• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número3"

Copied!
5
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

article

Anti-inflammatory

activity

and

chemical

analysis

of

extracts

from

Trifolium

riograndense

Graziele

P.R.

Pedrazza

a

,

Cláudia

B.

Morais

a

,

Greice

R.

Dettenborn

a

,

Paula

C.

Ceolato

a

,

Miriam

A.

Apel

a

,

Elfrides

E.S.

Schapoval

a

,

Miguel

Dall’Agnol

b

,

José

A.S.

Zuanazzi

a,∗

aProgramadePós-graduac¸ãoemCiênciasFarmacêuticas,UniversidadeFederaldoRioGrandedoSul,PortoAlegre,RS,Brazil

bProgramadePós-graduac¸ãoemZootecnia,UniversidadeFederaldoRioGrandedoSul,PortoAlegre,RS,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received15June2016 Accepted30November2016 Availableonline28January2017

Keywords: HPLC Isoflavones Leguminosae Neutrophilchemotaxis Ratpawedema

a

b

s

t

r

a

c

t

Aimingtoinvestigatenewtherapeuticagentswithfewersideeffects,thenumberofstudiesaboutnatural

productshasincreased.Phenoliccompoundscompriseawell-studiedclassofabundantplant-derived

compounds,whoseanti-inflammatoryactivityhasbeendescribed.Isoflavonesarephenoliccompounds

thatoccur mainlyintheLeguminosaefamily,andcanbefoundinmanyspecies,suchasTrifolium

riograndenseBurkart,Leguminosae(clover).InthisstudyanHPLCmethodwasusedtodetermineand

quantifyfourisoflavones(genistein,daidzein,formononetin,andbiochaninA)inhydrolyzedleaf,flower,

stolon,androotextractsofT.riograndense.Invivoanti-inflammatoryactivitywasinvestigatedusingthe

ratpawedemamethodandinvitrochemotaxismodelwithadryextractfromtheleaves,whichhadthe

highestamountofisoflavones.Themajorisoflavonefoundinallpartsoftheplantwasformononetin.

Thechemotaxisassayrevealedthatthedifferentconcentrations(0.2–50␮g/ml)ofthedryextract

sig-nificantlyinhibitedneutrophilmigrationinaconcentration-dependentmanner(morethan90%).Inthe

ratpawedematest,oraladministrationofcloverextract100mg/kgwasabletosignificantlyinhibit

theedemaformationinducedbycarrageenan.Inconclusion,chemicalanalysesshowedthatTrifolium

riograndenseisaplantrichinisoflavonesandanewinterestingoptionasisoflavonesource.Theresultsof

thebiologicalteststakentogethershowthattheextractofT.riograndensehasanti-inflammatoryeffect

inrodents.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen

accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Severalclassesofsecondarymetabolitesareknowntohave anti-inflammatoryactivities,suchasterpenes,alkaloidsandphenolic compounds.Amongthese,flavonoidsarethecompoundswiththe widestvarietyofactivitiesreported,beingtheanti-inflammatory property attributed to the ability of the compounds to inhibit bothcyclooxygenaseandthe5-lipoxygenasemetabolicpathway ofarachidonicacid(Winekenstaddeetal.,2015;Honmoreetal., 2016).Furthermore,studieshaveshownthatflavonoidsareable toincreasecapillarypermeabilityandexertaninhibitoryeffecton proteinexudationandleukocytemigration(Liuetal.,2016).

Isoflavones,a class of phytoestrogens,are plantmetabolites structurallysimilartothesteroidalestrogen17-␤-estradiol.These compounds have become the object of widespread attention

∗ Correspondingauthor.

E-mail:zuanazzi@ufrgs.br(J.A.Zuanazzi).

as potentialtherapeutic agents, particularlyin women’s health contexts.Inadditiontotheirestrogenicactivity,thesecompounds havebeenassociatedwithpreventionofbreastandprostatecancer as well as cardiovascular disease and inflammatory conditions (Cavendishetal.,2015;Jietal.,2016;Sahpazetal.,2016;Zhang etal.,2016).

TheTrifoliumtaxonisoneofthemostimportantgeneraofthe Leguminosaefamily,duetoitsagriculturalvalueandthe consider-ablenumberofconstituentspecies(about230)(Gilletetal.,2001). Moststudiescarriedouttocharacterizeisoflavonelevelsand quan-tify biologicalactivitieswereperformed withTrifoliumpratense

L.(redclover).Thespeciescontainsrelatedisoflavoneglycosides, mainlytheaglyconesbiochaninA(1)andformononetin(2),besides smaller amounts of daidzein (3) and genistein (4) glycosides (Lemezieneetal.,2015;Tavaetal.,2015).However,theliterature doesnot citestudiesonTrifoliumriograndense Burkart, Legumi-nosae.ThiscloverspeciesnativetosouthernBrazil,especiallythe northernregionofRioGrandedoSulstateisanherbaceous peren-nialplantthatgrowsto50cminheight.Theleavesaretrifoliate

http://dx.doi.org/10.1016/j.bjp.2016.11.004

(2)

(withthree leaflets),and theflowersaredarkpink.Thisclover bloomsinspring,anditiscoldresistant.Trifoliumriograndenseis especiallyinterestingtoforageplantbreedersbecauseofits toler-ancetoacidicandaluminum-richsoils(Burkart,1987),acondition quitecommoninthisregion.

HO O

O

R2

R1

R1=OH; R2=OCH3

R1=H; R2=OCH3

R1=R2=OH

R1=H; R2=OH

Theaimofthisworkwastoquantifytheisoflavoneaglycones daidzein, formononetin, genistein, and biochaninA in different organsofTrifoliumriograndense(leaf,stolon,flower,androot)using HighPerformanceLiquidChromatography(HPLC),andtoevaluate theinvivoandinvitroanti-inflammatoryactivityofadryextract preparedwithT.riograndenseleaves.

Materialsandmethods

Plantmaterial

TrifoliumriograndenseBurkart,Leguminosae,wascollected dur-ingitsfloweringstage,inNovember2007,inseveralcitiesinnorth RioGrandedoSulstate,Brazil.Theplantmaterialwasidentified bythebotanistDra.SilviaT.S.Miottoandavoucherspecimenwas depositedattheHerbariumintheICNHerbarium,UFRGS,Porto Alegre,Brazil(number157822).Theleaves,stolons,flowers,and rootsofthegatheredplantsweresortedanddriedinanovenat 100◦Cfor1h.Next,theplantmaterialwasgroundusingamortar

andpestle.

Chemicalsandreagents

Daidzein,genistein,carrageenanandindomethacinwere pur-chasedfromSigma–Aldrich;formononetinandbiochaninAwere purchasedfromFluka.Acetonitrile(HPLCgrade)wasobtainedfrom Merck;HCl, methanol,dichloromethane,and ethanolwere pur-chasedfromVetec;andtrifluoroaceticacid(analyticalgrade)was obtainedfromNuclear.

PreparationoftheextractsforHPLCanalysis

Eachsamplewaspreparedandanalyzedintriplicate.Initially, 10mgofpulverizedplantwasextractedwith4mlof6MHCland incubatedat100◦Cfor15mininwaterbathundermagnetic

stir-ring.Aftercooling,theresidue wasfiltratedandextracted with 15mlofdichloromethane(threetimes).Theextractwas concen-tratedunderreducedpressure,dissolvedin10mlofmethanol.The extractwasfiltratedthrougha0.45␮mmembranebeforeinjection intheHPLCsystem(Ramosetal.,2008).

HPLCanalysisofextractsforisoflavonecontent

TheHPLCanalyseswereperformedaccordingtoRamosetal. (2008),ona WatersAlliance2695chromatographwitha diode arraydetector(UV/VISWaters2487).Thesystemwasequipped withaC18reverse-phasecolumn(Nova-Pak,4␮m,3.9×150mm) withguard-columnandoperatedatroomtemperature.Elutionof isoflavoneswasperformedusingalineargradientsystem,andthe

mobilephase consistedof acetonitrile:water:trifluoroaceticacid (20:80:0.01(v/v/v))(A)andacetonitrile:trifluoroceticacid(100:0.1 (v/v))(B).The gradientprofilewas: 0–10min from0to40% B, 10–11min40%B,11–12minfrom40to100%B.Attheendofeach run,100%Awasusedfor6mintorestoretheinitialconditions.The flow-ratewas0.7ml/min.Thedetectionwavelengthwas260nm.

Theidentificationofisoflavoneswasperformedbycomparing theUVprofilesandretentiontimeswithchemicalreference sub-stances.Standardcurvesweregeneratedforthefourisoflavones (daidzein, formononetin, genistein, and biochanin A). The area under the curve for each isoflavone of the extract was deter-mined,andtheseareaswereusedtocalculatethepercentweight of isoflavones in the samples, based on standard curve, linear regression,andamountinjectedinthecolumn.RelativeStandard Seviations(RSD)forareavaluesfromtriplicateinjectionswere cal-culated as:RSD=[(mean−standard deviation)/mean]×100, and thesamples’RSDhadtobe<5%tobeconsideredvaliddata.

Dryextractpreparation

The dry extract was obtained by soaking the leaves of T. riograndensedriedandcrushedwith40%ethanolatroom tempera-turethreetimes,eachtimeforthreedays.Theethanolextractwas partitionedwithdichloromethane.Thesolventwasremovedunder reducedpressureandtheresultingconcentratedextractwas dis-solvedinwaterandsubjectedtolyophilizationtoproducethedry extract.

Animals

Wistarrats(180–220g)wereobtainedfromtheBreeding Lab-oratory,UFRGS,Brazil.Theanimalswerehousedfourpercagein atemperaturecontrolledroomwithfreeaccesstofoodandwater. ThisstudywasapprovedbytheEthicalCommitteefrom Universi-dadeFederaldoRioGrandedoSul(protocolnumber:2007981).

Anti-inflammatoryactivities

Chemotacticmigration

Chemotacticmigrationwasmeasuredaccordingtothemethod describedbySuyenagaetal.(2011).Atotalofsevenratswereused in this assay.For obtainingrat polymorphonuclear neutrophils, 20ml of sterile 1%glycogen (w/v) were injectedinto the peri-toneum of one Wistar rat and 4hlater, theanimal waskilled bydecapitationandtheleukocytescollected.T.riograndensedry extractwasdissolvedinratleukocytessolutiontothe concentra-tionsof100, 50, 25,10, 5,1,0.5, and0.2␮g/ml, andincubated at37◦Cfor30min.Plasmacollectedfromsixratswasincubated

at37◦Cfor30minwith65␮g/mlofLPS(lipopolysaccharidefrom

Escherichiacoli)anddilutedinHanksbuffertoa20%solution(v/v). ThereferencedrugsbiochaninA(1),formononetin(2),daidzein(3), andgenistein(4)(10␮g/ml)werealsodissolvedinHanksbuffer.

Theleukocyte/sampleswereaddedintheupperwellsofthe chamber,separatedbyan8.0␮mnitrocellulosefilter(Millipore, USA)fromthechemotacticstimulant(LPS)presentinthebottom compartment.Thechamberwaskeptat37◦Cfor1hand,afterthat,

theleucocytesmigrationthroughthefilterwasmeasuredbyusing anopticalmicroscope.Thedistancefromthetopofthefiltertothe farthestplaneoffocuscontainingtwocellsallowedtheevaluation ofleukocytemigration.Measurementsweretakenfromfivefields acrosseachoneofduplicatefiltersandtheresultsexpressedas mean±standarderrorofthemean(SEM).

Carrageenan-inducedpawedemainrats

(3)

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

2.00

220.00 220.00 220.00 220.00

380.00 380.00

380.00 380.00

nm 5636

1 - Daidzein 2 - Genistein 3 - Formononetin 4 - Biochanin

13.04 261.7

9.59 299.8 247.4 8.07 256.9

5.64

384.7 365.4 299.8 247.4 209.6

A nm

8077

nm 9594

nm 13 041 4.00 6.00

5636

8077

9594

13 041

8.00 10.00

Minutes 4 3

2

1

AU

12.00 14.00 16.00 18.00 20.00

Fig.1. ChromatogramandUVspectra(260nm)oftheisoflavonesdaidzein,genistein,formononetin,andbiochaninAfoundinTrifoliumriograndense.

andtestgroupoffiveanimalseach.T.riograndensedryextractwas resuspendedinsalineandadministeredorally1hbefore subplan-tarinjectionof carrageenan(0.1mlof asuspensionat5mg/ml) usinga singledoseof100mg/kgbodyweightforeachgroupof samples(n=5).The controlgroup receivedequivalentvolumes ofthevehicle.Theactivitywascompared withtheeffectofthe positivecontrolindomethacin(99%purity;Sigma)administration (10mg/kginsaline,p.o.).

MaleWistarratswereanaesthetizedwithsodium pentobarbi-tal(40mg/kg,i.p.)andinjectedsubplantarlyintooneofthehind pawswith0.1mlof0.5%␭-carrageenantypeIVsolutioninisotonic saline(SigmachemicalCo.,St.Louis,MO).Thecontralateralpaw wasinjectedwith0.1mlsalinesolutionandusedascontrol.Edema wasmeasuredusingadigitalplethysmometerUgoBasile(model 7140,Italy)at1,2,3and4haftercarrageenaninjection.Edema volumewasexpressedforeachanimalasthepercentagechangein ratpawvolumeaftercarrageenaninjectioncomparedwithplacebo group.

Statisticalanalysis

Resultsareexpressedasthemean±SEMandweretestedfor significanceusingStudent’st-test.Probabilityvalues(p)oflessthan 0.05weretakentoindicatestatisticalsignificance.

Resultsanddiscussion

InthisHPLCsystem,daidzein(3),genistein(4),formononetin (2) and biochanin A (1) wereeluted with thefollowing reten-tiontimeranges:5.646,8.077,9.594,and13.041min,respectively (Fig.1).R2valuesfortheleast-squareregressionequationsfittedto thestandardcurveswereasfollows:daidzein(0.9983),genistein (0.9999),formononetin(0.9996),andbiochaninA(0.9997).

Theconcentrationsofthefourinvestigatedisoflavonesin dif-ferentpartsfromT.riograndensearesummarizedinTable1.Total isoflavone concentration was18.30mg/g of dry plant material. In leaves, total isoflavone concentrationwas 7.331mg/g of dry plant. The root presented the lowest isoflavone concentration, 2.806mg/g.Themainisoflavonefoundinallpartsoftheplantwas formononetin(16.683mg/g)followedbybiochaninA(1.207mg/g). Theisoflavone concentration foundin Trifolium riograndense

ishigh, whencomparedwithotherspecies oftheLeguminosae

Table1

Isoflavonecontents(milligrampergramofdryweight;arithmeticmeansofthe analyticaldataaregiven;numberofreplicates:3)indifferentpartsofTrifolium riograndense.

Plantorgan Isoflavones(mg/g)

Daidzein Genistein Formononetin BiochaninA Total

Leaves 0.063 0.167 6.623 0.478 7.331

Flowers 0.059 0.015 3.180 0.188 3.442

Stolons 0.065 0.033 4.348 0.275 4.721

Roots 0.000 0.008 2.532 0.266 2.806

Total 0.187 0.223 16.683 1.207 18.300

family.Forexample,theconcentrationofisoflavonesinsoyseeds,

the most consumed source of isoflavone in the world, varies

between0.5 and 2.0mg/g, while thelowest isoflavone content

foundinT.riograndense wastherootswith2.806mg/g andthe highestwasintheleaveswith7.331mg/g(USDA,2002).

PreviousresearchhasquantifiedisoflavonesinotherTrifolium

species.Ramosetal.(2008)analyzedfivepopulationsofredclover (T.pratense)andobservedthataglyconecontentvariedbetween 0.008and0.091mg/gexpressedindaidzein,0.05and0.131mg/g ingenistein,6.568and23.462mg/ginformononetin,and2.499and 10.337mg/ginbiochaninA.Ingeneral,thedaidzein(3)and genis-tein(4)contentsofT.riograndensearehigherthaninT.pratense, whiletheconcentrationofbiochaninA(1)inT.riograndenseislower (1.207mg/g).

Ascreeningof57Trifoliumspeciesforisoflavoneconcentration showedthatseveralpresentextremelyhighamountsofthese com-pounds.Fromthispointofview,elevenspecies,T.lappaceum,T. phleoides,T.hirtum,T.alpestre,T.medium,T.subterraneum,T. hel-dreichianum,T.pratense,T.isodon,T.miegeanum,andT.scabrum, are interesting,withisoflavone contents ranging from10.39to 88.38mg/g.Mostoftheother46Trifoliumspecieswereeitherfree ofisoflavonesorpresentedverylowcontentsofthesecompounds (Oleszeketal.,2007).

(4)

Table2

Invitrochemotacticresponseofneutrophilstreatedwiththesuspensionofdry extractofTrifoliumriograndenseisoflavones.

Sample Concentration

(␮g/ml)

Distancemigrated (␮m)

%Inhibition

Control 115±2 100

Trifoliumriograndense 100 10±1* 91

50 9±1a 92

25 8±1a 93

10 8±1a 93

5 7±1a 94

1 13±1a 89

0.5 76±4a 34

0.2 120±1a 0

Daidzein 10 25±1a 78

Genistein 10 55±3a 52

Formononetin 10 51±4a 55

BiochaninA 10 9±1a 92

Theresultsofdistancemigratedaremean±SEM.

ap<0.005,significantlydifferentfromcontrolbyStudent’st-test.

Regardingtheanti-inflammatoryactivityofdryextractofleaves

T.riograndense,wehaveinhibitoryactivityoftheextractagainst neutrophil migration is shown in Table2. All extracts concen-trations(0.2–50.0␮g/ml)showedadose-dependentinhibitionof neutrophilmigration.Except forthe0.2␮g/mlextract,allother extractsinhibitedthephenomenonbymorethan90%(p<0.005). Inaddition,isolated isoflavoneswerealsoassayed,allof which significantlyinhibitedneutrophilmigration,especiallybiochanin A(1),whichwasabletoinhibitchemotaxisby92%followedby 78%ofdaidzein(3).However,themajorisoflavone,formononetin (2),didnotpresentthestrongestanti-inflammatoryactivity,and theanti-inflammatorycapacityoftheextractofT.riograndenseis mainlyrelatedtotheclassoftheisoflavonecompoundspresentas observedinthisstudy.

Indeed, all of these isoflavones have been object of anti-inflammatoryinvestigationandtheresultsareinagreementwith theliterature. Previous study hasdemonstrated that biochanin A antagonizes the IL-1␤-induced catabolic effects through its anti-inflammatoryactivitybythemodulationofNF␬Bsignaling, resultinginpotentanti-inflammatory,anti-catabolic,and antiox-idativeeffectsthroughantagonisticeffectsagainstIL-1binprimary ratchondrocytes.SuchresultssuggestthatbiochaninAmaybean importantphytoestrogentopreventosteoarthritis(Ohetal.,2016). Inotherstudy,biochaninAshowedprotectiveeffecton LPS/GalN-inducedliverinjury,bytheprotectionagainstLPS/GalN-induced liverinjurybyactivatingtheNrf2pathwayandinhibitingNLRP3 activation(Liu etal.,2016b).Formononetin(1)demonstrated a reductionin someinflammatory mediatorssuchasnuclear fac-tor␬B(NF-␬B)andIL-1␤invitro(Wangetal.,2012).Inaddition, thiscompoundwasabletodecreasethelevelsofTNF-␣and IL-6(Liet al.,2014)and improvesuperoxidasedismutaseactivity (Maetal.,2013),demonstratingananti-inflammatoryand antiox-idantactivitiesassociatedwithneuronandlungprotectiveeffects

invivo.Inordertostudytheeffectofdaidzeinforthetreatment ofboneloss,thiscompoundwastestedontheexpressionofthe osteoblast-producedboneregulatoryfactorsOPG,RANKLand IL-6 in human osteoblastic MG-63 cells. The resultsshowed that daidzeinincreasedthelevelsofOPGanddecreasedthoseofRANKL andIL-6(Sunetal.,2016).Genisteinwasalsosubmittedfor inves-tigationofitsanti-inflammatoryactivityandtheresultsconfirmed animportantdecreaseintheTNF-␣andIL-6 levels(Inciretal., 2016).

Thesuppressionofneutrophilfunctionsisoneofthewaysto controlinflammatoryconditions.Therelationshipbetween tradi-tionaluseofaplantandaninflammatoryprocesshasbeenstudied usingseveralspecies.TheBoydenchamberisasimpleandefficient

Table3

EffectoforaladministrationofTrifoliumriograndenseextractonratpawedema inducedbycarrageenan(n=5animals).

Treatment Volumeofpawedema(ml)±SEM(%inhibition)

1h 2h 3h 4h

Control 1.19±0.15 1.44±0.23 2.13±0.17 1.69±0.26

Indomethacin 0.12±0.23a 0.47±0.27a 0.72±0.35a 0.48±0.48

10mg/kg (89.9%) (67.4%) (66.2%) (71.6%)

T.riograndense 0.38±0.24a 0.66±0.26 1.13±0.19a 0.58±0.26a

100mg/kg (68.1%) (54.2%) (46.9%) (65.7%)

ap<0.05,significantlydifferentfromcontrolbyStudent’st-test.

methodtodeterminewhetheranisolatedcompoundorextracthas theabilitytoinhibitneutrophilchemotaxis(Suyenagaetal.,2011). Theresultsobtainedintheanalysisofneutrophilchemotactic migrationpromptedustoevaluatetheinvivoantiedematogenic activityoftheextractofT.riograndense.Intheratpawedema,the inflammatoryeffectinducedbyinjectionofcarrageenan0.5%, pro-ducededemaafter60min.Thepreviousadministration(60min)of theextractofT.riograndense100mg/kginducedsignificant inhibi-tion,whencomparedwiththecontrol(p<0.05)(Table3).Asshown inTable3,theextractinhibitedpawedemaalreadywithinthefirst houroftheexperiment(54.2–68.1%ofinhibition).

Considering the results obtained in the anti-inflammatory assays,thefindingsindicatedthattheextractobtainedfromthe leavesshowedanti-inflammatoryandantiedematogenic propri-etiesduetoreductionofacuteedema.

Isoflavones have attractedattentiondue to theirrole in the amelioration of postmenopausal symptoms, cardiovascular dis-eases,cognitivefunction,andbreastandprostatecancers(Verheus etal.,2007).Isoflavone-basednutraceuticalsarethemostassayed polyphenol supplements. The interest in isoflavones as dietary componentsandtheirscarcityinWesterndietsascompared to Asian diets,where theyare abundantdue tosoy consumption, hasresultedinincreasingdemandfornewplantsourcesofthese compounds(Wangetal.,2013).

The model of chemotaxis is simulated byin vitro leukocyte migrationfromtheintravascularspaceintothetissue(Hofbauer etal.,1998).Thechemotaxisassayevaluatesthedecreasein motil-ityofleukocytechemotacticagentsahead,andconsidersthespace traversedbyleukocytemigrationasameasureofactivity.Itshould be emphasized that the reading of cell migration is observed

invitroandthereforeisnotameasureofthedistancemigrated

invivo,thoughbothparametersarehighlycorrelated.Based on theknowledgethatneutrophils,inparticularleukocytes,playan importantroleintheinflammatoryprocess,itmaybesuggested thatinhibitionoftheirmigrationmayberesponsibleforpartofthe anti-inflammatoryactivity.Thesuppressionofneutrophilfunction cancontroltheinflammatoryresponsebeingappliedasa mech-anismofaction ofcertainanti-inflammatorydrugs (Riojaetal., 2000).

This test demonstrated the action of dry extract from T. riograndense leavesonleukocytesmigration, provingthe occur-renceofchemotaxisinhibition.Thiseffectonthemigrationcaused by the extract of this species of clover can be attributed to isoflavones. The fact that the extract of T. riograndense caused greaterinhibitiononleukocytechemotaxis,whencomparedwith theisolatedisoflavones,suggeststheoccurrenceofsynergism,in whichtheactionof twoormoreisoflavonesmaycauseamore intenseeffect.

(5)

Thepawedema inducedby carrageenan followsa model of acuteinflammationthatconsistsoftwophases:thefirst,which wasdetectedafteraround1handwascalledthefastphase,with releaseofhistamineandserotonin,andthesecondstage,calledlate, withthemediators(kinins,prostaglandins)releasedafter2and3h, respectively(Vinegaretal.,1969;DiRosaetal.,1971).Inamodel ofinducedarthritis,Trifoliumresupinatumvar.microcephalumwas showntohaveactivityinratpawedema(Sabudaketal.,2008). ChemicalanalysesshowedthatT.riograndense isaplantrichin isoflavonesandanewinterestingoptionasisoflavonesource.The resultsofthebiologicalteststakentogethershowthattheextract ofT.riograndensehasanti-inflammatoryproperty.However,the cellularmechanismsinvolvedinthisactivitydeservefurtherstudy. Othertests,invivoandinvitro,arenecessarytoconfirmtheresults, andfurtherinvestigationscouldindeedestablishprobable mecha-nismsofaction.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Author’scontribution

GPRP,CBM,GRDandPCCcarriedoutthephytochemical pro-cess.GPRPandGRDmadethechromatographicassays.MAAand JASZcontributedinwritingthemanuscript.MAA,EESSandGRD performedthebiologicalanalysis.MDAhelpedinthecollection andidentificationoftheplantmaterial.MAAandEESScontributed tothecriticalreadingthemanuscript.Allauthorshaveapproved thefinalversionforpublishing.

Acknowledgements

Thisinvestigationwassupportedbygrantsof FAPERGS, and CNPq.WearegratefultotheCNPqforthefellowshipsupport.

References

Burkart,A.,1987.TrifoliumL.In:FloraIlustradadeEntreRios(Argentina).I.N.T.A., Argentina,p.219–662.

Cavendish,R.L.,Santos,J.S.,Neto,R.B.,Paixão,A.O.,Oliveira,J.O.,deAraujo,E.D.,Silva, A.A.B.,Thomazzi,S.M.,Cardoso,J.C.,Gomes,M.Z.,2015.Antinociceptiveand anti-inflammatoryeffectsofBrazilianredpropolisextractandformononetin inrodents.J.Ethnopharmacol.173,127–133.

DiRosa,M.,Giroud,J.P.,Willoughby,D.A.,1971.Studiesonthemediatorsofthe acuteinflammatoryresponseinducedinratsindifferentsitesbycarrageenan andturpentine.J.Pathol.104,15–29.

Gillet,J.M.,Collins,M.,Taylor,N.J.,2001.TheWorldofClovers.IowaStateUniversity Press,Ames,pp.457pp.

Honmore,V.S.,Kandhare,A.D.,Kadam,P.P.,Khedkar,V.M.,Sarkar,D.,Bodhankar, S.L.,Zanwar,A.A.,Rojatkar,S.R.,Natu,A.D.,2016.IsolatesofAlpiniaofficinarum HanceasCOX-2inhibitors:evidencefromanti-inflammatory,antioxidantand moleculardockingstudies.Internat.Immunopharmacol.33,8–17.

Hofbauer,R.,Moser,D.,Salfinger,H.,Frass,M.,Kapiotis,S.,1998.Sufentanilinhibits migrationofhumanleukocytesthroughhumanendothelialcellmonolayers. Anesth.Analg.87,1181–1185.

Incir,S.,Bolayirli,I.M.,Inan,O.,Aydın,M.S.,Bilgin,I.A.,Sayan,I.,Esrefoglu,M.,Seven, A.,2016.Theeffectsofgenisteinsupplementationonfructoseinducedinsulin resistance,oxidativestressandinflammation.LifeSci.158,57–62.

Ji,G.,Zhang,Y.,Yang,Q.,Cheng,S.,Hao,J.,Zhao,X.,Jiang,Z.,2016.Genistein sup-pressesLPS-inducedinflammatoryresponsethroughinhibitingNF-kBfollowing AMPkinaseactivationinRAW264.7macrophages.PLoSOne7(12),e53101.

Lemeziene,N.,Padarauskas,A.,Butkute,B.,Ceseviciene,J.,Taujenis,L., Norke-viciene,E., Mikaliuniene,J.,2015. Theconcentrationofisoflavones inred clover(TrifoliumpratenseL.)atfloweringstage.Zemdirbyste-Agriculture102, 443–448.

Li,Z.,Dong,X.,Zhang,J.,Zeng,G.,Zhao,H.,Liu,Y.,Qiu,R.,Mo,L.,Ye,Y.,2014. For-mononetinprotectsTBIratsagainstneurologicallesionsandtheunderlying mechanism.J.Neurol.Sci.15,112–117.

Liu,D.,Cao,G.,Han,L.,Ye,Y.,SiMa,Y.,Ge,W.,2016a.FlavonoidsfromRadix TetrastigmaeinhibitTLR4/MD-2mediatedJNKandNF-␬Bpathwaywith anti-inflammatoryproperties.Cytokine84,29–36.

Liu,X.,Wang,T.,Liu,X.,Cai,L.,Qi,J.,Zhang,P.,Li,Y.,2016b.BiochaninAprotects lipopolysaccharide/d-galactosamine-inducedacuteliverinjuryinmiceby acti-vatingtheNrf2pathwayandinhibitingNLRP3inflammasomeactivation.Int. Immunopharmacol.38,324–331.

Ma,Z.,Ji,W.,Fu,Q.,Ma,S.,2013.FormononetininhibitedtheinflammationofLPS inducedacutelunginjuryinmiceassociatedwithinductionofPPARgamma expression.Inflammation36,1560–1566.

Oh,J.S.,Cho,I.A.,Kang,K.R.,You,J.S.,Yu,S.J.,Lee,G.J.,Seo,Y.S.,Kim,C.S.,Kim, doK.,Kim,S.G.,Seo,Y.W.,Im,H.J.,Kim,J.S.,2016.Biochanin-Aantagonizes theinterleukin-1␤-inducedcatabolicinflammationthroughthemodulationof NFkBcellularsignalinginprimaryratchondrocytes.Biochem.Biophys.Res. Commun.477,723–730.

Oleszek,W.,Stochmal,A.,Janda,B.,2007.Concentrationofisoflavonesandother phenolicsintheaerialpartsofTrifolium species.J. Agric.FoodChem.55, 8095–8100.

Ramos,G.P.,Dias,P.M.B.,Morais,C.B.,Froehlich,P.E.,Dall’Agnol,M.,Zuanazzi,J.A.S., 2008.LCdeterminationoffourisoflavoneaglyconesinredclover(Trifolium pratenseL.).J.Chromatogr.67,125–129.

Rioja,I.,Ubeda,A.,Terencio,M.C.,Guillen,I.,Riguera,R.,Quintela,J.M.,Peinador,C., Gonzalez,L.M.,Alcaraz,M.J.,2000.Ananti-inflammatoryditriazineinhibiting leukocytefunctionsandexpressionofinduciblenitricoxidesynthaseand cyclo-oxygenase-2.Eur.J.Pharmacol.397,207–217.

Sabudak,T.,Dokmeci,D.,Ozyigit,F.,Isik,E.,Aydogdu,N.,2008.Anti-inflammatory andantioxidantactivitiesofTrifoliumresupinatumvar.microcephalumextracts inarthriticrats.AsianJ.Chem.20,1491–1496.

Sahpaz,F.,Dogukan,A.,Dagli,M.N.,2016.Effectofisoflavonesonatherosclerosisin peritonealdialysispatients.CukurovaMed.J.41,112–120.

Sun,J.,Sun,W.J.,Li,Z.Y.,Li,L.,Wang,Y.,Zhao,Y.,Wang,C.,Yu,L.R.,Li,L.Z.,Zhang, Y.L.,2016.DaidzeinincreasesOPG/RANKLratioandsuppressesIL-6inMG-63 osteoblastcells.Int.Immunopharmacol.40,32–40.

Suyenaga,E.S.,Konrath,E.L.,Dresch,R.R.,Apel,M.A.,Zuanazzi,J.A.,Chaves,C.G., Henriques,A.T.,2011.Appraisaloftheantichemotacticactivityofflavonoidson polymorphonuclearneutrophils.PlantaMed.77,698–704.

Tava,A.,Pecio,L.,Stochmal,A.,Pecetti,L.,2015.Clovamideandflavonoidsfrom leavesofTrifoliumpratenseandT.pratensesubspnivalegrowninItaly.Nat.Prod. Commun.10,933–936.

USDA–UnitedStatesDepartmentofAgricultureAgriculturalResearchService &IowaStateUniversity,2002.USDA-IowaStateUniversityDatabaseonthe IsoflavoneContentofFoods.

Verheus,M.,VanGils,C.H.,Keinan-Boker,L.,Grace,P.B.,Bingham,S.A.,Peeters, P.H.M.,2007.Plasmaphytotoestrogenandsubsequentbreastcancerrisk.J.Clin. Oncol.25,648–655.

Vinegar,R.,Schreiber,W.,Hugo,R.,1969.Biphasicdevelopmentofcarrageenin edemainrats.J.Pharmacol.Exp.Ther.166,96–103.

Wang,Y.,Zhu,Y.,Gao,L.,Yin,H.,Xie,Z.,Wang,D.,Zhu,Z.,Han,X.,2012. For-mononetinattenuatesIL-1␤-inducedapoptosisandNF-␬BactivationinINS-1 cells.Molecules17,10052–10064.

Wang,Q.,Ge,X.,Tian,X.,Zhang,Y.,Zhang,J.,Zhang,P.,2013.Soyisoflavone:the multipurposephytochemical(Review).Biosci.Rep.1,697–701.

Winekenstadde,D.,Angelis,A.,Waltenberger,B.,Schwaiger,S.,Tchoumtchoua,J., Konig,S.,Werz,O.,Aligiannis,N.,Skaltsounis,A.L.,Stuppner,H.,2015. Phyto-chemicalprofileoftheaerialpartsofSedumsediformeandanti-inflammatory activityofmyricitrin.Nat.Prod.Commun.10,83–88.

Winter,C.A.,Risley,E.A.,Nuss,G.W.,1962.Carragenin-inducedoedemainhindpaw oftheratasanassayforanti-inflammatorydrugs.P.Soc.Exp.Biol.Med.111, 244–247.

Wu,Q.,Wang,M.,Simon,J.E.,2003.Determinationofisoflavonesinredclover andrelatedspeciesbyhigh-performanceliquidchromatography combined withultravioletandmass spectrometricdetection.J. Chromatogr.A1016, 195–209.

Imagem

Fig. 1. Chromatogram and UV spectra (260 nm) of the isoflavones daidzein, genistein, formononetin, and biochanin A found in Trifolium riograndense.

Referências

Documentos relacionados

Herein, we have demonstrated a decrease in ␤ -F1-ATPase expression and mitochondrial respiration (basal and after OLIGO addition) in human and murine breast cancer cell lines after

Overall, the results suggest that the apoptotic activity of Moutan Cortex Radicis may be associated with a caspase-dependent cascade through the activation of both extrinsic

Effect of BV on apoptosis of glioblastoma cells is shown in Fig. Flow cytometry analysis revealed that in control condition only 14 ± 5% of glioblastoma cells were in apoptosis

After treatment with compounds 1 and 2 at 20 and 60 ␮ g/ml for 48 h, WST-1 assay revealed a decrease in cell proliferation in all four human lung cancer cell lines in a

The total polysaccharides fraction (TPL-Xa: 8.1% yield) presented 43% carbohydrate (21% uronic acid) and resulted in two main fractions after chromatography (FI: 12%, FII: 22%

caracasana demonstrated low toxicity and almost no hemolytic effect, we decided to investigate which extract frac- tion would be responsible for the antispasmodic activity

A signifi- cant drop in feed consumption was observed in animals treated at 4 × and 8 × doses, which had a significant impact on the final body weight for the 8 × group and on the

In order to further analyze the consequences of the use of Hp during gestation, this work investigated the possible action in the adult offspring born from mothers treated with the