• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número2A

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número2A"

Copied!
4
0
0

Texto

(1)

Laser Eets in Semiondutor Heterostrutures Within

an Extended Dressed-Atom Approah

H.S.Brandi a

, A. Latge b

, and L.E. Oliveira

a

InstitutodeF

isia,Univ. FederaldoRiodeJaneiro,RiodeJaneiro-RJ,21945-970,Brazil

b

InstitutodeF

isia,Univ. FederalFluminense,Niteroi-RJ,24210-340,Brazil

InstitutodeF

isia,Uniamp,CP6165,Campinas-S~aoPaulo,13083-970,Brazil

ReeivedonApril22,2001

Weextendthedressed-atomapproahtotreattheinterationofalasereldwithasemiondutor

system. ThesemiondutorismodeledviaasimpleKaneband-strutureshemeandtheinteration

with the lasereldis inorporated throughthe renormalization ofthe semiondutorenergygap

andondution/valeneeetivemasses. Farfromresonanes,suhone-bodyapproahallows the

studyoftheeetsoflasereldsonavarietyofoptoeletroniphenomenainsemiondutorsystems

for whihtheeetive-massapproximationprovidesagoodphysialdesription. Wealulatethe

eets originated by the laser-dressing onthe donorand exiton peak energiesin quantum-well

heterostrutures,andshowthattheymaybequiteonsiderableandobservable.

I Introdution

Thepossibilitiesto designnew eÆientoptoeletroni

swithes and modulators may be greatly improved if

weareabletounderstandthebasiphysisinvolvedin

theexternaleld-semiondutorinteration. A

onsid-erableamountofworkhasbeendevotedtothestudyof

theinteration of externaleletriandmagneti elds

[1℄ with semiondutor quantum wells and

superlat-ties, and the physial proesses are now well

under-stood. Amoreompliatedsituationourswhenlight

interatswithasemiondutor,andadetailed

desrip-tion of the laser-semiondutor interation requires a

many-body treatment, as exitations (real or virtual)

suhasexitonsarereatedandinterat viaCoulomb

fores[2,3℄.

In the present work we study the eets of a

laserbeamin theexitonstatesinsemiondutor

het-erostrutures. We also disuss how an homogeneous

and monohromati laser beam modies the

impu-rity states of GaAs-(Ga,Al)As semiondutor

quan-tum wells (QWs) under applied magneti elds

per-pendiular to the QW interfaes. A realisti

desrip-tion of the laser eets on shallow-impurity states in

semiondutor heterostrutures under magneti elds

would, in priniple, require omplex alulations

in-volving, for instane, Coulomb interations between

impurities and all virtual exitoni states.

Neverthe-less,amuh simplersituationours whenthelaseris

tuned farfrom any resonanes,sinethe main physis

iallydesribedbyusing anon-perturbativeone-body

approximation [4, 5, 6℄. From the experimental point

of view, the shifts on the impurity levels indued by

thelaserlightmaybeusedasapossibleappliationto

ultrafast opto-eletroni devies where no photon

ab-sorptionours inthedevie.

Here we onsider a desription of the

semiondu-tor system whih inludes spin-orbit oupling within

the Kane model [7℄. The alulations are based on a

steady-statemodelwhereasatualexperimentsdealing

withhangesintheeletronistrutureofthe

semion-dutorsystemareperformedusingultrafastlaserpulses

andintensitiesofGW/m 2

(the pulsed-laserregime in

whih the agreement with steady-state results is

ex-petedhasbeenextensivelyinvestigatedboth

theoret-iallyandexperimentally[3℄).

II Laser-dressed 3-band Kane

model

WeadopttheKanemodeltodesribethesetofstates

formed by thelowest ondution band (

6

), the

high-est light- and heavy-hole valene bands ( lh;hh

8

), and

thesplittedspin-orbitband(

7

),whihissplittedfrom

theothertwodegeneratedvalenebandsby.Inwhat

follows,weuseasabasisthe statesobtainedfrom the

diagonalizationoftheKanematrix[8℄. Theeet ofa

(2)

H =H o +~!a + a+ e m o A ! ^ p: ^(a

+

+a); (1)

where H

o

is the diagonal matrix obtained from the

Kane model, and a +

(a) is the reation (annihilation)

photonoperator assoiatedwiththelasermodeof

fre-queny! and polarization^. Thevauumeld

ampli-tudein thevolumeisgivenbyA

! =( 2~ 2 ! ) 1 2 whih

is relatedtothelassialamplitudeofthephoton

ve-tor potential A

o by A o = 2(N o ) 1=2 A ! for N o >> 1, where N o

>> 1 is the average number of photons in

the eld. Using the states obtained from the

diago-nalization of theKane matrix,it isstraightforwardto

extend the dressed-atomapproah [9℄ and diagonalize

the Hamiltonian of eq. (1) within the j

8

;N+1>

j

8

>jN+1>and j

6

;N >j

6

>jN >

mani-fold,wherejN >representsaFokstatewithN N

o

photons[9,10℄.

From the diagonalization of the Hamiltonian, one

obtains[6℄theassoiatedlaser-dressedondution(+)

andvalene(-)eletronibands, i.e.,

= o ~! 2 + 2 o 6Æ 0 1 2 s 8 2 o 3 + Æ+ 2 0 3Æ 0 + 4 2 0 3 1 2 + ~ 2 k 2 2m ; (2)

and orresponding renormalized eetive masses m

(see Brandi et al [6℄). In the above expression,

o is

thesemiondutorenergygap[8℄,Æisthelaserdetuning

givenby

o ~!,Æ

0

=Æ+ ,and

1 =

o

+ ~!. The

har-ateristi energyassoiatedto thelaser-semiondutor

interation isrelatedto

o =( eA o jpj 2m o ).

Note that the k-dependent semiondutor energy

gap is dressedbylaser eets, andis givenbythe

dif-ferenebetweentheaboverenormalizedondutionand

valeneeletroni bands

~ o (k)= o Æ+ s 8 2 o 3 + Æ+ 2 0 3Æ 0 + 4 2 0 3 1 2 + ~ 2 k 2 2 ; (3) with 1 = 1 m + 1 m .

Theaboveequationsprovidetheframeworkfor

al-ulating laser eets onsemiondutorsystemswithin

theKaneband-struturepiture.

The dependene of the laser-dressed

ondution-and valene-bandeetivemassesandthe

orrespond-ing behaviorof the dressed k = 0 semiondutor

en-ergygap[f. eq.(3)℄areshowninFigure1(where[4,5℄

I

o

510 7

MW=m 2

) for alaser detuning Æ = 0.05

o

, and parametersorresponding to bulkGaAs. Itis

lear that lasereets orrespondto a

renormaliza-0.0

5.0x10

-5

1.0x10

-4

0

1

2

3

m

-

/m

v

m

+

/m

c

(a)

d

ressed

m

asses

I/I

o

0.0

5.0x10

-5

1.0x10

-4

1500

1520

1540

1560

1580

1600

(b)

d

ressed

g

a

p

(

m

eV

)

I/I

o

Figure1. GaAs laser-dressedeetivemasses for the

on-dution (m+) and valene (m ) bands, and energy gap.

Resultsdisplaythedependeneonthe laserintensityfor a

xeddetuningÆ=0=0.05.

theondution/valene eetivemasses. Also, a

om-parisonofthe presentresultswith theprevious

alu-lationbasedonatwo-bandmodelsemiondutor[4,5℄

indiates that results are qualitatively the same, the

dierenes inreasing for smaller detunings and high

laser intensities, as one would expet. Therefore, we

mayinferthat laserdressingdoesnotstronglydepend

onthe modelling of the band struture, and therefore

thepresentKane-modelrenormalizedeetive-mass

ap-proah, valid within the one-partile piture and for

a laser tuned far from any resonanes, may be used

to provide an adequate indiation of the laser eets

on any semiondutor heterostruture for whih the

eetive-massapproximationisagoodphysial

desrip-tion.

III Laser-indued exiton and

donor shifts in

GaAs-(Ga,Al)As quantum wells

(3)

in a100

AGaAs Ga

0:7 Al

0:3

As QW.The1s-like

ex-iton ground state was evaluated within a

frational-dimensional sheme[11℄ usingthe3-band Kane

renor-malized GaAs ondution/valene eetive mass and

dressed band gap. Results for the laser-intensity

de-pendene of the exiton shift (and peak energy) are

presented in Fig. 2 (and Fig. 3) for a laser tuned

far from exiton resonanes, i.e., Æ = 0.05

o . The

blue laser-induedshiftin theexitonpeakenergiesis

quite remarkable, and alulated results qualitatively

agree with femtoseond measurements by Mysyrowiz

etal[12℄. TheKane-modelontributionstotheexiton

Starkshift aredueto thelaser-induedhangesinthe

GaAs gap, exiton binding energy, and QW

onne-ment both of free eletrons and holes. It is apparent

from Fig. 2 thatthe main ontributionto theexiton

blueshiftisessentiallydue tolaser-induedhangesin

theGaAssemiondutorgap.Notiethat,inthelarge

detuning limit,perturbation theory (PT)in the

laser-dressed3-bandKanegapresultsinanexitonblueshift

given by 4

2

o

, in ontrast with the 2-band model

ap-proah [4, 5℄ whih gives a larger detuning PT result

of 2

2

o

Æ

. This2-band PT resultfor theontribution of

thedressedgap totheexitonshiftorrespondstothe

sameexitonblueshift,inthelargedetuninglimit,

ob-tainedthrough amany-bodydiagrammati derivation

andinterpretedbyCombesot[2℄asomingfromPauli

exlusion betweenthe twoe-hpairs forming the

biexi-ton. We mention therefore that the present Kane

re-sultsdemonstratethatdressed-bandeetswithina

3-band modelalulationwould hangethezeroth-order

termofthe2-bandmany-bodydiagrammatiapproah

[2℄,andsuggestthattheontributionduetomore

real-istiband-dressingalulationsmaybeasimportantas

many-bodyorretions. Also,thepresentrenormalized

approahforevaluatingtheexitonbindingenergy

or-responds essentially to a diagrammati summation of

ladderdiagramsassoiatedwithlaser-dressede-h

bub-blesbuiltfromarenormalizedeletronanda

renormal-izedholein thepreseneoftheCoulomb interation.

As a seond appliation, we study the laser

ef-fetsontheon-enterdonor-impuritystatesofa100

A

GaAs Ga

0:7 Al

0:3

AsQWunderthepreseneofan

ap-pliedmagnetieldperpendiulartotheQWinterfaes

[1℄. Wefollowastandard variationalshemewithin a

renormalizedlaser-dressedeetive-massapproahand

hoosea1s-likeon-enter trialenvelopewavefuntion

asaprodutoftheexatsolutionofthesquarewellQW

potentialandahydrogeni-likevariational1sfuntion

[1℄. Weonsidertheeetsofalaseronthe1s-like

shal-lowdonorstateunder thepresene ofanapplied

mag-netieldperpendiulartotheQWinterfaes. Results

forthemagneti-elddependeneofthedonorpeak

en-ergy(transitionsfromthe1s-likedonorto therst

va-lenemini-band)aredisplayedinFig. 4forI=I

o =10

4

and a detuning parameter Æ = 0.05 . One noties

that the laser-dressed shift in the donor peak energy

is ofthesameorderof magnitudeoftheQWonned

donorbindingenergy,andmuhstrongerthanthe

or-respondingshiftinduedbytheappliedmagnetield.

Thestrongblueshiftonthedonorpeakenergyouldbe

easilyobservable,although,toourknowledge,thereare

noexperimentalmeasurementsonerninglasereets

onimpuritystatesindopedGaAs-GaAlAsQWs.

0

1

2

3

4

5

0

20

40

60

Kane

Kane gap

Kane PT

excit

o

n

sh

if

t (

m

eV)

Laser intensity (GW/cm

2

)

Figure2. Laser-intensitydependeneoftheexitonoptial

Stark shift for a 100

A GaAs Ga0:7Al0:3As QW and a

laser detuning Æ=0 =0.05. Thefull urvesrepresent the

Kane-modelontributionstotheexitonStarkshiftdueto

thelaser-induedhangesintheGaAsgap (labelled\Kane

gap"), andthetotal optialexiton Starkshift shownasa

fullurve(labelled\Kane"). Itisalsoshownthe

perturba-tive(KanePT)results(dashedurve).

0

1

2

3

4

5

1560

1570

1580

1590

excit

o

n

p

eak en

erg

y (

m

eV

)

Laser intensity (GW/cm

2

)

Figure 3. Laser-dressed exiton-peak energy for a 100

A

GaAs Ga

0:7 Al

0:3

AsQWasafuntionofthelaser

inten-sityandforadetuningparameterÆ=0.05

o .

IV Conlusions

Wehavepresentedatheoretialapproahofthe

laser-eld eetsonsemiondutorlow-dimensionalsystems

by adopting a piture in whih the light-matter

in-teration is taken into aount by dressing the

semi-ondutorenergygapandondution/valeneeetive

masses. Boththetwo-bandandthree-bandKane

(4)

shown to give essentially the same qualitative results

for thelaser dependene ofthedressed semiondutor

gap and orresponding eetive masses, although an

appropriate quantitative omparison with experiment

would ertainly requirea morerealisti desriptionof

thesemiondutorbandstruture.

0

2

4

6

8

10

1550

1560

1570

1580

1590

1600

donor

peak ener

gy (

m

eV

)

B (Tesla)

Figure 4. Laser-dressed on-enter donor-peak energiesfor

a 100

A GaAs Ga0:7Al0:3As QW for I=Io = 10 4

and

Æ =0.05 o. Dotted linesarethe orrespondingundressed

results.

Aknowledgments

The authors would like to thank the Brazilian

AgeniesCNPq,FUJB-UFRJ,FAPERJ,FAPESP,and

FAEP-UNICAMP forpartialnanialsupport.

Referenes

[1℄ A. Latge, N. Porras-Montenegro, M. de Dios-Leyva,

J.Ribeiro,A.Latge,andL.E.Oliveira,J.Appl.Phys.

80,2536(1996).

[2℄ M.Combesot,Phys.Reports221,167(1992).

[3℄ M. Lindberg andS.W. Koh,Phys.RevB 38,7609

(1988);C.Ell,J.F.Miller,K.ElSayed,andH.Haug,

Phys.Rev.Lett.62, 304(1989); S.M. Sadeghi,J.F.

Young,andJ.Meyer,Phys.Rev.B56,R15557(1997).

[4℄ H.S.Brandi,A.Latge,andL.E.Oliveira,Sol.State.

Commun. 107, 31 (1998); ibid., Phys. Stat. Sol. (b)

210,671(1998).

[5℄ H.S.BrandiandG.Jalbert,Sol.StateCommun.113,

207(2000);H.S.Brandi,A.Latge,andL.E.Oliveira,

PhysiaB:Phys.ofCond.Matter(inpress).

[6℄ H.S.Brandi,A.Latge, andL. E.Oliveira, Sol.State

Commun.117,83(2001);ibid.,Phys.Rev.B(inpress,

July15,2001).

[7℄ E.O.Kanein"Narrow GapSemiondutors. Physis

and Appliations", ed. by W. Zawadzki, Le. Notes

Phys.133(SpringerVerlag,Berlin,1980).

[8℄ G.Bastard, "Wave mehanis applied to

semiondu-tor heterostrutures". Les Editions de Physique, Les

Ulis,1988.

[9℄ C. Cohen-Tannoudji, J. Dupont-Ro, and G.

Gryn-berg, "Proessus d'interation entre photons et

atomes",EditionsduCNRS,1988.

[10℄ G.Jalbert,B.Koiller,H.S.Brandi,andN.Zagury,J.

Phys.C19,5745 (1986).

[11℄ A. Matos-Abiague, L. E. Oliveira, and M. de

Dios-Leyva,Phys.Rev.B58,4072(1998);E.Reyes-Gomez,

A.Matos-Abiague,C.A.Perdomo-Leiva,M. de

Dios-Leyva,andL. E.Oliveira,ibid.61,13104(2000).

[12℄ A.Mysyrowiz,D.Hulin,A.Antonetti,A.Migus, W.

T. Masselink, and H. Morko, Phys. Rev. Lett. 56,

Imagem

Figure 1. GaAs laser-dressed eetive masses for the on-
Figure 3. Laser-dressed exiton-peak energy for a 100 A GaAs Ga 0:7 Al 0:3
Figure 4. Laser-dressed on-enter donor-peak energies for

Referências

Documentos relacionados

vestigated in order to shift the optial emission of the strutures toward longer

ment ongurations: paraboli leads (dotted line), 1D-leads. (dashed line) and the hybrid ase

quantum waveguides of dierent shapes when a defet is loated either in the wire region or in the..

proesses leading to the phonon emission. We found that the peak value of the. inelasti transmission probability at the

taking into aount the eetive mass dependene of the Mn onentration and the strain eetsx. In this work we analyze the giant Zeeman splitting due to applied magneti elds and

dene of both 2DEG density and ground state energy. has to

The results show that the exiton trapping in periodi magneti elds is.. possible and dependent on the

of the potential energy are omparable with the thermal energy of the photoreated