• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número3"

Copied!
7
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Polysaccharide

rich

fractions

from

barks

of

Ximenia

americana

inhibit

peripheral

inflammatory

nociception

in

mice

Antinociceptive

effect

of

Ximenia

americana

polysaccharide

rich

fractions

Kaira

E.S.

da

Silva-Leite

a

,

Ana

M.S.

Assreuy

a,∗

,

Laryssa

F.

Mendonc¸

a

a

,

Luis

E.A.

Damasceno

a

,

Maria

G.R.

de

Queiroz

b

,

Paulo

A.S.

Mourão

c

,

Alana

F.

Pires

a

,

Maria

G.

Pereira

a,d

aInstitutoSuperiordeCiênciasBiomédicas,UniversidadeEstadualdoCeará,Fortaleza,CE,Brazil

bDepartamentodeAnálisesClínicaseToxicológicas,UniversidadeFederaldoCeará,Fortaleza,CE,Brazil

cInstitutodeBioquímicaMédica,UniversidadeFederaldoRiodeJaneiro,RiodeJaneiro,RJ,Brazil

dFaculdadedeEducac¸ão,CiênciaseLetrasdoSertãoCentral,UniversidadeEstadualdoCeará,Quixadá,CE,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received7June2016 Accepted7December2016 Availableonline24January2017

Keywords:

Antinociceptiveactivity Structuralcharacterization Medicinalplant Plantpolysaccharides Purification Toxicity

a

b

s

t

r

a

c

t

XimeniaamericanaL.,Olacaceae,barksareutilizedinfolkmedicineasanalgesicandanti-inflammatory. Theobjectivewastoevaluatethetoxicityandantinociceptiveeffectofpolysaccharidesrichfractionsfrom

X.americanabarks.ThefractionswereobtainedbyextractionwithNaOH,followedbyprecipitationwith ethanolandfractionationbyionexchangechromatography.Theywereadministeredi.v.orp.o.before nociceptiontests(writhing,formalin,carragenan-inducedhypernociception,hotplate),orduring14days fortoxicityassay.Thetotalpolysaccharidesfraction(TPL-Xa:8.1%yield)presented43%carbohydrate (21%uronicacid)andresultedintwomainfractionsafterchromatography(FI:12%,FII:22%yield).FII showedbetterhomogeneity/purity,contentof44%carbohydrate,including39%uronicacid,arabinose andgalactoseasmajormonosaccharides,andinfraredspectrawithpeaksincarbohydraterangeforCOO− groupsofuronicacid.TPL-Xa(10mg/kg)andFII(0.1and1mg/kg)presentedinhibitoryeffectinbehavior teststhatevaluatenociceptioninducedbychemicalandmechanical,butnotthermalstimuli.TPL-Xadid notalterparametersofsystemictoxicity.Inconclusion,polysaccharidesrichfractionsofX.americana

barksinhibitperipheralinflammatorynociception,beingwelltoleratedbyanimals.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Theuseofmedicinalplantsasanalgesicagentsisa common

practicethathaspromptedethnopharmacologicalstudies.Among

plantconstituents,polysaccharidesarefoundinlargequantities

andshowlowtoxicity(Ovodov,1998).

XimeniaamericanaL.,Olacaceae,isdistributedintropicaland

temperateregions,beingpopularlyknownintheNortheastBrazil

as“ameixa-do-mato”,“ameixa-brava”or“ameixa-do-sertão”(Silva

etal.,2008).InBrazilian folkmedicineasinothercountries, X. americanabarksareutilizedasanti-cancer,analgesicforheadaches,

Correspondingauthor.

E-mail:ana.assereuy@uece.br(A.M.Assreuy).

gastric and back pains and other inflammatory conditions (de

Albuquerque et al., 2007; Le et al., 2012). The phytochemical

analysisofX.americanabarks extractsrevealedthepresenceof

alkaloids,anthraquinones,glycosides,flavonoids,saponins,tannins terpenoids(Maikaietal.,2010)and carbohydrates(Jamesetal.,

2007).Experimentalstudiesperformedwiththeaqueousextracts

ofthisplanthaddemonstratedantinociceptiveactivity(Soroetal., 2009).

Theimmunomodulatoryroleofplantpolysaccharidesisalready

welldescribed(SchepetkinandQuinn,2006),includingthe

anti-inflammatoryeffect(Pereiraetal.,2012a,b).However,theeffectof plantpolysaccharidesinthenociceptionprocessisscarce,although

recent studieshad demonstratedthe antinociceptiveactivityin

mice for Thladiantha dubia crude polysaccharides (Wanget al.,

2011),andforarabinogalactan(doNascimentoetal.,2015)and

http://dx.doi.org/10.1016/j.bjp.2016.12.001

(2)

galactoarabinoglucuronoxylan from Solanumbetaceum fruit (do Nascimentoetal.,2013).Inthisstudypolysacchariderichfractions ofX.americanabarkswereevaluatedinmiceforitstoxicityand antinociceptiveeffect.

Materialsandmethods

Animals

MaleSwissmice(20–25g),5–6weeksofage,weremaintained

withfreeaccesstowaterandfoodat22–26◦C,12/12hlight/dark

cycle.TheexperimentalprotocolswereapprovedbytheAnimal

Care and Use Committee of the State University of Ceará (n◦

12783679-9/2012).

Drugsandreagents

DEAE-cellulose, indomethacin, bovine serum albumin (BSA),

␭-carrageenan (Cg) and monosaccharides (Sigma Chemical Co.,

St.Louis,MO,USA);agarose(BioRadLaboratories);N-cetyl-N-N

-N-trimethylammonium bromide(Cetavlon) (British Drug House

Chemical, Ltd.); chondroitin-6-sulfate, heparin sulfate and

der-matansulfate(SeikagauKogyoCo);morphine(Dimorf®,Cristalia,

SP,Brazil);diazepam(TeutoS/A,GO,Brazil);formaldehyde and

aceticacid(Isofar,RiodeJaneiro,RJ,Brazil);ketamineandxylazine

(KönigS/A,Argentina).Theremainingdrugsandreagentswereof

analyticalgrade.

Plantcollection,polysaccharidesextractionandfractioning

Ximenia americana L., Olacaceae, was collected at

Custódio-Quixadá,Ceará(Brazil)and avoucherspecimen(n◦ 46794)was

deposited in the Herbarium Prisco Bezerra of Federal

Univer-sityofCeará.BarksofX. americanawerewashed,driedat40◦C

andmaceratedintopowder(5g).Thepowderwassuspendedin

methanol(1:50,w/v,76◦C,2h),toremovepigments,andfiltered

(steprepeatedtwice).Theinsolubleresiduewasaddedto0.1M

NaOH(1:50,w/v,97◦C,2h),filtered(steprepeatedthreetimes)

andcentrifuged (2496×g;15min,25◦C).Alkalinesupernatants

werepooled,neutralizedin1MHClandprecipitatedinethanol

(1:4(w/v);24h,4◦C).Themixturewascentrifugedandthe

pel-letwasdialyzed(cut-off14,000Da;72h)againstdistilled water

andre-centrifuged(Pereiraetal.,2016).Thefinalsupernatantwas

lyophilizedandnamedtotalpolysaccharidesofX.americana

(TPL-Xa).

TPL-Xa(1:2,w/v)wasdissolvedindistilledwaterandapplied

to ion exchange chromatography – DEAE-cellulose. Column

(9.8×2.0cm)wasequilibratedandelutedwithdistilledwaterfor

removal of neutral polysaccharides, and the acidic

polysaccha-rideswereeluted(1ml/min)withNaCl(0.1,0.25,0.5,0.75,1.0M).

Polysaccharidefractionsweremonitoredforthecarbohydrate

con-tentbythemethodofphenol–sulfuricacid(DuBoisetal.,1956).

Polysaccharidescharacterization

Polysaccharideswerequantifiedfortotalcarbohydrate(DuBois

et al., 1956), uronic acid (Dische, 1947) and soluble

pro-tein (Bradford, 1976), using arabinose and galactose (3:1),

d-galacturonicacidandBSA(albuminserumbovine)asrespective

standards.

Agarose 0.5% gel electrophoresis: polysaccharides (6mg/ml,

15␮l) were applied and run in 0.05M

1,3-diaminopropane-acetatebuffer(pH 9.0)for60minat110Vand fixedwith0.1%

Cetavlonfor24h.GelwasdriedandstainedwithStains-All(5mg

Stains-All; 100ml of 50% ethanol, w/v) and washed with

dis-tilledwater(DietrichandDietrich,1976;Souzaetal.,2015).The

glycosaminoglycans chondroitin 6-sulfate (∼60kDa), dermatan

sulfate(∼30kDa)andheparansulfate(∼15kDa)wereusedas stan-dards.

Themonosaccharidecompositionwasanalyzedbygas–liquid

chromatographycoupledtomassspectrometry(GC–MS).

Polysac-charidefractions(5mg)werehydrolyzedwithtrifluoroaceticacid

(1mol/l; 96◦C; 5h) evaporated in rota evaporator (Buchi RE

11, Switzerland), extensively washed with water and reduced

with sodium borohydride (1h, r.t.). The reaction was

inter-ruptedwithacetic aciduntilneutralization.The resultingboric

acidwasremovedas trimethylboratewithmethanol(3×5ml)

in the rota evaporator and acetylation carried out with acetic

anhydride–pyridine(1:1(v/v); 100◦C;1h).Theresultingalditol

acetate was extracted with chloroform (5ml) and analyzed by

GC–MSHP-Ultra2column(Kircher,1960).

Polysaccharideswereanalyzedbyinfrared(FTIR)spectroscopy

(Bruker–Vertex70),coupledtoPikeMiraclesingle-bounce attenu-atedtotalreflectance(ATR)cellequippedwithaZnSesinglecrystal

module.Thespectralregionexaminedextendedof500–4000cm−1

usingaresolutionof3cm−1.Allspectraaretheaverage

measure-mentswith124scanseach.

Toxicityassay

Mice were weighed beforeand after treatmentfor 14 days

withTPL-Xa(10mg/kg, i.v.). Bloodwascollectedafter

anesthe-sia intraperitoneal (i.p.) with ketamine 90mg/kg and xylazine

10mg/kgforhematologicalanalysis(erythrocytes,leukocytesand

platelets),serum contentof ureaand creatinineand enzymatic

activityofalaninetransaminase(ALT)andaspartatetransaminase

(AST).Heart,spleen,stomach,kidneyandliverwereremovedand

weighed(wetweight/bodymass).

Behavioraltests

Mice(n=6−8pergroup)weretreated30minbeforetestswith polysaccharidesi.v.(0.1,1,10mg/kg)orp.o. (100mg/kg),sterile saline(0.9%NaCl;0.05ml/10gbodymass;i.v.),morphine(5mg/kg,

s.c.),indomethacin(10mg/kg,i.p.)ordiazepam(5mg/kg,i.p.).The

protocolswereconductedinadouble-blindmanner.

Formalintest:formalin(2.5%v/v;20␮l)wasinjecteds.c.inthe

hindanimalpawsandthetime(s)inwhichtheyspentlickingits

pawsinresponsetochemicalstimuliwasrecordedintheinitial

(P1:0–5min)andlate(P2:15–30min)phases(LeBarsetal.,2001). Writhingtest:aceticacid(0.8%(v/v);0.1ml/10gbodymass)was injectedi.p.andthenumberofwrithes(typicalcontractionsofthe

abdominalmusculaturefollowedbyhindlimbstretches),elicited

inresponsetochemicalstimuli,wascountedfrom10to30min

post-injection(LeBarsetal.,2001).

Carrageenan-inducedpawhypernociception:carrageenanwas

injected by intraplantar route(500␮g/paw, s.c.). Animalswere

placedinclearacrylicboxeswithraisedplatformsofwiremeshto

allowaccesstotheventralsurfaceofhindpawsfrom15to30min

beforeevaluation.Forthis,thefrequencyofpawwithdrawalwas

quantifiedat10sintervalsaftersixapplicationsofstimuli(100%), using0.8gflexiblevonFreyfilaments,attimezeroandfrom1-3h afterstimulationwithcarrageenan(LeBarsetal.,2001).

Hotplatetest:animalswereplacedonahotplateat55±0.5◦C

andthetimedelayedbeforebehavioralresponses(shaking,

lick-ing paws or jumping) was recorded at baseline and after 30,

60–150min.Animalsreactiontimehigherthan10s24hpriortest

wasexcluded.

Rota-rodtest:animalswereselected24hpriortest,excluding

(3)

0.389

A

B

C

0.339

0.289

0.239

0.189

0.139

+

0.089

0.0

0.1

0.2

0.3

0.4

0.5

0.6 1

4000 3000

3361 2916

2850

1576 1396

1030 1735

2000 1000

3500 2500 1500 500

12

0.1M 0.25M

Fractions (ml)

Wavenumber (cm–1)

FI

FII

23 34 45 56 67 78 89

Origin CS-60 kDa

DS-30 kDa

HS-15 kDa

TPL-Xa

FI FII – A490 nm

T

ransmittance %

Fig.1.PartialpurificationandcharacterizationofpolysaccharidesfromXimeniaamericanabarks.(A)TPL-Xa(10mg)wasappliedtoDEAE-cellulosecolumn(9.8cm×2.0cm) andresinelutedwithwater.Theacidicpolysaccharidefractionswereeluted(1ml/min)bystepwiseinNaCl(↓)andmonitoredfortotalcarbohydratesatA490nm()by

thephenol-sulfuricacidicmethod.(B)TPL-Xa,FIorFII(6mg/ml,15␮l)wereappliedin0.5%agarosegel0.05M1,3-diaminopropane:acetatepH9.0(110V,60min)and stainedwithStains-All.Chondroitin6-sulfate(CS);Dermatansulfate(DS)andHeparansulfate(HS).(C)FIIwasanalyzedbyinfrared(FTIR)spectroscopy.Thespectralregion examinedwasfrom500to4000cm−1withresolutionof3cm−1.

consecutiveperiodsof60s.Thepermanencytimeinapparatuswas

quantified(D’amourandSmith,1941).

Statisticalanalysis

Resultsarepresentedasmean±S.E.Mandanalyzedby

One-wayANOVAandBonferronitest(Prism5.0,GraphPadSoftwareInc.,

California,USA).Valuesofp<0.05wereconsideredsignificant.

Resultsanddiscussion

TheextractionoftotalpolysaccharidesfromX.americanabarks

(TPL-Xa)revealed8.1%yieldandpresentedhighcarbohydrate

con-tent(43%,including21%uronicacid)withlowprotein(6.5%).The

extractionof TPL-Xashowed higher yield and similar

carbohy-dratecontentcomparedtothoseobtainedfromotherterrestrial

Angiosperm, whose primary cell walls are composedby pectic

polysaccharides,suchasAzadirachtaindica(1.3%,54%),Caesalpinia ferrea(2.8%,31%)andErigeroncanadensis(1%,34.1%),extractedby similarprocedures(Pereiraetal.,2012a,b;Pawlaczyketal.,2011).

FractioningofTPL-Xa(DEAE-cellulose)resultedintwomajor

peakselutedat0.1(FI:12%yield)and0.25MNaCl(FII:22%yield).

FIIpresentedbetteryieldandhighestresolutioncomparedtoFI

(Fig.1A).Chemicalanalysisofthepolysaccharidefractionsrevealed

highcontentofcarbohydrateinFII(44%totalcarbohydrate,

con-taining39%uronicacid)comparedtoFI(20%totalcarbohydrate,

containing8%uronicacid)(Table1).Inaddition,thecontentof pro-teinswasstillinferior,especiallyinFII(1.6%)comparedtothatof FI(2.4%)andTPL-Xa.

ThecarbohydratecontentofFIIwassimilartoTPL-Xaand

supe-riortoFIandtoFIIofC.ferrea(Pereiraetal.,2012a)andFIIofA.indica

(Pereiraetal.,2012b).Inbothfractionstheproteincontaminant

waslowercomparedtothatofTPL-Xa.

The agarosegel electrophoresisrevealed polydispersebands

typicalofpolysaccharides(Fig.1B)afterstainingwithStains-All, suggestingbetterpurityforFIIandindicativeofuronicacid

pres-ence. Similarfeaturewasdemonstrated forthepolysaccharides

obtainedfromGeoffroeaspinosabarks(Souzaetal.,2015).In

addi-tion,themonosaccharidecomposition byGC–MSdemonstrated

thatpolysaccharidefractionsarecomposedmainlybyarabinose

(FI:39%;FII:57%)andgalactose(FI:16%;FII:20%),however,FIalso

presented35%glucose(Table1).Themonosaccharidecomposition

ofFII,showingbetterhomogeneitythanFI,corroboratesits

rela-tivepurityandwassimilartootherpecticpolysaccharidesisolated fromIlexlatifolia(Fanetal.,2014),E.canadensis(Pawlaczyketal., 2011)andG.spinosa(Souzaetal.,2015).

FTIR-ATRspectraofFII(Fig.1C),themajorpolysaccharide

frac-tion(containing highcontentof carbohydrateand uronicacid),

revealedabsorptionpeaksintheregionof1200–1000cm−1,

cor-respondingtocarbohydraterange(Souzaetal.,2015);signalsat 3361cm−1,assignedto–OHstretchingvibration(Lietal.,2014)and

(4)

Table1

CarbohydratecontentandmonosaccharidecompositionofpolysaccharidefractionsofXimeniaamericanabarks,FIandFII.

Fractions Carbohydrate(%) Uronicacid(%) Ara Rha Gal Glc Xyl Man

FI 20 8 39 4 16 35 4 2

FII 44 39 57 7 20 7 9 –

Arabinose(Ara),Rhamnose(Rha),Galactose(Gal),Glucose(Glc),Xylose(Xyl),Mannose(Man)inmolarpercentage.

vibrationofC–Hlinkage,especiallymethyl(CH3)group.Also,itwas

detectedpeaksat1750–1396cm−1,resonancesofCOO−1groupsof

uronicacid(Zhaoetal.,2007;Pawlaczyketal.,2011;Souzaetal., 2015)andat1735cm−1originatedfromtheC Ostretching

vibra-tion,confirmingthepresenceofuronicacid(groupCOOH)inthe

fractionFII(Lietal.,2014).Besides,thelackofsignalsat1240cm−1

indicatedtheabsenceofsulfateestersinFII(Souzaetal.,2015).The FTIR-ATRofFIIcorroboratesthehighcontentofuronicacid

demon-stratedeitherin theagarosegelelectrophoresisorby chemical

analysis.

Somestudieshavebeingestablishingacorrelationbetweenthe

presenceofuronicacid,animportantfeatureofpectic polysaccha-ridesofplantcellwalls(DrozdovaandBubenchikov,2005;Pereira etal.,2012b),andbiologicalactivities,suchasantitussive, antioxi-dant,anti-inflammatoryandanticoagulant(Nosál’ováetal.,2000;

Yoonetal.,2002;Chenetal.,2004).Thiscorrelationwouldalsobe

associatedwiththeantinociceptiveactivitydemonstratedinour

study.

Thei.v.treatmentofanimalswithTPL-Xaproduced

antinocicep-tioninthebehavioralteststhatevaluatechemical(Formalinand

Writhing) and mechanical (carrageenan-induced

hypernocicep-tion),butnotthermal(HotPlate)stimuli.TPL-Xashowedinhibitory effectinthefirstphase(neurogenic)offormalintest,characterized bydirectexcitationofnociceptiveafferentfibers(LeBarsetal., 2001),inhibitingthelickingtimeby48%(23.0±4.4s)at1mg/kg

and by78%(12.8±3.5s)at 10mg/kg. TPL-Xaalsoinhibitedthe

formalinsecondphase(inflammatory),characterizedbyreleaseof

inflammatorymediators(LeBarsetal.,2001),by50%(58.9±16.9s)

at 0.1mg/kg and by 93% (8.1±5.2s) at 10mg/kg compared to

saline (128.7±11.4s) (Fig. 2A). FII decreased the licking time

2nd phase

1st phase

0 20 40 60 80 100

0 20 40 60 80 100

Vehicle (2.5%; s.c.) TPL-Xa (0.1-10 mg/kg; i.v.) Indomethacin (10 mg/kg; i.p.) Morphine (5 mg/kg; s.c.)

TPL-Xa (10 mg/kg; i.v.)

Saline Morphine (5 mg/kg; s.c.)

120 140 160

0.1 1.0 10 0.1 0 h

0 30 60 90 120 150

1 h 2 h 3 h

1.0 10

Time after treatment (min)

Lic

king time (s)

0 4 8 12 16 20

Reaction time (s)

10 (i.v.)

100 (p.o.) 0

10 20 30 40 50 60 70 80

Number of wr

ithes

Intensity of h

yper

nociception (%)

∗ ∗ ∗

∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗

∗ ∗

A

B

C

D

Naive Vehicle

TPL-Xa (10 mg/kg; i.v.) Indomethacin (10 mg/kg; i.p.)

Vehicle

TPL-Xa (10 mg/kg; i.v. or 100 mg/kg, p.o.) Indomethacin (10 mg/kg; i.p.)

Fig.2. TPL-Xaantinociceptiveeffect.Micewerepre-treatedwithsaline(i.v.),morphine(5mg/kg;s.c.),indomethacin(10mg/kg;i.p.),TPL-Xa(0.1–10mg/kg;i.v.)orTPL-Xa (100mg/kg;p.o.).(A)Formalin(2.5%;s.c.);(B)Carrageenan-inducedhypernociception(500␮g/paw;s.c.);(C)Hotplate(55±0.5◦C);(D)Writhes(0.8%aceticacid;i.p.).

(5)

Vehicle

FII (0.1-10 mg/kg; i.v.) Indomethacin (10 mg/kg; i.p.) Morphine (5 mg/kg; s.c.)

Naive Vehicle FII (1 mg/kg; i.v.) Indomethacin (10 mg/kg; i.p.)

Vehicle

FII (0.1-10 mg/kg; i.v.) Indomethacin (10 mg/kg; i.p.)

Saline

FII (1 mg/kg; i.v.)

Morphine (5 mg/kg; s.c.) ∗

∗ ∗

∗ ∗

∗ ∗

Licking time (s)

Reaction time (s)

Number of writhes

Intensity of hypernociception (%)

B

A

D

C

0

0 20 40 60 80 100

0 30 60 90 120 150 180 210 240

10 20 30 40 50 60

0.1 1.0 10 0.1 1 10 0.1 1 10

Time after treatment (min)

0 h

0 4 8 12 16 20

30

0 60 90 120 150

1 h 2 h 3 h

2nd phase 1st

phase

Fig.3.FIIantinociceptiveeffect.Micewerepre-treatedwithsaline(i.v.),indomethacin(10mg/kg;i.p.),morphine(5mg/kg;s.c.),FII(0.1;1or10mg/kg;i.v.).(A)Writhes (0.8%aceticacid;i.p.);(B)Formalin(2.5%;s.c.);(C)Carrageenan-inducedhypernociception(500␮g/paw;s.c.);(D)Hotplate(55±0.5◦C).Mean±S.E.M.(n=6–8).One-way

ANOVAandBonferronitest.*p<0.05comparedtonociceptivestimuli.

onlyinthesecondphaseby41%at0.1mg/kg(118.5±19.4s)and

60%at1mg/kg(90.7±15.7s)comparedtosaline(199.4±15.3s)

(Fig.3B).Theanalgesicopioidcontrolmorphinereducedthe

lick-ingtime inthefirstand secondphasesby 93%(2.6±0.4s) and

98%(2.1±0.3s),respectively,differingfromtheanti-inflammatory

controlindomethacin,thatinhibitedonlythesecondphaseby68%

(44.3±1.3s)(Fig.2A).TheinhibitoryeffectofFII(richinuronicacid) onlyinthesecondphasesuggeststhatTPL-Xainhibitsthereleaseof

endogenousinflammatorymediatorspartiallymediatedbyacidic

polysaccharidesoffractionFII,andthatthepurificationprocess

increasestheselectivitytoinhibitinflammatorynociception.

Corroboratingthesedata,TPL-XaandFIIreducedthe

hypernoci-ceptiveresponse inducedbycarrageenan.Inmice,theinjection

ofcarrageenanintoanimalpawsinduceshypernociception

char-acterized by the release of inflammatory cytokines, especially

TNF-␣andKC(keratinocyte-derivedchemokine),whichactivate

thereleaseofIL-1␤(Cunhaetal.,2005)andprostanoids,involved

in the pain sympathetic component (Nakamura and Ferreira,

1987).

Inthistest,TPL-Xa(10mg/kg)inhibitedthefrequencyofpaw

withdrawal atthe2nd hby35% (TPL-Xa:54.1±11.1% vs.

Vehi-cle:83.2±7.7%)andatthe3rdhby50%(TPL-Xa:41.6±8.5%vs.

Vehicle:83.2±11.7%)(Fig.2B).FII(1mg/kg)wasalsoinhibitoryat the1sthby69%(FII:26.1±6.1%vs.Vehicle:86.6±9.7%),atthe 2ndhby52.8%(FII:47.2±9.2%vs.Vehicle:100±0.0%)andatthe 3rdhby63%(FII:35.6±10.5%vs.Vehicle:96.6±3.3%)(Fig.3C).

Indomethacininhibitedthepawwithdrawal atalltimes(1sth:

19.9±6.3;2ndh:26.6±8.5;3rdh:16.6±9.1)(Fig.2B).

IntheWrithingtestTPL-Xainjectedeitheri.v.orp.o.inhibited

thenumberofaceticacid-inducedabdominalwrithes(52.2±3.8)

by 69% (16.1±4.6) at 10mg/kg (i.v.) and 44% (29.3±5.8) at

100mg/kg (p.o.) (Fig. 2D). FII i.v. (0.1 and 1mg/kg) was also

inhibitory (42.8±2.4) by 72% (11.8±3.4) and 58% (17.8±3.6),

(6)

Table2

Markersofhepatic,renalandhematologicalfunctionofanimalstreatedwithTPL-Xa.

aTreatment(50␮l/10g)

Parameters Saline TPL-Xa(10mg/kg) AST(U/l) 65.91±6.15 68.00±3.89 ALT(U/l) 35.45±2.10 35.17±2.14 Urea(mg/dl) 40.31±1.65 38.92±1.59 Creatinine(mg/dl) 0.33±0.01 0.31±0.00 Hematocrit(%) 49.85±1.98 45.15±1.13 Hemoblobin(g/dl) 13.23±0.95 11.50±0.36 Erytrocyte(106ml–1) 8.47±0.24 7.51±0.24

Platelet(103ml–1) 1136±88.68 1213±97.89

Lymphocyte(%) 78.83±1.92 82.00±1.47 Monocyte(%) 0.50±0.34 0.250±0.25 Eosinophil(%) 0.66±0.21 0.0±0.00 Neutrophil(%) 20.14±1.84 16.40±1.36 MCV(fL) 58.81±0.83 60.00±0.43 MCH(pg) 16.65±0.29 16.10±0.12 MCHC(g/dl) 28.38±0.70 26.65±0.41

aMiceweretreateddailyinsingledoseswithTPL-Xa(10mg/kg)orsaline(0.9%)

during14days;Mean±S.E.M(n=7);One-wayANOVAandBonferronitest;*p<0.05 comparedtosaline.ALT,alaninetransaminase;AST,aspartatetransaminase;MCV, meancorpuscularvolume;MCH,meancorpuscularhemoglobin;MCHC,mean cor-puscularhemoglobinconcentration.

writhes(84.4%)(Fig.2D).Thismodelassessesdifferentnociceptive

mechanisms,includingreleaseofinflammatorymediatorssuchas

histamine,serotonin,bradykininandPGE2 (LeBarsetal.,2001).

Theseresultsareinaccordance withtheanti-inflammatoryand

antinociceptiveeffectsofthepolysaccharidesextractedfrom Thla-diantadubia(Wangetal.,2011)andwiththeanti-inflammatory activityofotherpecticpolysaccharides(Salmanetal.,2008).

ThesuggestionofperipheraleffectsofTPL-XaandFIIwere con-firmedbythelackofeffectintheHotplatetest(Figs.2Cand3D), thatevaluatemedullarspinalnociceptivepathways(LeBarsetal., 2001).

It is important to highlight that TPL-Xa (10mg/kg),

differ-ent from the sedative agent (diazepam: 20.1±6.4 vs. saline:

36.4±4.7s),didnotaltertheanimals-fall-latencyintheRota-rod test(TPL-Xa:42.5±5.9svs.saline:36.4±4.7s).Thisdatasuggests thatTPL-Xadoesnotalteranimalsmotoractivity,asideeffect com-monlyassociatedwiththeuseofanalgesicdrugs.Inaddition,mice

treatmentwithTPL-Xaduring14daysdidnotalterthefollowing

parameters:renal,hepaticandhematologicalmarkers(Table2)or theanimalbodymass(initialweight:29.1±1.2vs.finalweight: 31.2±1.4)comparedtosaline(initialweight:28.8±1.0vs.final weight:32.0±1.4).Thewetweighofkidney(TPL-Xa:6.9±0.3vs. Saline:6.5±0.2),stomach(TPL-Xa:8.7±0.5vs.Saline:9.6±0.4),

liver (TPL-Xa: 44.6±0.8 vs. Saline: 42.2±1.0) and heart

(TPL-Xa:4.4±0.1vs.Saline:4.7±0.2),exceptforthespleen(TPL-Xa: 4.1±0.3vs.Saline:2.5±0.1),wasnotaltered.Thesedata

corrobo-ratethewell-knownlowtoxicityofplantpolysaccharides.

In conclusion, polysaccharides rich fractions of X. americana

barks,containinghighlevelsofuronicacid,arabinose,galactoseand

glucose,inhibitperipheralinflammatorynociception,beingwell

toleratedbyanimals.

Authorcontributions

KESSL, LEAD, LFM and AFP conducted animal experiments;

KESSL,MGPandPASMconductedtheextraction,isolationand

char-acterizationofpolysaccharides;MGRQperformedthehematologic

andbiochemicalanalysis;KESSL,AFP,AMSAandMGPsupplied

crit-icalinputtoexperimentaldesignanddatainterpretation;KESSL

providedstatisticalanalysisandinterpretation;KESSL,AFP,AMSA

andMGPwereresponsibleforwritingthemanuscript.Allauthors

havereadandapprovedthesubmissionofthemanuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare

thattheproceduresfollowedwereinaccordancewiththe

regula-tionsoftherelevantclinicalresearchethicscommitteeandwith

thoseoftheCodeofEthicsoftheWorldMedicalAssociation

(Dec-larationofHelsinki).

Confidentialityofdata. Theauthorsdeclarethatnopatientdata

appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat

nopatientdataappearinthisarticle.

Acknowledgments

This researchwas supported by the fellowships granted by

CAPES,CNPqandFUNCAP.AuthorsthankMsVaneiciaGomesdos

Santosforbotanicalidentification.

References

Bradford,M.M.,1976.Arapidandsensitivemethodforthequantitationof micro-gramquantitiesofproteinutilizingtheprincipleofprotein-dyebinding.Anal. Biochem.72,248–254.

Chen,H.,Zhang,M.,Xie,B.,2004.Quantificationofuronicacidsinteapolysaccharide conjugatesandtheirantioxidantproperties.J.Agric.FoodChem.52,3333–3336.

Cunha,T.M.,Verri,W.A.,Silva,J.S.,Poole,S.,Cunha,F.Q.,Ferreira,S.H.,2005.Acascade ofcytokinesmediatesmechanicalinflammatoryhypernociceptioninmice.Proc. Natl.Acad.Sci.U.S.A.102,1755–1760.

D’amour,F.E.,Smith,D.L.,1941.Amethodfordetermininglossofpainsensation.J. Pharmacol.Exp.Ther.72,74–79.

deAlbuquerque,U.P.,MunizdeMedeiros,P.,deAlmeida,A.L.S.,Monteiro,J.M., MachadodeFreitasLinsNeto,E.,GomesdeMelo,J.,dosSantos,J.P.,2007. Medic-inalplantsofthecaatinga(semi-arid)vegetationofNEBrazil:aquantitative approach.J.Ethnopharmacol.114,325–354.

Dietrich, C.P., Dietrich, S.M.C., 1976. Electrophoretic behaviour of acidic mucopolysaccharidesindiaminebuffers.Anal.Biochem.70,645–647.

Dische,Z.,1947.Anewspecificcolorreactionofhexuronicacidas.J.Biol.Chem.167, 189–198.

doNascimento,G.E.,Corso,C.R.,dePaulaWerner,M.F.,Baggio,C.H.,Iacomini,M., Cordeiro,L.M.C.,2015.Structureofanarabinogalactanfromtheedibletropical fruittamarillo(Solanumbetaceum)anditsantinociceptiveactivity.Carbohydr. Polym.116,300–306.

doNascimento,G.E.,Hamm,L.A.,Baggio,C.H.,Werner,M.F.deP.,Iacomini,M., Cordeiro,L.M.C.,2013.Structureofagalactoarabinoglucuronoxylanfrom tamar-illo(Solanumbetaceum),atropicalexoticfruit,anditsbiologicalactivity.Food Chem.141,510–516.

Drozdova,I.L.,Bubenchikov,R.A.,2005.Compositionandantiinflammatory activ-ityofpolysaccharidecomplexesextractedfromsweetvioletandlowmallow. Pharm.Chem.J.39,197–200.

DuBois,M.,Gilles,K.A.,Hamilton,J.K.,Rebers,P.A.,Smith,F.,1956.Colorimetric methodfordeterminationofsugarsandrelatedsubstances.Anal.Chem.28, 350–356.

Fan,J.,Wu,Z.,Zhao,T.,Sun,Y.,Ye,H.,Xu,R.,Zeng,X.,2014.Characterization, antioxi-dantandhepatoprotectiveactivitiesofpolysaccharidesfromIlexlatifoliaThunb. Carbohydr.Polym.101,990–997.

James, D.B., Abu,E.A., Wurochekke,A.U.,Orji,G.N., 2007. Phytochemicaland antimicrobialinvestigationoftheaqueousandmethanolicextractsofXimenia americana.J.Med.Sci.7,284–288.

Kircher,H.W.,1960.Gas-liquidpartitionchromatographyofmethylatedsugars. Anal.Chem.32,1103–1106.

LeBars,D.,Gozariu,M.,Cadden,S.W.,2001.Animalmodelsofnociception. Pharma-col.Rev.53,597–652.

Le,N.H.T.,Malterud,K.E.,Diallo,D.,Paulsen,B.S.,Nergård,C.S.,Wangensteen,H., 2012.BioactivepolyphenolsinXimeniaamericanaandthetraditionaluseamong Malianhealers.J.Ethnopharmacol.139,858–862.

Li,X.,Jiang,J.,Shi,S.,Bligh,S.W.A.,Li,Y.,Jiang,Y.,Huang,D.,Ke,Y.,Wang,S., 2014.ARG-IItypepolysaccharidepurifiedfromAconitumcoreanumalleviates lipopolysaccharide-inducedinflammationbyinhibitingtheNF-␬Bsignal path-way.PLoSOne9,e99697,http://dx.doi.org/10.1371/journal.pone.0099697. Maikai,V.A.,Kobo,P.I.,Maikai,B.V.O.,2010.AntioxidantpropertiesofXimenia

(7)

Nakamura,M.,Ferreira,S.H.,1987.Aperipheralsympatheticcomponentin inflam-matoryhyperalgesia.Eur.J.Pharmacol.135,145–153.

Nosál’ová,G.,Kardosová,A.,Franová,S.,2000.Antitussiveactivityofa glucuronoxy-lanfromRudbeckiafulgidacomparedtothepotencyoftwopolysaccharide complexesfromthesameherb.Pharmazie55,65–68.

Ovodov,I.S.,1998.Polysaccharidesofflowerplants:structureandphysiological activity.Bioorg.Khim.24,483–501.

Pawlaczyk,I.,Czerchawski,L.,Kuliczkowski,W.,Karolko,B.,Pilecki,W.,Witkiewicz, W.,Gancarz,R.,2011.Anticoagulantandanti-plateletactivityof polyphenolic-polysaccharide preparation isolated from the medicinal plant Erigeron canadensisL.Thromb.Res.127,328–340.

Pereira,L.,de,P.,daSilva,R.O.,Bringel,P.H.,de,S.F.,daSilva,K.E.S.,Assreuy,A.M.S., Pereira,M.G.,2012a.PolysaccharidefractionsofCaesalpiniaferreapods: poten-tialanti-inflammatoryusage.J.Ethnopharmacol.139,642–648.

Pereira,L.,de,P.,Mota,M.R.L.,Brizeno,L.A.C.,Nogueira,F.C.,Ferreira,E.G.M.,Pereira, M.G.,Assreuy,A.M.S.,2016.Modulatoreffectofapolysaccharide-richextract fromCaesalpiniaferreastembarksinratcutaneouswoundhealing:roleofTNF-␣, IL-1␤,NO,TGF-␤.J.Ethnopharmacol.187,213–223.

Pereira,L.,de,P.,Silva,K.E.S.da,Silva,R.O.da,Assreuy,A.M.S.,Pereira,M.G.,2012b.

Anti-inflammatorypolysaccharidesofAzadirachtaindicaseedtegument.Rev. Bras.Farmacogn.22,617–622.

Salman,H.,Bergman,M.,Djaldetti,M.,Orlin,J.,Bessler,H.,2008.Citruspectinaffects cytokineproductionbyhumanperipheralbloodmononuclearcells.Biomed. Pharmacother.62,579–582.

Schepetkin, I.A., Quinn, M.T., 2006. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 6, 317–333.

Silva,G.G.da,Souza,P.A.de,Morais,P.L.D.de,Santos,E.C.dos,Moura,R.D.,Menezes, J.B.,2008.Caracterizac¸ãodofrutodeameixasilvestre(XimeniaamericanaL.). Rev.Bras.Frutic.30,311–314.

Soro,T.Y.,Traore,F.,Sakande,J.,2009.Analgesicactivityoftheaqueousextractfrom

Ximeniaamericana.C.R.Biol.332,371–377.

Souza,R.O.S.,Assreuy,A.M.S.,Madeira,J.C.,Chagas,F.D.S.,Parreiras,L.A.,Santos, G.R.C.,Mourão,P.A.S.,Pereira,M.G.,2015.PurifiedpolysaccharidesofGeoffroea spinosabarkshaveanticoagulantandantithromboticactivitiesdevoidof hem-orrhagicrisks.Carbohydr.Polym.124,208–215.

Wang,L.,Zhao,D.,Di,L.,Xu,T.,Lin,X.,Yang,B.,Zhou,X.,Yang,X.,Liu,Y.,2011.The analgesicandanti-rheumaticeffectsofThladianthadubiafruitcrude polysac-charidefractioninmiceandrats.J.Ethnopharmacol.137,1381–1387.

Yoon,S.-J.,Pereira,M.S.,Pavão,M.S.G.,Hwang,J.-K.,Pyun,Y.-R.,Mourão,P.A.S.,2002.

ThemedicinalplantPoranavolubiliscontainspolysaccharideswith anticoagu-lantactivitymediatedbyheparincofactorII.Thromb.Res.106,51–58.

Imagem

Fig. 1. Partial purification and characterization of polysaccharides from Ximenia americana barks
Fig. 2. TPL-Xa antinociceptive effect. Mice were pre-treated with saline (i.v.), morphine (5 mg/kg; s.c.), indomethacin (10 mg/kg; i.p.), TPL-Xa (0.1–10 mg/kg; i.v.) or TPL-Xa (100 mg/kg; p.o.)
Fig. 3. FII antinociceptive effect. Mice were pre-treated with saline (i.v.), indomethacin (10 mg/kg; i.p.), morphine (5 mg/kg; s.c.), FII (0.1; 1 or 10 mg/kg; i.v.)

Referências

Documentos relacionados

Overall, the results suggest that the apoptotic activity of Moutan Cortex Radicis may be associated with a caspase-dependent cascade through the activation of both extrinsic

Effect of BV on apoptosis of glioblastoma cells is shown in Fig. Flow cytometry analysis revealed that in control condition only 14 ± 5% of glioblastoma cells were in apoptosis

After treatment with compounds 1 and 2 at 20 and 60 ␮ g/ml for 48 h, WST-1 assay revealed a decrease in cell proliferation in all four human lung cancer cell lines in a

In addition, isolated isoflavones were also assayed, all of which significantly inhibited neutrophil migration, especially biochanin A ( 1 ), which was able to inhibit chemotaxis by

caracasana demonstrated low toxicity and almost no hemolytic effect, we decided to investigate which extract frac- tion would be responsible for the antispasmodic activity

A signifi- cant drop in feed consumption was observed in animals treated at 4 × and 8 × doses, which had a significant impact on the final body weight for the 8 × group and on the

In order to further analyze the consequences of the use of Hp during gestation, this work investigated the possible action in the adult offspring born from mothers treated with the

After subjecting the rats to permanent middle cerebral artery occlusion (pMCAO) for 6 h, at doses of 100 and 200 mg/kg, dichloromethane fraction from white pepper and long