap,H-26),0.87(3H,dap,H-29),0.84(3H,d,H-27),0.64 (3H,s,H-18).13CNMRdatawereconsistentwiththosepreviously reported(Kojimaetal.,1990).

Allantoin(3).6.5mg,0.08%yield;colorlesscrystal;IRmax(KBr) cm−1:3439, 3344,3224,3063,1782,1659; 1HNMR (500MHz, DMSO-d6): 10.51(1H,br s,H-1), 8.03 (1H,s, H-4),6.91(1H, d,

J=13.5Hz,H-3),5.78(2H,s,H-8),5.24(1H,d,J=13.5Hz,H-6).13C NMRdatawereconsistentwiththosepreviouslyreported(Sripathi etal.,2011).EI-HRMS(negative-ionmode)m/z:157.03722[M−H]− (C4H6N4O3requires157.0315).

(3)

Toxicologicalassays

Medianlethaldose(LD50)

MaleSwissmice(35–40g)wereseparatedinthreegroupsoffive animalsforeachtreatment(n=5).Animalsfromeach experimen-talandcontrolgroupswerehostedincagesmaintainedatconstant roomtemperature(22±1◦C)andsubjectedtoa12/12hlight/dark cyclewithaccesstofoodandwateradlibitum.Proceduresinvolving animalsandtheircarewereperformedinconformitywithOECD 420(2001),adoptedinourlaboratory,andincompliancewith cur-rentinternationallyacceptedinstructionsforthecareoflaboratory animalsandethicalguidelines.Furthermore,clearancefor conduct-ingthestudywasobtainedfromtheEthicsCommitteeofAnimal UseoftheNovedeJulhoUniversity(approval#AN0003/11).

Inordertodeterminetheoralmedianlethaldose(LD50)ofthe EtOHextract,thistestfollowedthemethoddescribedforMillerand Tainter(1944)withsamemodifications.Thecontrolgroupreceived thevehicle(0.1%Tween20indistillatedwater).Twodoses(1000 and2000mg/kg,inavolumeof1ml/g)weregivenorally,bygavage, totwogroupsofmiceforthedeterminationofLD50.Theanimals wereobservedduringthefirst180minafterthetreatmentandafter 24,48and72hforanytoxicsignsandsymptoms.

Qualitativeassayofhemolyticsaponins

Thequalitativehemolyticactivityofthesaponinswastested withbovinebloodreagentasdescribed bySharmaetal.(2012) withsomemodifications.Briefly,aliquotsof1mlofcitratedbovine bloodwerewashedthreetimeswith9mlofsaline(0.9%;w/vNaCl) followedbycentrifugationat180×gfor5min.Thecell suspen-sionwasfinallypreparedbydilutingthepelletto3%(v/v)insaline solutiontoobtainthebloodreagent.Also,tovisualizethesaponins acomparativesprayreagent(Liebermann–Burchardreagent)was prepared(WagnerandBladt,1996).

Theassaywasperformedwitha10␮laliquotofsaponinsfrom

Quillajasaponaria(SQ)andBuOHfraction(conc.20mg/ml, solubi-lizedinMeOH–H2O,70:30(v/v))appliedinTLCplateswhichwere elutedwiththesolventsystemCHCl3–MeOH–TFA0.5%(60:40:5 (v/v))to6.5cmfromtheorigin.Aftertheelution,theTLCplates wereairdried.

OneofthedevelopedTLCplateswasimmersedfor20sinaglass dishcontainingthe3%bloodreagentfreshlyprepared.Afterthis time,theTLCplatewasremovedandheldverticallyfor30s,and subsequentlyimmersedinsalinefor30s. Finally,this TLCplate washeldverticallyforcompletedryingandfurthervisualization ofthehemolyticspots.Thehemolyticspotswerecomparedwith thedeveloped TLC sprayed with Liebermann–Burchardreagent (Sharmaetal.,2012).

Quantitativeassayofhemolyticsaponins

Thequantitativehemolyticactivityofthesaponinswas eval-uated with a bovine blood cell suspension by turbidimetry as describedby Xieetal. (2008)withsomemodifications. Briefly, aliquotsof10mlofbloodwerewashedthreetimeswithsaline solu-tionbycentrifugationat180×gfor2min.Thecellsuspensionwas finallypreparedbydilutingthepelletto5%(v/v)insalinesolution. TheSQand BuOHfractionsamplesweresolubilized initially insalineto25mg/ml.Forthe assay,180␮loffreshly prepared 5% blood cell suspension was mixed with 20␮l of sample or controlsolution.Thesampleconcentrationrangedfrom820.0to 16.4␮g/mlforBuOHfraction,andfrom500.0to5␮g/mlforSQ. Themicroplatewasincubatedfor30minat37◦Candcentrifuged at70×g for10min.Analiquotofeachsupernatant (75␮l)was transferredtoaflat-bottommicroplateandthefreehemoglobin was measuredat 540nm (Silveira et al., 2011). Saline and SQ (100␮g/ml)wereconsideredasminimalandmaximalhemolytic controls.Theconcentrationinducing50%ofmaximumhemolysis

(HC50)wascalculated bynon-linerregression (GraphPadPrism 5.01).Eachexperimentincludedtriplicatesforeachconcentration. Theresultsofthequantitativehemolyticactivityarepresentedas mean±SDandtheotherresultsasmean±SEM.

Pharmacologicalassay

Antispasmodicactivityonileumisolatedrat

Ileumstrips wereisolatedfromrat following the methodol-ogydescribed by Walker and Wilson(1979) and suspended in organbaths(5ml)containingmodifiedKrebsphysiological solu-tion,consistingof(mmol/l):NaCl117.0;KCl4.7;NaH2HPO4·H2O 1.2;MgSO4·7H2O1.3;CaCl2·2H2O2.5;NaHCO325.0;glucose11.0; pH7.4(SunandBenishin,1994).Furthermore,theclearancefor conductingthestudywasobtainedfromtheEthicsCommitteeof AnimalUseoftheFederalUniversityofSãoPaulo(approval#CEUA 4195060514/14).

Thehexane,CH2Cl2andBuOHfractionsweredissolvedinitially in0.01%CremophorELanddilutedinMilliQwatertoobtainthe stocksolutionof10mg/mlwhichwasstoredat0◦C.

Thetissuesweremaintainedunder1gtension,bubbled con-tinuouslywithO2at37◦C.Theywereattachedtoforceisometric transducers and connectedto a datasystemAQCD(AVS Proje-tos,Brazil).FollowingcontrolcontractionswithKCl (40mmol/l) or carbachol (1␮mol/l), and washing with a fresh Krebs solu-tion,tissuestripswereexposedtoconcentrationgradientranging from 500 to 9␮g/ml of hexane, CH2Cl2 or BuOH fractions for 15min(WalkerandWilson,1979),thenstimulatedagainwiththe previousreferredconcentrationofcarbachol.Theantispasmodic activityofthesampleswasexpressedasmaximum contraction (Emax value) obtained in the presence of the distinct fraction relativetothemaximumcontractionintheirabsence(control). The concentration of fraction that reduces to 50% a maximal responseforanagonist(IC50)valuesweredeterminedfrom indi-vidual concentration–response curves by non-linear regression (Jenkinsonetal.,1995).

Statisticalanalysis

Statisticalsignificancebetweencontrolandexperimentalgroup wasevaluatedusingeitherStudent’st-testorone-wayANOVA fol-lowingDunnett’sMultipleComparisonTest.Datawereconsidered significantwhenp<0.05.

Resultsanddiscussion

Medianlethaldose(LD50)

Inourearlierstudy,weobservedtheS.caracasanaEtOHextract significantly inhibited KCl pre-contracted ileum, indicating an interestinginvitroantispasmodicactivity(Silvaetal.,2012). How-ever,duetothepossibletoxicitytomammalsthatcouldberelated tothepresenceofhemolyticsaponins,asreportedforotherSerjania

(4)

A

B

0.6 0.6

Rf Front

0.4

0.2

0.1

Start

1 1

2 2

0.4

0.3

Fig. 1.TLC of BuOH fraction of Serjania caracasana aerial parts (1) and

of rich fraction saponins of Quillaja saponaria (SQ) (2). Solvent system:

chloroform–methanol–trifluoroaceticacidaqueoussolution0.5%(60:40:5,v/v).

Detection:bloodreagent3%(A);Liebermann–Burchardreagent(B).

andhydroethanolicextractfromS.marginata,wheremicetreated withasingleoraldoseof5000mg/kghadnosignsoftoxiceffects inanacutetoxicitystudy(Arrudaetal.,2009;Péricoetal.,2015).

Qualitativeandquantitativeassaysofhemolyticsaponins

DespitethelowacutetoxicityofS.caracasanaEtOHextract,the presenceofhemolyticsaponinsinSerjaniaextractsshouldbe inves-tigated.Thesecompoundsareconsideredharmfulnotonlybecause oftheiracutetoxiceffects, asreportedtothesaponinsisolated fromS.lethalis,serjanosidesA,BandC,thatshowedtoxicacute effectsinratsandmice(Teixeiraetal.,1984).Also,chronic admin-istrationofsaponinsinanimalsisknowntoaffecttheirgrowth oralteringtheirpalatabilityand,consequently,foodconsumption oralteringthedigestionprocessandabsorption(Oleszek,1996). TheTLCchromatogramoftheS.caracasanaBuOHfractionsprayed withLiebermann–Burchardreagent(Fig.1B)showedthepresence ofthreemainpurplezones,characteristicofsaponins,atRf’s0.3,

0.4and 0.6, withthelatterasthemajor component.The com-parisonofthisTLCprofilewiththatobtainedaftersprayingwith theBloodreagent(Fig.1A)indicatedthattheobservedsaponins werenotabletocausehemolysisintheTLCassayinthe concen-trationtested.Incontrast,thepositivecontrol(SQ)showedsome whitespots(Rf=0.1and0.2)againstapinkbackground(Fig.1A),

characteristic of hemolysis. However, SQ also presented two othercompounds thatwerenon-hemolytic compounds(Rf=0.4

and 0.6), typically saponins for Liebermann–Burchard reagent (Fig.1B).

Similarly,inthequantitativehemolyticactivity,theBuOH frac-tion exhibited a low hemolysis rate(∼2%) until themaximum concentrationtested(820␮g/ml)whencomparedwiththepositive control (SQ) (100% at 100␮g/ml) (Fig. 2). Once at the maxi-mumconcentrationtestedthehemolysisrateswereunder50%of hemolyticactivity,theBuOH fractionHC50valuewasestimated as>1000␮g/ml.Thepositivecontrol(SQ)showedhighhemolytic activity (HC50=24.03±1.03␮g/ml) under the same conditions. Thus,differentthanwouldbeexpectedforanichthyotoxicspecies, ourresultsindicatedthatS.caracasanasaponinscouldbe consid-eredasnon-hemolytic.

Antispasmodicactivityonileumisolatedrat

As S. caracasana demonstrated low toxicity and almost no hemolyticeffect, we decided toinvestigate which extract frac-tionwouldberesponsiblefortheantispasmodicactivitypreviously reported(Silvaetal.,2012).

TheantispasmodicactivitywasanalyzedfortheS.caracasana

hexane,CH2Cl2andBuOHfractions.Fig.3(A)–(C)showsthe over-allinhibitoryeffectofthesefractionsonratileumcontractions. Thehexane fractionsignificantly inhibitedthemaximumileum contractionsattheconcentrationsof27,81,243and500␮g/ml (Fig.3A),presentingtherespectiveamplitudedecreasevaluesof 66.1±7.1,47.5±3.8,24.5±2.4and23.5±7.3%(Fig.3A),whilefor theCH2Cl2fractionasignificantinhibitionstartedatthe contrac-tionsof81,243and 500␮g/ml,withEmax valuesof62.7±12.6, 47.7±7.9and 20.2±3.7%respectively (Fig.3B).In contrast,the BuOHfractionwasonlyabletosignificantlyreducetheintensity ofthecontractionsat243and500␮g/mlwithrespectiveEmaxof 44.9±13.1and25.8±5.5%(Fig.3C).

Theseresultsindicatedthattheantispasmodicactivityis dis-tributed in all S. caracasana fractions. However, the n-hexane fractionwasmorepotentthanthecrudeEtOHextract,thatwas 46%attheconcentrationof81␮g/ml(Silvaetal.,2012).TheCH2Cl2 fractionwaslessactiveshowingsimilarresultstothoseobtained withthecrudeextract,andtheBuOHfractionshowedevenless activitythantheextract.Thus,allthefractionswereinterestingto searchfornaturalantispasmodiccompounds.

Phytochemicalanalysis

Inordertodeterminethepossiblecompoundsresponsiblefor theantispasmodicactivity,CH2Cl2andBuOHfractionswere sub-mittedtocolumnchromatography.Fromthesefractions,wecould

100

A

B

75

50

25

0

0 100 200

[SQ] µg/ml

Hemolysis

, %

Hemolysis

, %

300

0

0 200 400 600

[BuOH] µg/ml

800 1000 2

4 6 8 10

(5)

100

A

B

C

75

50

25

0

CCh 9 27 81 243 500

[Hexane] µg/ml

Contr

actions

, %

100

75

50

25

0

CCh 9 27 81 243 500

[CH2CI2] µg/ml

Contr

actions

, %

100

75

50

25

0

CCh 9 27 81 243 500

[BuOH] µg/ml

∗∗∗

∗∗∗ ∗∗∗ ∗∗∗

∗∗∗ ∗∗∗ ∗∗∗ ∗∗

∗∗

Contr

actions

, %

Fig.3. Effectofhexane(A),CH2Cl2 (B)orBuOH(C)fractionsofSerjania

cara-casanaaerialpartsonpre-contractedileumbycarbachol1␮M(n=3).One-way

ANOVAfollowedbyDunnett’sMultipleComparisonTest:**p<0.01;***p<0.001

(control×fraction).

isolateandcharacterizesevencomponents,twooleanane triter-penes:friedelin(1)and␤-amyrin(2),threesteroids:stigmasterol, ␤-sitosteroland␤-sitosterolglucoside,oneuratederivative: allan-toin(3)andoneflavonol:quercitrin(4).

Table1

CompoundscharacterizedinthehexaneandCH2Cl2fractionsofSerjaniacaracasana

aerialparts.

Hexanefraction CH2Cl2fraction

Compound RT(min) % RT(min) %

Spathulenol(5) 5.8 4.2 – –

6,10,14-Trimethyl-2-pentadecanone 7.3 1.7 7.3 1.8

Methylpalmitate 7.7 1.7 7.7 2.7

Ethylpalmitate 8.1 6.2 8.1 8.6

␤-Sitosterol 14.7 1.2 14.7 2.1

␤-Amyrin(2) 15.1 60.0 15.1 51.0

Total 75.0 66.2

O

H H H

1

HO

H

2 H

H

H N

N H O

N H

O O

NH2

3

O HO

OH

O

O

OH

OH

O HO

HO

OH

4

Additionally,thetwomostactivefractions,hexaneandCH2Cl2, hadtheirchemicalcompositioncomparedbyGC–MS,indicatinga similarchemicalcompositionforthesefractions(Fig.4).Themass spectraobtainedallowedtocharacterizesixcompounds(Table1) representing79.8%and66.6%ofthetotalofcompoundsdetectedin theGC–MS.Thetwofractionsshowedthesamemajorcomponents, ␤-amyrin(2)(60.0%and51.0%)andethylpalmitate(6.2%and8.6%), respectivelyforhexaneandCH2Cl2fractions.Additionally,inthe hexanefractionwasfoundspathulenol(5)inarepresentative quan-tity(4.2%).Thissesquiterpeneisacommonessentialoilcomponent inseveralplantspecies,ithasshownanantispasmodicactivityin uterusringscontractionmodelinducedbyKCl(Perez-Hernandez etal.,2008).Thepresenceofspathulenolexclusivelyinthehexane fractionmightjustifythehighestantispasmodicactivityobserved incomparisontotheotherfractions.

HO H

H

H H

5

In a recent study, Coutinho et al. (2015) reported the seed fatty-acidcompositionsforsixteenSapindaceaespecies.Serjania

species,includingS.caracasana,presentedhighlevelseicosenoic acidand other palmitic acidesters. In ourstudy, palmitic acid methylandethylesterswerefoundinbothhexane andCH2Cl2 fractions.Friedelin(1)and␤-amyrin(2),togetherwithother triter-penes,aretypicallyisolatedwithinthegenusSerjania,suchasthe presenceof1and2reportedinS.salzmanniana(Barbosa-Filhoetal., 1988).In thisstudy,wedetectedforthefirst timeina Serjania

(6)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 1.0

2.0 3.0 4.0 5.0 6.0 7.0 8.0

(x100 000) TIC

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 1.0

2.0 3.0 4.0 5.0

(x100 000) TIC

8.1

7.3 7.7

10.7

10.8 11.9

15.1

14.714.8 16.216.5 15.5 15.1

7.3 7.7 8.1

14.7 15.5 16.1

16.4

A

B

Fig.4.GC–MSchromatogramofhexane(A)andCH2Cl2(B)fractionsofSerjaniacaracasanaaerialparts.

Accordingtoourresults,S.caracasanasaponinsandquercitrin arenotthemainmetabolitesresponsiblefortheantispasmodic effect observed, but they may contribute to the overall effect observed in the crude extract. In similar studies, it has been observedthatthefractionsenrichedwithsaponinsandflavonol derivatives,includingquercitrin,showedsignificantantispasmodic activityintheacetylcholinemodel(Truteetal.,1997).

In conclusion,ourfindings demonstrated thatalthough ofS. caracasanaisconsideredanichthyotoxicspecies,thisproperty,if present,cannotberelatedtothepresenceofhemolyticsaponins. Thetoxicityformammalspecieswasnotconfirmedbytheacute toxicitytest,requiringcomplimentarystudiesonthesubject.In addition,future studiesshouldbecarried outwiththeisolated compoundstoverifytheirspasmolyticactivity.

Authors’contributions

FLS(Ph.D.student)contributedbyconductingthe phytochem-icallaboratorywork,thehemolyticevaluation anddraftingthe paper.JLVScontributedbyconductingthepharmacologicalassays, teachingJMSandLSAMintheconductingofthepharmacological assaysandbycriticalreadingofthemanuscript.VLANsupervised thepharmacologicalworkandcontributed tocritical readingof themanuscript.MYcontributedwiththecharacterizingofmany isolatedsecondarymetabolites.PHVcontributeddeterminingthe EI-HRMSofallantoin.MNEsupervisedthelaboratoryworkand con-tributedtocriticalreadingofthemanuscript.JMBFdesignedthe phytochemicalworkandcontributedguidingandsupportingthe plantcollectionandthelaboratorywork.PRHMcontributed sup-portinganddesigningthephytochemicalworkandthehemolytic

assays,supervisedthelaboratoryworkandcontributed to criti-calreadingofthemanuscript.Alltheauthorshavereadthefinal manuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Ethicalresponsibilities

Protectionofhumanandanimalsubjects. Theauthorsdeclare thattheproceduresfollowedwereinaccordancewiththe regula-tionsoftheresponsibleClinicalResearchEthicsCommitteeandin accordancewiththoseoftheWorldMedicalAssociationandthe Helsinki Declaration.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearsinthisarticle.

Righttoprivacyandinformedconsent.Theauthorsdeclarethat nopatientdataappearsinthisarticle.

Acknowledgments

TheauthorsaregratefultoCNPq/RENORBIOandCAPES/Brazil forfinancialsupportandresearchfellowships.

References

Adams,R.P.,2007.IdentificationofEssentialOilComponentsbyGas

(7)

Agra,M.F.,Silva,K.N.,Basílio,I.J.L.D.,Freitas,P.F.,Barbosa-Filho,J.M.,2008.Survey ofmedicinalplantsusedintheregionNortheastofBrazil.Rev.Bras.Farmacogn. 18,472–508.

Akihisa,T., Yamamoto,K.,Tamura,T.,Kimura,Y.,Iida,T.,Nambara,T.,Chang,

F.C.,1992.TriterpenoidketonesfromLingnaniachungiiMcClure:arborinone,

friedelinandglutinone.Chem.Pharm.Bull.40,789–791.

Aragão,J.A.,Valle,J.R.,1973.IctiotixicidadedetimbósdosgênerosSerjania,Derrise

Tephrosia.CiênciaeCultura25,643.

Arruda, A.P.C.C.B.N.,Coelho, R.G., Honda, N.K., Ferrazoli, C.,Pott, A.,

Hiruma-Lima,C.A.,2009.GastroprotectiveeffectofSerjaniaerectaRadlk(Sapindaceae):

involvementofsensoryneurons,endogenousnonproteinsulfhydryls,andnitric oxide.J.Med.Food.12,1411–1415.

Barbosa-Filho,J.M.,Araujo,V.T.,Bhattacharyya,J.,1988.Chemicalconstituentsof

Serjaniasalzmanniana.Fitoterapia59,430–431.

Bulgheroni,A.,Kinsner-Ovaskainen,A.,Hoffmann,S.,Hartung,T.,Prieto,P.,2009.

Estimationofacuteoraltoxicityusingthenoobservedadverseeffectlevel (NO-AEL)from28dayrepeateddosetoxicitystudiesinrat.Regul.Toxicol.Pharmacol. 53,16–19.

Chávez,M.I.,Delgado,G.,1994.Isolationandrelaysysthesisof11˛-hydroperoxy

diacetylhederagenin,anoveltriterpenoidderivativefromSerjaniatriquetra

(Sapindaceae).Biogeneticimplications.Tetrahedron50,3869–3878.

Cordeiro,E.A.,Valle,J.R.,1975.Ictiotixicidadecomparadadarotenonaedo

ser-janosídeo.Cien.Cultura27,561.

Coutinho,D.J.G.,Barbosa,M.O.,Silva,R.M.,Silva,S.I.,Oliveira,A.F.M.,2015.Fatty-acid

compositionofseedsandchemotaxonomicevaluationofsixteenSapindaceae species.Chem.Biodivers.12,1271–1280.

Dias,M.O.,Hamerski,L.,Pinto,A.C.,2011.Separac¸ãosemipreparativade␣e␤

-amirinaporcromatografialíquidadealtaeficiência.Quim.Nova34,S1–S6.

Guarin-Neto,G.,Santana,S.R.,Silva,J.V.B.,2000.Notasetnobotânicasdeespéciesde

SapindaceaeJussieu.Acta.Bot.Bras.14,327–334.

Ikeda,Y.,Sugiura,Y.M.,Fukaya,C.,Yokoyama,K.,Hashimoto,Y.,Kawanishi,K.,

Moriyasu,M.,1991.PeriandradulcinsA,BandC:phosphodiesteraseinhibitors

fromPeriandradulcisMart.Chem.Pharm.Bull.39,566–571.

Jenkinson,D.H.,Barnard,E.A.,Hoyer,D.,Humphrey,P.P.A.,Leff,P.,Shankley,N.P.,

1995.Internacionalunionofpharmacologycommitteeonreceptor

nomencla-tureanddrugclassification.IX.Recommendationsontermsandsymbolsin quantitativepharmacology.Pharm.Rev.47,255–266.

Kojima,H.,Sato,N.,Hatano,A.,Ogura,H.,1990.SterolglucosidesfromPrunella

vulgaris.Phytochemistry29,2351–2355.

Maia-Braggio,M.,Lapa,A.J.,Valle,J.R.,1978.Mecanismodaac¸ãotóxicadaSerjania

caracasana(Jacq.)Willd.CiênciaeCultura30,455.

Miller,L.C.,Tainter,M.L.,1944.EstimationoftheLD50anditserrorbymeansof

logarithmicprobitgraphpaper.Proc.Soc.Exp.Biol.Med.57,261–264.

Oleszek,W.,1996.AlfafaSaponins:Structure,BiologicalActivity,and

Chemotaxon-omy.InWaller,G.R.,Yamasaki,K.(org.)SaponinsUsedinFoodandAgriculture. PlenumPress,NewYork,pp.155–170.

Perez-Hernandez,N., Ponce-Monter,H.,Medina, J.A.,Joseph-Nathan, P., 2008.

SpasmolyticeffectofconstituentsfromLepechiniacaulescensonratuterus.J. Ethnopharmacol.115,30–35.

Périco,L.L.,Heredia-Vieira,S.C.,Beserra,F.P.,dosSantos,R.C.,Weiss,M.B.,Resende,

F.A.,Ramos,M.A.S.,Bonifácio,B.V.,Bauab,T.M.,Varanda,E.A.,Gobbi,J.I.F.,da

Rocha,L.R.M.,Vilegas,W.,Hiruma-Lima,C.A.,2015.Doesthegastroprotective

actionofamedicinalplantensurehealingeffects?Anintegrativestudyofthe biologicaleffectsofSerjaniamarginataCasar.(Sapindaceae)inrats.J. Ethnophar-macol.172,312–324.

Sharma, O.P., Kumar, N., Singh, B., Bhat, T.K., 2012. An improved method

for thin layer chromatographic analysis of saponins. Food Chem. 132, 671–674.

Shi,S.Y.,Zhang,Y.P.,Zhou,H.H.,Huang,K.L.,Jiang,X.Y.,2010.Screeningand

identifi-cationofradicalscavengersfromNeo-Taraxacumsiphonanthumbyonlinerapid screeningmethodandnuclearmagneticresonanceexperiments.J. Immunoas-sayImmunochem.31,233–249.

Silva,J.L.V.,Carvalho,V.S.,Silva,F.L.,Barbosa-Filho,J.M.,Rigoni,V.L.S.,

Nouail-hetas,V.L.A.,2012.GastrointestinalpropertyofSerjaniacaracasana(Jacq.)Willd.

(Sapindaceae)onrats.PharmacologyonlineS1,22–26.

Silveira,F.,Rossi,S.,Fernández,C.,Gosmann,G.,Schenkel,E.,Ferreira,F.,2011.

Alum-typeadjuvanteffectofnon-haemolyticsaponinspurifiedfromIlexandPassiflora

spp.Phytother.Res.25,1783–1788.

Sripathi,S.K.,Gopal,P.,Lalitha,P.,2011.AllantoinfromtheleavesofPisoniagrandis

R.Br.Int.J.Pharm.LifeSci.2,815–817.

Sun,Y.D.,Benishin,C.G.,1994.K+channelopenersrelaxlongitudinalmuscleof

guinea-pigileum.Eur.J.Pharmacol.271,453–459.

Teixeira,J.R.M.,Lapa,A.J.,Souccar,C.,Valle,J.R.,1984.Timbós:ichthyotoxicplants

usedbyBrazilianIndians.J.Ethnopharmacol.10,311–318.

TheOrganisationofEconomicCo-operationDevelopment(OECD),2001.OECD

GuidelineforTESTINGofchemicals:420AcuteOralToxicology–FixedDose Procedure.TheOrganisationofEconomicCo-operationDevelopment(OECD), pp.1–14.

Trute, A., Gross,J., Mutschler, E., Nahrstedt,A., 1997. Invitro antispasmodic

compoundsofthedry extractobtained fromHederahelix. PlantaMed.63, 125–129.

Wagner,H.,Bladt,S.,1996.PlantDrugAnalysis:AThinLayerChromatographyAtlas,

2ndedition.Springer-Verlag,Heidelberg,Germany,pp.305–327.

Walker, R., Wilson, K.A., 1979. Prostaglandins and the contractile action of

bradykininonthelongitudinalmuscleofratisolatedileum.Br.J.Pharmacol. 67,527–533.

Xavier,H.S.,Mors,W.B.,1975.AssaponinastóxicasdeSerjaniacaracasana.Cien.

Cultura27,179.

Xie,Y.,Ye,Y.-P.,Sun,H.-X.,Li,D.,2008.Contributionoftheglycidicmoietiestothe

Imagem

Fig. 1. TLC of BuOH fraction of Serjania caracasana aerial parts (1) and of rich fraction saponins of Quillaja saponaria (SQ) (2)
Fig. 3. Effect of hexane (A), CH 2 Cl 2 (B) or BuOH (C) fractions of Serjania cara- cara-casana aerial parts on pre-contracted ileum by carbachol 1 ␮M (n = 3)
Fig. 4. GC–MS chromatogram of hexane (A) and CH 2 Cl 2 (B) fractions of Serjania caracasana aerial parts.

Referências

Documentos relacionados

Effect of BV on apoptosis of glioblastoma cells is shown in Fig. Flow cytometry analysis revealed that in control condition only 14 ± 5% of glioblastoma cells were in apoptosis

After treatment with compounds 1 and 2 at 20 and 60 ␮ g/ml for 48 h, WST-1 assay revealed a decrease in cell proliferation in all four human lung cancer cell lines in a

In addition, isolated isoflavones were also assayed, all of which significantly inhibited neutrophil migration, especially biochanin A ( 1 ), which was able to inhibit chemotaxis by

The total polysaccharides fraction (TPL-Xa: 8.1% yield) presented 43% carbohydrate (21% uronic acid) and resulted in two main fractions after chromatography (FI: 12%, FII: 22%

A signifi- cant drop in feed consumption was observed in animals treated at 4 × and 8 × doses, which had a significant impact on the final body weight for the 8 × group and on the

In order to further analyze the consequences of the use of Hp during gestation, this work investigated the possible action in the adult offspring born from mothers treated with the

After subjecting the rats to permanent middle cerebral artery occlusion (pMCAO) for 6 h, at doses of 100 and 200 mg/kg, dichloromethane fraction from white pepper and long

transport and storage can preserve the contents present in the droplets of the NE, ensuring a physical, chemical, and microbial stability of 365 days, and potential