• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número2A

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número2A"

Copied!
3
0
0

Texto

(1)

Loal Order Struture of a-SiO

x N

y

:H Grown by PECVD

W.L. Sopel, M.C.A. Fantini,

InstitutodeFsia,USP

M.I. Alayo and I. Pereyra

Departamento deEngenhariadeSistemas Eletr^onios,EPUSP

13.081-970S~aoPaulo,SP,Brazil

Reeivedon23April,2001

Inthis workwestudythestrutural propertiesofamorphous oxynitridelms(a-SiOxNy),grown

byplasma enhaned hemial vapour deposition(PECVD)at320 0

C.Thelmsweredeposited at

dierent owratio ofN2OandSiH4. Theatomiompositionofthe sampleswasdeterminedby

meansof Rutherfordbaksattering spetrometry (RBS). The loal order struture was studied

byX-ray absorptionspetrosopy (XAS)andthe hemial bondingswereinvestigatedby Fourier

transforminfrared (FTIR) spetrosopy. The results evidene a tetrahedri arrangement of the

oxynitridenetwork. ThetetrahedronsaresimiliartoSiO3Nforxvaluesbetween1.43and1.64. For

xvalueshigherthan1.64thetetrahedronsaresimilartoSiO4.

ThePlasmaEnhanedChemialVapourDeposition

(PECVD) methodhasbeenextensivelyapplied to

ob-tainsilionbaseddieletrilms. Inpartiular,theuse

of SiO

2

and SiO

x N

y

lms, grown by PECVD at low

temperature, beameveryattrativedue to the

possi-bilityofintegratingoptialandeletrialdeviesinthe

samehip[1,2,3℄. Moreover,PECVDisauseful

teh-nique to deposit thik lms, about 4-5 (m), a

om-mon requirement in optial devie tehnologies. The

fundamental advantageof this tehnique is the

possi-bility of ontrollingthe hemial omposition, as well

as the strutural and optial properties of the silion

oxynitridelms,byadequatelyadjustingthedeposition

parameters[4,5,6℄. Ourpreviousworks[4,7,8,9℄

estab-lishedtheexperimentalonditionstogrowa-SiO

x N

y :H

lmsathighdepositionrates,havingaontinuous

vari-ation in itsrefrativeindex, withontrolled thikness,

seletedhemialbondsand improvedmorphology. In

partiular, high quality, low temperature a-SiO

2 lms

were deposited.

The aim of this work was to determine the

lo-al atomi struture aroundthe Si atoms of our good

quality a-SiO

x N

y

:H lms asafuntion of their

hem-ialomposition. Theatomi ontent was determined

byRutherfordbaksatteringspetrometry(RBS);the

hemial and strutural properties were investigated

byextendedX-rayabsorptionnestruture(EXAFS),

X-ray absorption near edge struture (XANES) and

Fouriertransforminfrared spetrosopy(FTIR).

omposition, were performed at LAMFI/USP, S~ao

Paulo, using a He +

beam with energy E=1.7 MeV,

harge Q=30C, urrentI= 30nA anddetetion

an-gle=170 o

. TheRBSdatawereanalyzedthroughthe

RUMProutine[10℄andprovidedtheSi,NandOatomi

density(atoms.m 2

).

Theanalysis of thehemialbondswasperformed

by means of the Fourier transform infrared (FTIR)

spetrosopy in a BioRad FTS-40 spetrometer, on

lmsdeposited overpolyrystallinesilion wafer,with

highresistivity. Thelmsweremeasuredatroom

tem-perature in a nitrogen atmosphere, with a resolution

of 4m 1

. TheH ontentin the lmswasalulated

using theFTIRN-H signal. Itdereases from5at. %

in the mostnitrogenated lm to zeroin lms without

detetable amountofH.

The XAS (X-ray absorption spetrosopy)

experi-mentswere arriedoutat theSXSbeamline[11℄of the

SynhrotronLightNationalLaboratory(LNLS,

Campi-nas,Brazil). Themeasurementswereperformedin the

energyrangeof(1800-2300)eV,usingadouble-rystal

InSb(111)monohromator. TheEXAFSspetraofthe

a-SiO

x N

y

lms,a-SiO

2

and -Si

3 N

4

referenesamples

werereordedat the SiK-edge, at roomtemperature,

beingolletedinTEYmode,with1eVstep. Further,

moreauratemeasurementsweredoneinthenear

ab-sorption edge (XANES)region, in the (1840-1870)eV

energyrange,with0.2eVstep.

(2)

onen-lyzedlms. It's learfromthistable thatthehemial

ompositionisdependentonthedepositiononditions.

Infat,the[O/Si℄onentrationratiovariedfrom1.43

to 1.85with theinreasing oftheN

2

O owin the

de-position hamber. On theother hand,the[N/Si℄

on-entrationratiodereasedalmost6times(from0.57to

0.12)asthenitrousoxideowinreased. It'simportant

topointoutthatthe[(O+N)/Si℄onentrationratiois

alwaysloseto2.

TableI.Samplename,owratio[N

2 O/SiH

4 ℄ and

onentrationatomiratiox=[O/Si℄andy=[N/Si℄

determinedbyRBStehnique.

Sample [N

2 O/SiH

4

℄ x y

A 2.0 1.43 0.57

B 2.5 1.57 0.34

C 3.0 1.64 0.29

D 4.0 1.80 0.12

E 5.0 1.85 0.12

The infrared spetra of the a-SiO

x N

y

lms are

shownin Fig. 1. It should be notedthat the 2500to

4000m 1

spetralregionwasmagnied5timesin

or-dertobetterappreiatetheN-Hband.TheFTIRdata

presentaontinuousshiftinthepeakpositionofthe

Si-Ostrehingvibrationmodetolowerfrequenies,asthe

amountofOinmaterialmatrixdereases. Thisshiftis

explainedbythepreseneoftheSi-Nbonds. Also,the

shoulder at around1250m 1

[12, 13℄, harateristis

of SiO

2

, beomes less dened. The 3400 m 1

band,

orrespondingto the strething vibrationmode of the

N-Hbonds,indiatesthepreseneofN-Hbondsinlms

A, B and C, that have higher nitrogen ontent. The

samplewithhighoxygenontent(sampleE)presentsa

FTIR spetrumverysimilar to the thermiallygrown

a-SiO

2 .

Figure1. FTIRspetraforallstudiedsamples,seetableI.

TheXANES spetraof amorphoussilion dioxide,

oxynitridelmshavebeentakenatthesilionKedge,

as shown in Fig. 2. The spetra of -Si

3 N

4

and

a-SiO

2

show no signiant dierene from those

previ-ouslyreported[14,15℄. FromFig. 2,oneanseestrong

thresholdpeaksofthea-SiO

x N

y

lms,loatedbetween

-Si

3 N

4

anda-SiO

2

,losesttoa-SiO

2

. Thereisabroad

struture between 1860 and 1870 eV, for all XANES

spetra,similiartoa-SiO

2 .

Figure2. ComparisonbetweemtheSiKedgeXANES

spe-trafora-SiO

2 ,-Si

3 N

4

andsamples(tableI).

The XANES spetra of all samples and of a-SiO

2

refereneareverysimilarandonrmstheamorphous

stateof our samples. One an notie the existene of

ahemial shiftfrom silion nitride to siliondioxide.

This shift indiates that the threshold position is

de-pendent on the nature of the atoms whih build the

tetrahedron environment of Si and is diretly related

to the eletronegativity of the surronding atoms. We

anobservethat the threshold position of all samples

hanges ontinuously but it stays between the values

ofthesilionnitride andsiliondioxidereferenes(see

Fig. 2). This result is onsistent with the formation

of afourfold oordinate Si network suh that Si is

ei-theronnetedtoOand/orNintetrahedrahavingthe

SiO

N

4

(=0,1,2,3and4)ongurations.

TheFouriertransform(F.T.)inthereal-spae(also

referredto R-spae)ofthek 2

-weightedosillationwas

alulatedoverthesameenergyrange(1.5-9.5

A)for

all samples and referenes. The bak Fourier

trans-forminthereiproal-spae(k-spae)orrespondingto

agivenoordinationshellwasttedwitheletroni

pa-rametersextrated from thereferene samples, whose

struturearesimilartothosebeinginvestigatedin this

work.

TheFouriertransformurvesobtainedforthe

sam-ples (Fig. 3), an give us some qualitative

informa-tion about the loal order struture. First, one an

observe the absene of long-range order (for R values

higherthan3

A). Nevertheless,theshortrangeorderis

slightlydependentonthehemialomposition,as

(3)

Figure 3. F.T. of the a-SiO2 and -Si3N4 referenes and

samples(tableI).

The EXAFS data analysis was done onsidering

a two-shell model with partial oordination numbers

N

N O andN

Si O

whihprovidesanaveragepitureof

theloalarrangementoftheNandOatomsintherst

oordinationshellsurroundingtheabsorbingSiatoms.

TheEXAFS resultsprovide theoordinationnumber,

averageinteratomidistaneandtheDebye-Waller

fa-tors,aspresentedintableII.

Table II. First shell strutural parameters obtained

with two-shell t (Si-O + Si-N) for dierent

sam-ples (see table I), where N

i

(10%),

i

(15%) and

R

i

(1%) orrespond to oordination number,

Debye-Waller fator(

A 1

), and interatomi distane (

A),

re-spetively(i=1,Oxygen,i=2,nitrogen).

Sample N

1

1 R

1 N

2

2 R

2

A 2.8 0.036 1.60 1.3 0.001 1.70

B 3.1 0.000 1.63 1.2 0.000 1.64

C 3.2 0.000 1.63 0.8 0.000 1.66

D 4.0 0.000 1.60 - -

-E 4.0 0.000 1.60 - -

-The results show that the disorder of the lms is

omparableto that ofthereferene ompounds, being

largerforthelmwiththehighestnitrogenontent.

The RBSdata showedthat [(O+N)/Si℄

onentra-tionratioisalwaysloseto2. Thisresultsuggeststhat

bothoxygen andnitrogen atomsoupytherst

oor-dination shell aroundtheSi atoms, keepingthe

tetra-hedralSioordination. Thisstruturalmodelwas

on-rmedbythettingof theEXAFSsignal,onsidering

thattherstSioordinationshellispartiallylledwith

O and N atoms, whose onentration was taken from

theRBS data. These results, togetherwith theFTIR

data,suggestthatthebetterdesriptionofthematerial

isahomogeneousnetworkformed bySiO

N

4

tetha-Aknowledgments

Thisworkwassupported byFAPESP/Brazil

(pro-ess number: 98/09806-6). We aknowlegde Dr. F.C.

Vientin for the XAS measurements at LNLS/Brazil

andDr. M.H. TabaniksfortheRBSmeasurements.

Referenes

[1℄ U. Hilleringmann and K.Goser, Miroeletroni. Eng.

19,211(1992).

[2℄ M. Tabasky,E.S. Bulat, B. Tweed, and C.Herrik, J.

Va.Si.Tehnol.A12,1244(1994).

[3℄ A.Borghesi,A.Sassella,B.Piva,andL.Zanotti,Solid

StateCommun.100,657(1996).

[4℄ I. Pereyra, M.I. Alayo, J. Non-Cryst. Solids 212, 225

(1997).

[5℄ J. Viard, R. Berjoan, J.Durand, J. Eur. Ceram.So.

17,2001(1997).

[6℄ C.F. Lin, W.T.Tseng,M.S. Feng, Jpn.J.Appl. Phys.

Pt.137,6364(1998).

[7℄ M.I. Alayo and I. Pereyra, Braz. J. Physis 27A, 146

(1997).

[8℄ M.I. Alayo, I. Pereyra, and M.N. Carre~no, Thin solid

Films332,40(1998).

[9℄ W.L. Sopel,R.R. Cuzinatto,M.H.Tabaniks,M.C.A.

Fantini, M.IAlayo,andI.Pereyra,aeptedinJ.

Non-Cryst.Solids,(2001).

[10℄ L.R.Doolittle,Nul.Instrum.Meth.B 9,344(1995).

[11℄ M. Abbate, F.C. Vientin, V. Compagnon-Cailhol,

M.C. Roha, and H. Tolentino, J. Synhrotron

Radia-tion.6,964-972(1999).

[12℄ P.G. Pai, S.S. Chao, Y. Takagi, and G.Luovsky,J.

Va.Si.Tehnol.A4,689(1986).

[13℄ H.J. Shiliwinski, U. Shnakenberg, W. Kindbrake,

H. Ne, and P.Lange, J.Eletrohem. So. 139, 1730

(1992).

[14℄ J.Viard,E.Behe,J.Duran,andR.Berjoan,J.Eur.

Ceram.So.17,2039(1997).

[15℄ K.M.Behrens,E.D.Klinkenberg,J.Finster,andK.H.

Meiwes-Broer,Surf.Si.404,729(1998).

[16℄ K.v.Klitzing, G.Dorda, and M. Pepper, Phys.Rev.

Lett.45,494(1980).

[17℄ H. Ibah and H. Luth, Solid-State Physis,

(Sringer-Verlag,1993).

[18℄ K.vonKlitzing,unpublished.

[19℄ D.C.Tsui,H.Stoermer,andA.C.Gossard,Phys.Rev.

Lett.48,1559(1982).

[20℄ H. Stoermer, Pro. 2nd Braz. Shool of Semiond.

Phys., Eds. J.R. Leite andC.E.T. Gonalves daSilva,

p.539.

Imagem

Table I. Sample name, ow ratio [N
Figure 3. F.T. of the a-SiO2 and -Si3N4 referenes and

Referências

Documentos relacionados

the hole probability densities for the dierent energy levels. The solid lines orrespond to the hole

The phase veloity of light depends on whether light is. propagating in a moving or in a

The eletron{aousti-phonon sattering proess in spherial II-VI quantum dots is

The harateristis of multi-layered InAs/GaAs self assembled quantum dots (SAQDs) annealed af-.. ter the growth were here studied using a ombination of apaitane-voltage

vestigated in order to shift the optial emission of the strutures toward longer

ment ongurations: paraboli leads (dotted line), 1D-leads. (dashed line) and the hybrid ase

quantum waveguides of dierent shapes when a defet is loated either in the wire region or in the..

proesses leading to the phonon emission. We found that the peak value of the. inelasti transmission probability at the