• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número2A

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número2A"

Copied!
3
0
0

Texto

(1)

Spin Dynamis Driven by the Eletron-Hole

Exhange Interation in Quantum Wells

M. Z.Maialle

UniversidadeS~ao Franiso,13251-900 Itatiba-SP,Brazil

ReeivedonApril23,2001

We present a theoretial study of the spindynamis of site-loalized exitons in semiondutor

quantum wells driven by the eletron-hole exhange interation. Using a simple model for the

distributionofsitesweobservedspindephasingleadingtoastrongspinpolarization deay.

I Introdution

In general, ontrol overthe degreeof spin orientation

ofphotoreatedhargearriersinsemiondutor

stru-turesisahievedbypolarized-lightexitationofoptial

transitions in onformitywith theangular momentum

seletionrules. Insemiondutorquantumwells(QWs)

thespindynamisresultsfromtheindividualdynamis

oftheeletronspin(omponents1/2,inunitsof~)or

heavyholespin(angularmomentumprojetions3/2),

orfrom thespin dynamis of the bound eletron-hole

pair (exiton). Individual eletron and hole spinips

follow from band spin mixing in addition to

momen-tum sattering, and they havelittle eÆieny on old

arriersattheband edgesof narrowQWsdue to

van-ishing spin mixing and redued available phase spae

forsattering.

In intrinsi QWs the band-edge optial properties

aredominatedbytheexitonstateforwhihthe

orre-lationbetweentheeletronandholespinsissetbythe

eletron-hole (e-h)exhange Coulomb interation.

Al-thoughsmall,theexhangeontributiontothespin

dy-namisbeomesimportantintheaforementioned

situa-tionofstronglyonnedarriersatthebandedges. The

long-rangepartofthee-hexhange interation(LRX)

dependson theexiton enter-of-mass(.m.)

momen-tum, suh that sattering leadsto anexiton spin

re-laxationaordingtoamotionalnarrowingproess,for

whih shorter sattering time

gives longer exiton

spin relaxation time

s

(whih is valid for

s ).

However, suh mehanism annot be diretly applied

forsamplesthatexhibitlateralloalizationofexitonin

sitesreatedbyQWinterfaeimperfetions. Loalized

exitons do not satter as frequently asfree exitons,

suh that the motional narrowing proess is

inappro-priateif

lo

s

. Also,theloalizationoftheexiton

inlargesitesquantizesthe.m. motionandasaresult

theLRXouplingforexitonspinstatesj+1i !j 1i

vanishesinsymmetrisites.[1℄

itonspindynamisviathee-hexhangehavebeen

ad-dressed experimentallyand theoretially by Nikolaus

et al.[2 ℄ for (Zn,Cd)Se/ZnSe QWs. They have found

that the dominant mehanism in the spin deay was

not a true relaxation proess, but instead a

dephas-ingofthemarosopispinpolarizationresultingfrom

the LRXmatrix elements, whih are subjetedto the

same inhomogeneity of the sites. Further evidenes

of the ombined role of the exiton loalization and

e-h exhange interation are provided by experiments

in QWswith transversemagneti eld (Voigt

ongu-ration) where Larmorpreessions of the eletron spin

are observed inthe asethat theexhangeinteration

laksstrengthto orrelatetheeletronandholespins.

Otherwise, the preessingeletron spinwould haveto

drag the heavy-holespin that, in rstapproximation,

is pinned along the growth axis. In GaAs/AlAsGa

QWs[3℄ eletron spin preessionswere observed,

how-ever,in (Zn,Cd)Se/ZnSe QWs,[4℄ thepreessionswere

seenonlyat hightemperatures(100K).

Inthispaper,wepresentabriefaountofthe

theo-retialstudy[5℄ofthespindynamisinZnSe/(Zn,Cd)Se

QWs inluding the eets of exiton loalization,

e-h exhange interation and spin preessions about a

transversemagnetield.

II Spin dynamis by the e-h

ex-hange interation

TheexhangeinterationmatrixforQWsisalulated

in the eetive-mass approximation using an exiton

ground-statewavefuntionwrittenas

1s;K (r

e ;r

h )=(z

e )(z

h )'

1s ()

e iKR

p

A

; (1)

whereandRaretherelativeand.m. e-hoordinates

(2)

in-theQW groundstatesforeletronandheavyholeare

respetively(z)and(z). Spinmixingbetweenheavy

holesandlightholesisnegleted.

TheLRXHamiltonian[6℄anbewritten as[7℄

H LR

(K)=F(K) 2

6

6

4

0 0 0 0

0 K Ke

2i

0

0 Ke 2i

K 0

0 0 0 0

3

7

7

5 ; (2)

where the matrix elements are arranged for the

ex-iton spin basis in the order j +2i, j+1i, j 1i, j 2i.

Also, K=(K ;) in polar oordinates and F(K) gives

the quasi{two-dimensionalexhange strength.

Assum-ingnomixingwiththelight-holestates,theshort-range

partof theexhange interation isdiagonal in the

ex-iton spinbasisandan writtenas[7℄

H SR i;j = SR Æ i;1 Æ j;1 ; (3) with SR

setting the splitting between the dark j2i

andoptiallyativej1iexitons.

II.1 Loalized exitons

We treat only the loalization of exitons in sites

larger than the exiton Bohr radius. In this way, the

exiton.m.motionintheQWplaneisassumedtobe

bound into the minima of the site potential. We

de-sribesuhboundstateintheharmoniapproximation

b (K)= b x b y 2 ~ 2 1 4 exp 1 2 (b x K 2 x +b y K 2 y ) ; (4) where b=(b x ;b y

) speies the shape of the site, with

b x =~= p MV xx

given by the seond derivative V

xx of

thesitepotentialalong thesiteprinipal axisxat the

minimum(andsimilarlyfory). TheexitonmassMis

forthedispersionontheQWplane.

AspinHamiltonianfortheLRXanbeobtainedby

rst-orderperturbationtheoryfortheloalizedexiton

ifweneglettheKdependeneonF(K)andsubstitute

K in thematrixEq.(2)by

K b (d=o) = Z dKj b (K)j 2 K 2 x K 2 y q K 2 x +K 2 y ; (5)

withthe+and signsholdingforthediagonal(d)and

o-diagonal (o) terms, respetively. The short-range

exhangetermforloalizedstatesremainsasinEq.(3)

sine itdoesnot depend onKand beauseof the

ap-proximation used that the relative e-h motion is not

modiedby.m. loalization.

We model the distribution of sites as done by

Wilkinson et al. [8℄ using a Gaussian random

fun-tiontosimulatethein-planepotentialV(r)reatedby

the QW imperfetions. The distribution of potential

is haraterized by two parameters: the variane 2

of the site potentialand theorrelation length l suh

thathV(0)V(r)i = 2 V exp( r 2 =2l 2

),wherethebrakets

denoteeitherensembleaverageorspatialaverage. The

absorptionoptial density in this model isa Gaussian

funtion of variane 2

V

. The density probability of

minima N(V) of this potential gives a narrower

dis-tributionenteredatalowerenergywhenomparedto

theabsorptionGaussianurve. Thismodelwasusedto

interpret the Stokesshift and Nikolaus et al.[2℄ have

usedittoderivedthedensityofminimaN(V;V

xx ;V

yy ),

now also asa funtion of the seond derivatives, that

givesthedistributionofsiteswithdierentshapes. The

inhomogeneity in the values of the exhange matries

forthesitesisalulatedusingthedistributionof

min-imaN(V;V

xx ;V

yy ).

=bf II.2 Equations of motion { Coherent spin

dynamis

Theequationofmotionforthedensitymatrix(K)

(with elements

i;j

=jiihjj; where jii=j2i;j1i are

theexitonspinstates)isgivenby

d(K)

dt =

i

~

[ (K);H(K)℄+

t

inoh

+G; (6)

whereG isthegeneration rate, t inoh ontains

in-oherentontributionssuhasthereombinationrates

for the optially ative exitons with spins j1i and

spinrelaxationforeletronsandholeduetospin-orbit

interation. An applied magnetield B introduesa

ZeemanterminH

H B e = B g e 1 2 e

B and H B h = B g h 3 2 h z B z ; (7) where B

isBohrmagneton,g

e(h)

istheeletron(hole)

gfatorand arePaulimatriesusedfortheeletron

(s= 1

2

) and heavy hole (m= 3

2

) spins. Notie that

only the z omponent of B ats on the heavy holes

(theotheromponentswouldinvolvesmaller

ontribu-tionsdue tomixing withthelightholes).[9℄ The

equa-tionofmotionEq.(6),withtheontributionsEqs.(2),

(3)and(7),isasystemofrst-orderlineardierential

equationsthat ouplesallthe16matrixelements

i;j .

Inthemostgeneralases,nophysiallysimplesolution

emergesfromtheequationsofmotionandinthe

follow-ing they are solved numerially. The time dependent

solutions are then average out using the distribution

ofminima N(V;V

xx ;V

yy

) as weightto aount forthe

distributionofsites.

III Results and disussion

We have solved the problem of a free exiton in a

Zn

0:8 Cd

0:2

Se/ZnSeQWusingatrialwavefuntionwith

two variationalparameters.[10℄ Theexhange indued

(3)

available experimentaldata E

exh

=0:25meV [4℄and

E

exh

=0:5 meV.[11℄ Reasonable values were found

when using the bulk exhange splittings E

SR =0:2

meVandE

LR

=0:8meV.Inwhatfollowsweonsider

a5nm-QWforwhih

SR

=0:3meVinEq.(3)andF=

14 meV

A in Eq. (2). In addition, we have used[11℄

g

e

=1.1andlookedat exitonswithenergyV= 1.5

V

(luminesenetail)[2℄with

V

=6meVandsite

orrela-tionlengthl=200

A.TheexitingpulseisaLorentzian

ofwidth 1ps enteredin t=0swith irular

polariza-tion +

exitingexitonsj+1i.

InFig.1(a)weshowthetimeevolutionofthe

ele-tron and hole spin omponents along the z diretion

(growthaxis)forzeromagnetield. Wehavesetzero

deaying rates

t

inoh

=0 in Eq. (6), suh that the

deay observed in Fig. 1(a) for the spin omponents

are atually due to spindephasing. The physial

rea-son for suh dephasing is that the LRX, through the

o-diagonaltermsinEq.(2),induespreessionsofthe

holeandeletronspinsabouteahother. The

distribu-tionofsitesyieldsasimilardistributionontheexhange

strengthandonsequentlyonthepreessionfrequeny

resultingin dephasing. In Fig.1(b)atransverse

mag-netieldisappliedB

x

=2T.Besidesthesite-exhange

indueddephasing,nowtheeletronspingoesthrough

Larmorpreessionabouttheeld.

In Fig. 1() we have used dierent orrelation

lengths along the x and y diretions,that is, there is

stilladistributionofinhomogeneityofsitesasinthe

re-sultsofthepreviousgures,butnowelongatedsitesare

morelikely. Inthisase, theLRXassumesa

distribu-tionaboutnonzerovalues,whih setanitefrequeny

for the exhange indued e-h spin preession. This is

seenbythelongperiodosillationonthetimeevolution

oftheeletronandholespinomponents.

Inonlusion,wehavemodeled thespindephasing

indued by the e-h exhange interation for exitons

loalized in sites reatedby imperfetions on theQW

interfaes. Thespindephasingyieldedquiteshortspin

deaytimes30ps whenusingtypialparametersfor

(Zn,Cd)Se/ZnSe QWs, whih shows the relevane of

suhproessinthestudyofspindynamisinthese

sys-tems. InGaAs QWstheroleofspindephasingbythe

e-h exhange for loalized exitons is notso lear

be-auseinthesesystemsexitonsexhibitweaker

loaliza-tionandtheexhangestrengthisonsiderablysmaller

(E

exh

0:05 meV). Eletron-hole spin preession

thatleadstodephasingisthenlesslikelytohappen.

Aknowledgments: This work was supported by

0

20

40

60

80

-1.0

-0.5

0.0

0.5

1.0

σ

e

σ

h

S

pi

n C

om

pom

ent

s

(

a.

u.

)

T im e (ps)

-1.0

-0.5

0.0

0.5

1.0

(c) B =2 T,

l

x

=150Å ,

l

y

=250Å

(b) B =2 T

l

x

=

l

y

=200Å

-1.0

-0.5

0.0

0.5

1.0

(a) B =0 T,

l

x

=

l

y

=200Å

Figure 1. Time evolution of the spinomponents of

ele-tron e

z

; infull lines, and heavy hole h

z

; in dashedlines.

(a)Noappliedeld B=0T,orrelationlengthl =200

Afor

thexandydiretions. (b)SameasbeforebutforB=2T.

() Timeevolutions alulated for B=2 T,l

x =150

A and

ly=250

A,simulatingelongatedsites.

Referenes

[1℄ S.V.Goupalov,E.L.Ivhenko,A.V.Kavokin,J.Exp.

Theor.Phys.86,388(1998) [Zh.Eksp.Teor.Fiz.113,

703(1998)℄.

[2℄ H. Nikolaus, H. -J. Wunshe, and F. Henneberger,

Phys.Rev.Lett.81,2586(1998).

[3℄ T.Amand,X.Marie,P.LeJeune,M.Brousseau,D.

Ro-bart,andJ.Barrau,Phys.Rev.Lett.78,1355 (1997).

[4℄ S. A. Crooker, D. D. Awshalom, J. J. Baumberg, F.

Flak,andN.Samarth,Phys.Rev.B56,7576(1997).

[5℄ M.Z.Maialle,Phys.Rev.B61,10877(2000).

[6℄ G.E.PikusandG.L.Bir,Zh.Eksp.Teor.Fiz.60,195

(1971).[Sov.Phys.-JETP33,108(1971)℄.

[7℄ M.Z.Maialle,E.A.deAndradaeSilva,andL.J.Sham,

Phys.Rev.B47,15776(1993).

[8℄ M. Wilkinson, Fang Yang, E. J. Austin, and K. P.

O'Donnel,J.Phys.: Condens.Matter4,8863(1992).

[9℄ X. Marie, T. Amand, P. Le Jeune, M. Paillard, P.

Renui, L. E. Golub, V. D. Dymnikov, and E. L.

Ivhenko,Phys.Rev.B60,5811 (1999).

[10℄ Tobepublishedelsewhere.

[11℄ J.Puls andF.Henneberger,Phys.Stat. Sol.(a)164,

Imagem

Figure 1. Time evolution of the spin omponents of ele-

Referências

Documentos relacionados

vestigated in order to shift the optial emission of the strutures toward longer

ment ongurations: paraboli leads (dotted line), 1D-leads. (dashed line) and the hybrid ase

quantum waveguides of dierent shapes when a defet is loated either in the wire region or in the..

proesses leading to the phonon emission. We found that the peak value of the. inelasti transmission probability at the

taking into aount the eetive mass dependene of the Mn onentration and the strain eetsx. In this work we analyze the giant Zeeman splitting due to applied magneti elds and

dene of both 2DEG density and ground state energy. has to

The results show that the exiton trapping in periodi magneti elds is.. possible and dependent on the

of the potential energy are omparable with the thermal energy of the photoreated