• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número5"

Copied!
4
0
0

Texto

(1)

RevistaBrasileiradeFarmacognosia27(2017)641–644

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Short

communication

Iridoids

from

leaf

extract

of

Genipa

americana

Jovelina

S.F.

Alves

a

,

Layane

A.

de

Medeiros

a

,

Matheus

de

F.

Fernandes-Pedrosa

b

,

Renata

M.

Araújo

c

,

Silvana

M.

Zucolotto

a,∗

aLaboratóriodeFarmacognosia,DepartamentodeFarmácia,UniversidadeFederaldoRioGrandedoNorte,Natal,RN,Brazil

bLaboratóriodeTecnologiaeBiotecnologiaFarmacêutica,ProgramadePós-graduac¸ãoemCiênciasFarmacêuticas,UniversidadeFederaldoRioGrandedoNorte,Natal,RN,Brazil cInstitutodeQuímica,UniversidadeFederaldoRioGrandedoNorte,Natal,RN,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19December2016 Accepted24March2017 Availableonline18August2017

Keywords: Genipaamericana

Rubiaceae Jenipapo Leaves Iridoids

a

b

s

t

r

a

c

t

GenipaamericanaL.,Rubiaceae,isaplantnativefromBrazilpopularlyknownas“jenipapo”.Two iri-doids,1-hydroxy-7-(hydroxymethyl)-1,4aH,5H,7aH-cyclopenta[c]pyran-4-carbaldehyde(1),andiridoid 7-(hydroxymethyl)-1-methoxy-1H,4aH,5H,7aH-cyclopenta[c]pyran-4-carbaldehyde (2) were isolated andidentifiedintheleafextractofG.americana.Compounds1and2wereidentifiedforthefirsttime inG.americana,and1hasnotbeenyetdescribedinliterature.Thesesubstanceswereanalyzedby spec-troscopictechniquessuchasinfrared,highresolutionmassspectrometry,1Hand13C1D;aswellas2D nuclearmagneticresonance.Moreover,thepresenceofflavonoidswasdetectedbyapreliminaryanalysis byThinLayerChromatography.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Genipa americana L., Rubiaceae, is native plant from Brazil (Zappi,2016)andpopularlyknownas“jenipapo”or“jenipapeiro”. ItisfoundinCentralAmerica,SouthAmericaandwidelydistributed inBrazil(LorenziandMatos,2008).Infolkmedicinetheextracts ofleaveshavebeenusedtotreatsyphilis(Corrêa,1978)andliver diseases(Agraetal.,2008).

Themajorityofthephytochemicalandpharmacologicalstudies werecarriedoutwithG.americanafruits.Thechemicalconstituents ofthesefruitsaremainlyiridoids(Djerassiet al.,1960;Tallent, 1964; Ueda and Iwahashi,1991; Hsua et al., 1997; Ono et al., 2005; Ono et al., 2007). These compoundsare not widely dis-tributedin theplant kingdom.Thus, they havebeen identified ina fewfamilies suchasApocynaceae,Loganiaceae,Lamiaceae, ScrophulariaceaeandVerbenaceae(Villase ˜nor,2007).Specifically to leafextracts of G. americana was described the presence of geniposidicacid(Guarnacciaetal.,1972)andgenipatriol(Hossain etal.,2003).Currently,onlyonereportindicatedthepresenceof flavonoidquercetininfruitsbyHPLCanalysis(Omenaetal.,2012) andanotherworkdescribedflavonoidsandtanninsinitsfruitsby colorimetricmethods(Nogueiraetal.,2014).

Some pharmacological trials showed antibacterial (Tallent, 1964), antitumoral (Hsua et al., 1997), anti-inflammatory (Koo

∗ Correspondingauthor.

E-mail:silvanazucolotto@ufrnet.br(S.M.Zucolotto).

etal.,2004)andantioxidant(Omenaetal.,2012)activitiesinthe fruitextracts.TheleafextractofG.americanahasonlytwo stud-iesreported.Ethanolicandhexanicextractsofthatleavesshowed antidiabetic effect by the inhibition of ␣-glucosidase enzyme

(30.44±0.10%and12.44±0.02%,respectively),whichiscompared

withkojicacid,thepositivecontrol(DeSouzaetal.,2012).Inthe secondstudy,theaqueousleafextractshowedanthelminthic activ-ityat100mg/ml.Thelethalconcentrations(LC90)ofthisaqueous extractfor hatchingandL3larvaedevelopmentinhibition were 79.8and28.7mg/ml,respectively.Theextractwasmoreeffective inlarvaldevelopmentinhibitionthaninhatching(Nogueiraetal., 2014).

Therefore, this study aimed to perform a phytochemi-cal study with the leaves extract of G. americana, since as few studies were identified in literature. According to this study, theiridoids 1-hydroxy-7-(hydroxymethyl)-1,4aH,5H,7aH -cyclopenta[c]pyran-4-carbaldehyde (1) and 7-(hydroximethyl)-1-methoxy-1H,4˛H,5H,7˛H-cyclopental[c]pyran-4-carbaldehyde

(2)wereidentifiedforthefirsttimeinthisplant,and1hasnot beenyetdescribedinliterature.

Materialandmethods

Thenuclearmagneticresonance(NMR)spectrawereperformed on a Bruker Avance DRX-500 (500MHz for 1H and 125MHz

for 13C) spectrometer equipped with 5mm inverse detection

z-gradientprobe.Chemicalshiftsaregiveninppmrelativeto resid-ualDMSO-d6(2.5),andtothecentralpeakofthetripletrelatedto

http://dx.doi.org/10.1016/j.bjp.2017.03.006

(2)

642 J.S.Alvesetal./RevistaBrasileiradeFarmacognosia27(2017)641–644

Table1

1Hand13CNMRchemicalshiftcompounds1and2(ıinppm,JinHz).

C 1 2

ıC ıH(mult.,JinHz) ıC ıH(mult.,JinHz)

1 96.89 4.95(d,5.5) 102.1 4.86(d,5.5)

3 163.2 7.58(s) 162.5 7.57(s)

4 123.08 – 123.7 –

5 33.2 2.98(q,8.0) 32.0 2.99(m)

6 37.2 2.68(m)H˛;1.98(m)Hˇ 37.1 2.00(d,14.7)H˛;2.67(m)Hˇ

7 125.54 5.65(s) 126.1 5.65(s)

8 144.83 – 143.6 –

9 46.8 2.53(m) 45.9 2.51(m)

10 59.6 3.98(d,14.8)4.09(d,14.8) 59.2 4.04(d,15.0;d,13.5)

11 190.9 9.26 191.1 9.25(s)

12 – 7.55(OH)(s) 56.5 3.50(OMe)

DMSO-d6carbon(39.5ppm).TheFouriertransforminfrared(FT-IR) spectrawereobtainedona PerkinElmerSpectrum 1000 spec-trometer,usingauniversalattenuatedtotalreflectanceaccessory (UATR).Thehigh-resolutionelectrosprayionizationmassspectra (HRESIMS)wereacquiredusingaShimadzuLCMS-IT-TOF (225-07100-34)spectrometer.Specificrotationsweremeasuredona JascopolarimetermodelP-2000.HPLCpreparativeanalysiswere conductedonShimadzu®

fittedwithLC-10Advppump,UVdetector Shimadzu®

SPD-10AVvp,degasser(DGU-14A),andamanual injec-tionvalve100␮l(Rheodyne®)equippedwithClassVp®version5.0 software.

TheleavesofGenipaamericanaL.,Rubiaceae,werecollectedin May2012inNatal,inBrazilianstateofRioGrandedoNorte(lat: –6.1278long:–35.1115WGS22).Theplantmaterialwas identi-fiedbyAlandeAraújoRoque(UFRN).Avoucherspecimenhasbeen depositedatHerbarium/UFRNunderthereferencenumber12251. Thecollectionoftheplantmaterialwasconductedunder authoriza-tionofBrazilianAuthorizationandBiodiversityInformationSystem (SISBIO)(processnumber35017).

TheleavesofG.americana(1.8kg)wereair-driedat40◦C, pow-eredand extracted inEtOH70% (v/v)for 7days (plant:solvent, 2:10,w/v),obtainingthehydroethanolicextract(HE).Afterthat, theextractwasfilteredandsubmittedtoaliquid–liquidextraction withpetroleumether(PE)(3×300ml),CH2Cl2(3×300ml),EtOAc (3×300ml),andn-BuOH(3×300ml).Thefractionswere evapo-ratedunderreducedpressure(temperaturebelow45◦C)andyields were37g(PE),12g(CH2Cl2),19g(EtOAc),56g(BuOH)and145g

(residualaqueousfraction).

In the phytochemical screening the HE and fractions were analyzedby ThinLayerChromatography (TLC)using aluminum sheets,coatedwithsilicagelF254asabsorbentandtoluene:ethyl acetate:formicacid(5:5:0.5,v/v/v)(systemI);ethylacetate:formic acid:water:methanol(10:1.5:1.6:0.6,v/v/v/v)(systemII)andethyl acetate:formicacid:aceticacid:water(10:1.1:1.1:2.6;v/v/v/v) (sys-temIII)asmobilephases.Thechromatogramswereanalyzedunder 254and365nmultraviolet(UV) light andthen sprayedwithi. vanillinsulfuricacid(4%)andii.NaturalProductReagent (0.5%)-NPReagent.Theretentionfactors(Rf)andcolorsofthespotswere comparedwithchromatographicprofilesofstandardsdescribedin literature(WagnerandBladt,2001).

The isolation of the HE compounds from G. americana was started from EtOAc fraction (5g). Thereby, this fraction was submittedto silica gelvacuum liquid column (10×15cm) and elutedwithCH2Cl2:EtOAc(50:50,40:60,40:60,30:70,20:80and

0:100; v/v) and EtOAc:MeOH (90:10, 70:30, 50:50 and 0:100; v/v).Thisprocedureresultedinsevenfractions.Fraction3(40mg) (CH2Cl2:EtOAc,30:70;v/v)waschromatographedfurtheronasilica

gelcolumn(30×2.2cm),elutedwithCHCl3:H2O:MeOH(9:0.1:0.9;

v/v;2.0mlmin−1)and100%MeOH,affordingeightfractions(FLC-1

toFLC-8).FractionFLC-7 (40mg)was submittedtopreparative

HPLC byisocratic elution: 8%MeCN in H2O, 4.5mlmin−1 flow,

using Waters RP 18 column (250×10mm, 10␮m), and UV

254nm,toafford1,8mg(tR 8.8min)and2,5mg(tR 21.5min).

Resultsanddiscussion

Thepresentworkwasconductedinordertoevaluatethe chemi-calcompositionofHEofG.americanaleaves.TLCanalysisofextract andfractionsofG.americanawithspecificsprayreagentsindicated thepresenceofflavonoidsandiridoids.Phytochemicalscreening (systemI)oftheHEandfractions,exposingwithvanillin sulfu-ricacid,showedtwobrownzones(Rf=0.9and0.95).Theseresults

suggestiridoidsinthatsample,whicharecommoninGenipafruits (Djerassietal.,1960;Tallent,1964;UedaandIwahashi,1991;Hsua etal.,1997;Onoetal.,2005;Onoetal.,2007).Furthermore,in liter-aturetwopapersreportedonlygeniposidicacid(Guarnacciaetal., 1972)andgenipatriolintheleaves(Hossainetal.,2003).TLCplate oftheCH2Cl2 fractionwasdevelopedwithsystemIandsprayed

withNP,showinggreenandorangefluorescentspots(Rf=0.46and

0.54),suggestingflavonoids.InTLCplatesanalysisoftheAcOEt frac-tionwasemployedthesystemIIandtoBuOHfraction,systemIII asthemobilephase. Theseplateswereexposed byNPreagent, underUV365nmshowingmanyyellowandorangespots(Rf=0.43

and0.51and Rf=0.22,0.42 and0.47),respectively.Thesecolors

implyflavonoids.Inresidualaqueousfractionwerevisualizedspots withRfandcolorfeaturing flavonoids,exceptbrownishzoneat

thepointofapplicationwithexposureofsulfuricvanillin, prob-ablyindicatingthepresenceofsugars(WagnerandBladt,2001). Asdescribedbefore,moststudiesdemonstratediridoidsinGenipa

genus,especiallytoG.americana.However,onlyonereport indi-catedthepresenceofflavonoidquercetinbyHPLCanalysis(Omena etal.,2012)andanotherdescribedthepresenceofinitsfruitsby colorimetricmethods(Nogueiraetal.,2014).

In thephytochemicalstudy,EtOAc(5g) wasfractionatedby chromatographicprocedurestoafford1(8mg,tR 8.8min)and2

(5mgtR 21.5min).ColorspotsobservedinTLCanalysis,1Hand

13C-NMR,ESI-MSandFT-IRconfirmedthecompounds1and2as

(3)

J.S.Alvesetal./RevistaBrasileiradeFarmacognosia27(2017)641–644 643

Fig. 1.Key 1H–1H COSY and HMBC of

1-hydroxy-7-(hydroxymethyl)-1H,4aH,5H,7aH-cyclopenta[c]pyran-4-carbaldehyde(1).

1-Hydroxy-7-(hydroxymethyl)-1H,4aH,5H,7aH-cyclopenta[c] pyran-4-carbaldehyde (1) [˛]D20 −80.4◦ (c 0.013, CHCl3) was obtained as a brown solid and showed the molecular formula C10H12O4byHR-ESI-MS,basedonthequasi-molecularionatm/z

197.0795[M+H]+ (calcd.for C

10H12O4 m/z197.0808),indicating

fivedegreesofunsaturation.The1Hand13CNMRspectra(Table1)

showedmostlysinglepeaks,suggestingcompound1asaniridoid monomer. TheIR spectrumdisplayed thehydroxy (3300cm−1)

andcarbonyl(1670cm−1)groups.The1HNMRspectrumshowed

twoolefinicprotonsatıH7.58(H-3,s)andıH5.65(H-7,s);two

methyleneprotonsıH1.98(H-␣-6,m)andıH1.98(H-␣-6,m);two

methineprotonsıH2.98(H-5,q,J=8.0Hz)andıH2.53(H-9,m);

oneoxymethyleneıH3.98(H-10,d,J=14.8Hz);one

dioxymethy-lene ıH 4.95 (H-1,d, J=5.5Hz) and one aldehyde proton atıH

9.26(H-11)assignable toaniridoid framework(Joubouhietal., 2015; Lee et al., 2016). These datawere confirmed by the13C

NMRspectrum,whichexhibitedtencarbonsignals,includingto carbonylcarbonıC190.9(C-11);onehemiacetalcarbonıC163.02

(C-1); four olefinic carbons ıC 163.2 (C-3), ıC 123.08 (C-4), ıC

125.54(C-7)andıC144.83(C-8);twomethylenesıC37.2(C-6)

andıC 59.06(C-10);andtwo methines33.2(C-5)andıC46.08

(C-9). These signals wereattributed after comparison withthe HSQCandDEPT135spectradata.

The1HNMRspectrumof1exhibitedasingletatı

H9.26and

cor-relationswiththecarbonsignal(1J

CH)atıC190.9(C-11)intheHSQC

spectrum,profilingaconjugatedaldehydegroup,givingsupportby the1670cm−1absorptionintheFTIRspectrumandrepresenting

oneoftheunsaturations.Moretwounsaturationwererelatedfor twotrisubstitutedvinylgroupfromthetypical13CNMRsignalsat ıC163.3(CH-3),123.1(C-4),125.6(CH-7)and144.8(C-8)aswell

as1HNMRsignalsatı

H7.58(H-3,sl)and5.65(H-7,sl)(Raoand Chary,2013).The1HNMRspectrumof(1)exhibitedasingletatı

H

7.55associatedwithahydroxylgroup,confirmedbythe3300cm−1

absorptionintheFTIRspectrum;evenmoreitshowedtwodoublets withgeminalcouplingatıH3.98and4.09(2H-10).Thesesignals

inferredthisstructure(Zengetal.,2007).

IntheCOSYspectrumwaspossibletocharacterizethesequence ofthesehydrogensandconfirmdiastereotopicprotonsatıH3.98

and4.09(2H-10)inthemolecule(Fig.1).NMRdatatogetherwith theadditionaldataspectral(Table1)andliteraturedatawere possi-bletoestablishaniridoidnucleusforcompound1(Zengetal.,2007; RaoandChary,2013;Leeetal.,2016).Thisstructurewasconfirmed bycorrelationsshownintheHMBCspectrumforprotonsatıH9.26

(H-11)withthecarbonsatıC33.2(C-5)and163.2(C-3);atıH2.98

(H-5)withthecarbonsatıC97.0(C-1),125.5(C-7),163.2(C-3)and

190.9(C-11);atıH5.65(H-7)withthecarbonsatıC46.8(C-9)and

59.6(C-10).OtherkeyHMBCcorrelationsareshowninFig.1.Based onliteratureandbiosyntheticgrounds,thisiridoidshowsthesame stereochemistryfortheringfusedcis5S:9SandforC-1-R, indi-catebythenegativeopticalrotation(Chaudhurietal.,1979;Dinda

etal.,2007a,b).Thedatasetobtainedforthiscompoundallowed theelucidationas1-hydroxy-7-(hydroxymethyl)-1H,4aH,5H,7aH -cyclopenta[c]pyran-4-carbaldehyde (1), iridoid not described in literaturebefore.

IridoidsareveryreportedintheGenipagenus,especiallygenipin infruits(3)(Djerassietal.,1960;Dewick,2002).Basedonthese data,thestructure1wasproposedtobeanewgenipinderivative, withareductioninthecarbonylgroupC-11,compatiblewiththe biogenesisproposedbyDewickin2002foriridoids.

Thecompound2[˛]D20−22.2◦(c0.05,CHCl3),exhibited

spec-troscopicdataverysimilartocompound1,every1Hand13CNMR

signalsweresimilarexceptforanadditionalsignalatıC56.5in

thecompound2thatdemonstratedcorrelationwithhydrogenat

ıH3.50intheHSQCspectrum,indicatingamethoxylgroupin2

(Table1).Basedonthesefindingsandcomparingwiththeliterature values,thecompound2wascharacterizedastheiridoid garedenal-I,isolatedpreviouslyfromGardeniajasminoidesEllisfruits(Raoand Chary,2013).Detaileddataofcompounds1and2areasfollow (Fig.1).However,theyarethefirsttimereportedatG.americana.

Iridoids are valuable for pharmaceutical applications due to various bioactive properties. Phytochemical studies showed the pharmacological potential of iridoid nucleus molecules in numeroustrials,mainlyanti-inflammatory,antimicrobial, antivi-ral,anticancerandhypoglycemicactivities(Hsuaetal.,1997;Koo etal.,2004;Hanhetal.,2016;Milellaetal.,2016).Additionally, theiridoidsmayberesponsibleforplantdefensebyinsect rela-tions(LohausandSchwerdtfeger,2014),andtheyareprecursors ofmonoterpenoidindolealkaloids,suchasvincristineand vinblas-tineusedinthetreatmentofcancer(VanMoerkerckeaetal.,2015). HerbaldrugscommercializedasHarpagophytumprocumbens coin-tainiridoidsaschemicalmarkers(Mncwangietal.,2012).Genipin isusedascrosslinkinginnanotechnologicalformulationsandother applications(Lietal.,2015).Thus,moleculesofthisclassassemble medicinal,biological,andcommercialvalue.

1-Hydroxy-7-(hydroxymethyl)-1H,4aH,5H,7aH-cyclopenta[c] pyran-4 carbaldehyde (1): brown solid; Brown spot Rf 0.52

aftersprayingtheplatevanillinsulfuricacid;CHCl3:H2O:MeOH,

(9:0.1:0.9;v/v/v);[˛]D20−80.4◦;IR(KBr)max/cm−1 3350,2930,

2870,1670,1600,1100.1HNMR(300MHz,DMSOd)and13CNMR

(75MHz,DMSOd)seeTable1.PositiveHRESIMS(positivemode)

m/z,calcd.forC10H12O4[M+H]+:197.0795,found:197.0808.

7-(Hydroxymethyl)-1-methoxy-1H,4aH,5H,7aH-cyclopenta[c] pyran-4-carbaldehyde (2): brown solid; Brown spot Rf 0.62

afterspraying theplatevanillin sulfuricacid, CHCl3:H2O:MeOH

(9:0.1:0.9;v/v/v);[˛]D20−22.2◦(c0.05,CHCl3).1HNMR(500MHz,

DMSOd)and13CNMR(1255MHz,DMSOd)seeTable1.

Conclusion

InG.americanaleaveswaspossibleidentifiedtwoiridoids: 1-hydroxy-7-(hydroxymethyl)-1,4aH,5H,7aH-cyclopenta[c]pyran-4 -carbaldehyde (1) and 7-(hydroxymethyl)-1-methoxy-1H,4aH, 5H,7aH-cyclopenta[c]pyran-4-carbaldehyde (2).Observing, thus, the presence of flavonoids in the leaves extract and fractions byTLC.It is soimportanttocontinue thephytochemical study to identify more secondary metabolites and investigate new biologicalapplicationsforthisextractandthesemolecules.

Author’scontribution

(4)

644 J.S.Alvesetal./RevistaBrasileiradeFarmacognosia27(2017)641–644

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

Theauthorsacknowledgeallcontributorsfortheirvaluabletime andcommitmenttothestudy.WealsothanktotheCAPESforthe Mastersscholarship;CNPqforthefinancialsupport (478661/2010-0)andUFRN–UniversidadeFederaldoRioGrandedoNorte.

References

Agra,M.F.,Silva,K.N.,Basílio,I.J.L.D.,deFreitas,P.F.,Barbosa-Filho,J.M.,2008.Survey ofmedicinalplantsusedintheregionNortheastofBrazil.Rev.Bras.Farmacogn. 18,472–508.

Chaudhuri,K.R.,Afifi-Yazar,F.Ü.,Sticher,O.,1979.Theconfigurationofnaturally occurringiridoidglucosidesatC(6)andC(8):acomplementaryassignmentaid by13C-NMRspectroscopy.Helv.Chim.Acta62,1603–1604.

Corrêa,M.P.,1978.DicionáriodasplantasúteisdoBrasiledasexóticascultivadas. ImprensaNacional,RiodeJaneiro.

DeSouza,P.M.,DeSalesi,P.M.,Simeoni,L.A.,Silva,E.C.,Silveira,D.,Magalhães,P.O., 2012.Inhibitoryactivityof␣-amylaseand␣-glucosidasebyplantextractsfrom

theBraziliancerrado.PlantaMed.78,393–399.

Dewick,P.M.,2002.MedicinalNaturalProducts.JohnWiley&Sons,WestSussex, England.

Dinda,B.,Debnath,S.,Harigaya,S.,2007a.Naturallyoccurringiridoids.Areview, Part1.Chem.Pharm.Bull.55,159–222.

Dinda,B.,Debnath,S.,Harigaya,S.,2007b.Naturallyoccurringsecoiridoidsand bioactivityofnaturallyoccurringiridoidsandsecoiridoids.Areview,Part2. Chem.Pharm.Bull.55,689–728.

Djerassi,C.,Gray,J.D.,Kincl,F.,1960.Isolationandcharacterizationofgenipin.J.Org. Chem.25,2174–2177.

Guarnaccia,R.,Madyastha,K.M.,Tegtmeyer,E.,Coscia,C.J.,1972.Geniposidicacid, aniridoidglucosidefromGenipaamericana.TetrahedronLett.50,5125–5127.

Hossain,C.F.,Jacob,M.R.,Clark,A.M.,Walker,L.A.,Nagle,D.G.,2003.Genipatriol,a newcycloartanetriterpenefromGenipaspruceana.J.Nat.Prod.66,398–400.

Hanh,N.P.,Phan,N.H.T.,Thuan,N.T.D.,Hanh,T.T.H.,Vien,L.T.,Thao,N.P.,Thanh, N.V.,Cuong,N.X.,Binh,N.Q.,Nam,N.H.,Kiem,P.V.,Kim,H.O.,Minh,C.V.,2016.

Twonewsimpleiridoidsfromtheant-plantMyrmecodiatuberoseandtheir antimicrobialeffects.Nat.Prod.Res.30,18.

Hsua,H.,Yang,J.,Lin,S.,Linb,C.,1997.Comparisonsofgeniposidicacidand genipo-sideonantitumorandradioprotectionaftersublethalirradiation.CancerLett. 113,31–37.

Joubouhi,C.,Mabou,F.D.,Tebou,P.L.F.,Ngnokam,D.,Harakat,D., Voutquenne-Nazabadioko,L.,2015.FivenewiridoïddimersfromthefruitsofCanthium subcordatumDC(syn,PsydraxsubcordataDC).Phytochem.Lett.13,348–354.

Koo,H.,Song,Y.S.,Kim,H.,Lee,Y.,Hong,S.,Kim,S.,Kim,B.,Jin,C.,Lim,C.,Park,E., 2004.Antiinflammatoryeffectsofgenipin,anactiveprincipleofgardenia.Eur. J.Pharmacol.495,201–208.

Lee,S.R.,Clardy,J.,Senger,D.R.,Cao,S.,Kim,K.H.,2016.Iridoidandphenylethanoid glycosidesfromtheaerialpartofBarlerialupulina.Rev.Bras.Farmacogn.26, 281–284.

Li,Q.,Wang,X.,Lou,X.,Yuan,H.,Tu,H.,Li,B.,Zhang,Y.,2015.Genipin-crosslinked electrospunchitosannanofibers:determinationofcrosslinkingconditionsand evaluationofcytocompatibility.Carbohydr.Polym.130,166–174.

Lohaus,G.,Schwerdtfeger,M.,2014.Comparisonofsugars,iridoidglycosidesand aminoacidsinnectarandphloemsapofMaurandyabarclayana,Lophospermum erubescens,andBrassicanapus.PlosOne9,e87689.

Lorenzi,H.,Matos,F.J.A.,2008.PlantasmedicinaisnoBrasil:nativaseexóticas.Nova Odessa,SãoPaulo.

Milella,L.,Milazzo,S.,DeLeo,M.,Saltos,M.B.V.,Faraone,I.,Tuccinardi,T.,Lapillo,M., DeTommasi,N.,Braca,A.,2016.␣-Glucosidaseand␣-amylaseinhibitorsfrom

Arcytophyllumthymifolium.J.Nat.Prod.79,2104–2112.

Mncwangi,N.,Chen,W.,Vermaak,I.,Viljoen,A.M.,Gericke,N.,2012.Devil’sClaw– areviewoftheethnobotany,phytochemistryandbiologicalactivityof Harpago-phytumprocumbens.J.Ethnopharmacol.143,755–771.

Nogueira,F.A.,Nery,P.S.,Morais-Costa,F.,Oliveira,N.J.F.,Martins,E.R.,Duarte,E.R., 2014.EfficacyofaqueousextractsofGenipaamericanaL.(Rubiaceae)in inhibi-tinglarvaldevelopmentandeclosionofgastrointestinalnematodesofsheep.J. Appl.Anim.Res.42,356–360.

Omena,C.M.B.,Valentim, I.V.,Guedes, G.S.,Rabelo, L.A.,Mano, C.M.,Bechara, E.J.H.,Sawaya,A.C.H.F.,Trevisan,M.T.S.,DaCosta,J.G.,Ferreira,R.C.S.,Sant’ana, A.E.G.,Goulart,M.O.F.,2012.Antioxidant,anti-acetylcholinesteraseand cyto-toxicactivitiesofethanolextractsofpeel,pulpandseedsofexoticBrazilian fruits.FoodRes.Int.49,334–344.

Ono,M.,Ueno,M.,Masouka,C.,Ikeda,T.,Nohara,T.,2005.Iridoidglucosidesfrom thefruitofGenipaamericana.Chem.Pharm.Bull.53,1342–1344.

Ono,M.,Ishimatsu,N.,Masuoka,C.,Yoshimitsu,H.,Tsuchihashi,R.,Okawa,M.,Kinjo, J.,Ikeda,T.,Nohara,T.,2007.ThreenewmonoterpenoidsfromthefruitofGenipa americana.Chem.Pharm.Bull.55,632–634.

Rao,A.S.,Chary,J.S.,Merugu,R.,2013.IridoidsfromGardeniajasminoidesEllis.Int.J. ChemTechRes.5,418–421.

Tallent,W.H.,1964.Twonewantibioticcyclopentanoidmonoterpenesofplant ori-gin.TetrahedronLett.20,1781–1787.

Ueda,S.,Iwahashi,Y.,1991.Productionofanti-tumor-promotingiridoidglucosides inGenipaamericanaanditscellcultures.J.Nat.Prod.54,1677–1680.

VanMoerkerckea, A., Steensmac, P., Schweizera,F., Polliera,J., Gariboldic,I., Payned,R.,Bosschea,R.V.,Miettinena,K.,Espozc,J.,Purnamac,P.C.,Kellnerd, F.,Seppänen-Laaksoe,T.,O’Connord,S.E.,Rischere,H.,Memelinkc,J.,Goossensa, A.,2015.ThebHLHtranscriptionfactorBIS1controlstheiridoidbranchofthe monoterpenoidindolealkaloidpathwayinCatharanthusroseus.Proc.Natl.Acad. Sci.U.S.A.112,8130–8135.

Villase ˜nor,I.M.,2007.Bioactivitiesofiridoids.Anti-inflam.Anti-Allerg.AgentsMed. Chem.6,307–314.

Wagner,H.,Bladt,S.,2001.PlantDrugAnalysis:AThinLayerChromatographyAtlas. Springer,Germany.

Zappi,D.,2016.GenipainListadeEspéciesdaFloradoBrasil.JardimBotânico doRiodeJaneiro,http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB14045

(accessed18.01.16).

Imagem

Fig. 1. Key 1 H– 1 H COSY and HMBC of 1-hydroxy-7-(hydroxymethyl)- 1-hydroxy-7-(hydroxymethyl)-1H,4aH,5H,7aH-cyclopenta[c]pyran-4-carbaldehyde (1).

Referências

Documentos relacionados

Seventeen compounds, mainly methyl ethers of quercetin (isorhamnetin, rhamnazin), kaempferol (kaempferide, rhamnocitrin), and ellagic acid as well as quercetin, quercetin

The aims of the present work were to compare chemical composition and angiotensin I-converting enzyme inhibitory properties of infusion and decoction of four samples of black

The objective of this study was to evaluate the antinociceptive effect of the hydroethanol extract of Cistanche salsa (C.A.Mey.) Beck, Orobanchaceae, stolons in animal models of

Pinostrobin showed potent activity against leukemia and breast tumor cell lines and moderate cytostatic effect against ovarian cell.. Furthermore, this is the first report on

The pure compounds 1 – 4 and crude extracts were tested for their antibacterial activity against five Gram-negative and seven Gram-positive strains and for their potential

Class 0, no damage; class 1, tail of comet shorter than the diameter of nucleoid; class 2, tail of comet once or twice the diameter.. of nucleoid; class 3, tail of comet more than

laxiflora demonstrated the good combined activities (MIC 0.5 mg/ml, glucosyltransferase, IC 50 10.3 ␮ g/ml); therefore, its methanolic wood extracts were selected for

In previous reports we have described the isolation and identification of natural flavonoids in Solanaceae (Silva 2002, Silva et al. 2006, 2007), preparation of some derivatives