• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número2A

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número2A"

Copied!
9
0
0

Texto

(1)

The Regime of Eletromagnetially Indued

Transpareny in Optially Dense Media:

from Atoms to Exitons

M. Artoni a

, F. Bassani b

, I. Carusotto

, and G.C. La Roa d;b

a

INFMandLENS,LargoE.Fermi2,I-50125,Florene,Italy

b

INFM,SuolaNormaleSuperiore,PiazzadeiCavalieri,I-56126 Pisa,Italy

Laboratoire Kastler-Brossel, EoleNormaleSuperieure,75231Paris Cedex05,Frane

d

DipartimentodiFisia\E.R.Caianiello",Universita diSalerno,I-84081 Baronissi(Sa), Italy

Reeivedon23April,2001

The phenomenon of eletromagnetially induedtranspareny (EIT) was disovered by Adriano

Gozziniandoworkersin1976inPisa. NovelshemestoinvestigateandexploitEITintheoptial

domainhaveattratedmuhinterestbothinatomiand solidstate systems. Wedisusssomeof

ourreent theoretialresults,inpartiular: i) awelldevelopedEIT regimebasedonfreeexiton

levelsinundopedbulkrystallineCu

2

O;ii)light draggingeetsinmovingmediaunderEIT;iii)

theoherentontrolofCherenkovradiationintheEITregime.

I Introdution

In theontext ofoptial pumpingexperimentson Na,

Adriano Gozzini and oworkersobserved for the rst

time in 1976 in Pisa a peuliar phenomenon:

when-evertheseparationamongtwoZeemansublevelsofthe

twohyperneomponentsofthe3Sgroundstatewould

equalthefrequenydierenebetweentwolasermodes

nearlyresonantwith theD

1

line, noabsorptionwould

beindued,andthereforenouoresenefrom the3P

levelwouldbeobserved, asif Nawould be

\transpar-ent"totheresonantlight. Thisphenomenon,originally

referredtoastheNa\blakline",wasimmediately

ex-plainedbyEnnioArimondoetal. intermsofquantum

oherene and interferene whereby the ground state

doublet ispumped intoaoherentsuperposition state

where thepopulationistrapped duetodestrutive

in-terferene between the two distint paths of

absorp-tion to the third exited level. After these seminal

works [1℄, suh a mehanism of oherent population

trappingunderlyingeletromagnetiallyindued

trans-pareny(EIT)hasreeivedinreasingattention[2℄

be-ause of the many appliations, suh as for instane

subreoillaser ooling[3℄, lasingwithoutinversion[4℄,

adiabatitransfer[5℄. Morereently,bothinultraold

atomiloudsaswellasinsolids,EIThasbeenshown

to open novel regimes of the eletrodynamis of

on-tinuous media. We here present some of our reent

theoretialresults: inpartiular, awelldevelopedEIT

regime based on free exiton levels in undoped bulk

rystalline Cu O [6℄; light dragging eets in moving

mediaunderEIT[7℄;and,in moredetail,theoherent

ontrolofCherenkovradiationintheEITregime.

II EIT for intrinsi bulk exiton

lines

The investigation of fundamental oherent optial

ef-fets in semiondutors is an important eld of

re-searhwherequantuminterfereneplaysarole: weare

hereonernedwitheletromagnetiallyindued

trans-pareny (EIT), so far demonstrated mostly for dilute

atomivapors. Condensedmatterexhibits quitea

va-riety of three-level systems where EIT ould also be

realized. Yet dephasings, whih an easily break the

oherene of the population trapping state, make it

diÆult to observe a large EIT eet in solids. For

mirowaves, EIT has been observed in ruby [8℄ using

astrong externalmagneti eld, while in the infrared

EIThasbeenobservedinintersubbandtransitionsina

quantumwell[9℄. Foroptialfrequenies,EITinsolids

hasonlybeenobservedin an inhomogeneously

broad-enedhole-burningPr3+-dopedY2SiO5rystal[10℄. We

predit a remarkable enhanement of

eletromagneti-ally indued transpareny in an undoped bulk

semi-ondutorexhibiting sharp free-exitonlines that

or-respond to intrinsi deloalized eletroni states. We

speiallyonsiderthe\yellowexiton"seriesinCu

2 O

forwhihalltherelevantspetrosopiparametersare

available[11,12℄.

(2)

ourat the point(O

h

symmetry)andhave,

respe-tively, +

6 and

+

7

symmetry, eah twofolddegenerate

spininluded. Thefour statesofthe 1S exiton

man-ifold split into an upper quadrupole allowedthreefold

degenerate +

5

level and a lowerforbidden

nondegen-erate +

2

level. The twelve states of the 2P exiton

manifold are lassied aording to their symmetries

as follows:

2

3

4 2

5

, among whih only

the threefold degenerate

4

states are dipole ative

and giverise to the seond lass 2P \yellow exiton"

line [13℄. In thefollowing, weassumethat the

4

op-tially ative2P states aresuÆiently separatedfrom

allothers sothatweanrestritourselvesonly tothe

+

5

1S and

4

2P exiton states. The

longitudinal-transverse splitting of the seond lass 2P exiton is

negligible. The inlusion of the omplete 2P exiton

manifold [14℄ would not hange signiantlythe main

resultsheredisussed.

We are interested in the optial respone

experi-ened by a weak probe beam of frequeny !

p tuned

around the 2P \yellow" exiton line of resonant

fre-queny !

2P

, while a strong oupling beam of

fre-queny !

and Rabi frequeny

is nearly resonant

with the 1S to 2P exiton transition of resonant

fre-queny!

2P 1S =!

2P !

1S

. All relevantparameters

intheeetivehamiltoniandesribingthisthree

ex-iton level onguration an be determined from the

usual envelopefuntion pitureof Wannier-Mott

exi-tonstates. Thedipole forbidden1S exitonstate has

asmall linewidth (~

1S

'0:1 meV)ompared to that

oftheseondlassallowed2P exitonstate(~

2P '1

meV) and awell developed EIT anbeestablished in

the presene of the oupling beam. A transpareny

window about the 2P exiton line appears, while for

very high pump intensities, or at least for

larger

thanabout2

2P

,theAutler-Townesregimeis

eventu-allyreahed[2,12, 6℄. Theoptialsuseptibility

expe-rienedbyaprobepolarizedalongxinthepreseneof

apump polarizedalongy isgivenby

p =

A

2P (Æ

p Æ

i

1S )

p i

2P )(Æ

p Æ

i

1S

)

2

=4

;

with A ' 0:02 is a numerial onstant proportional

to the 2P exiton osillator strength[6℄ whereas Æ

p =

!

2P !

p and Æ

= !

2P 1S !

are the two relevant

detunings.

Fig.1 shows the imaginary part of the

suseptibil-ity for pump intensities haraterizing both EIT and

Autler-Townes regimes for a probe tuned to the 2P

exiton line. The atual transmission through aslab,

inludingthe eet ofthe omplexbakground

diele-tri onstant, is shown instead in Fig.2 antiipating a

nearly 50%transmission due to EIT. Apart from the

bakground absorption, the 1S exiton linewidth

1S

isthematerialparameterthatmostlylimitsthe

possi-bility of ahieving even largerEIT eets in this

sys-eters appropriate to the experiments by Frohlih and

oworkers[12℄whereaverytinyEITeetouldindeed

bereognized: this gurereprodueswellthe

dieren-tialtransmissionmeasuredin[12℄foranearlyresonant

pump.

-

5

-

2.5

0

2.5

5

δ

p

0

0.005

0.01

0.015

0.02

χ

p

Figure1. Imaginarypartofthesuseptibilityvs. theprobe

frequenydetuninginunitsof 2P foraresonant oupling

beam. TheouplingRabifrequeniesare=2P =2(solid)

and4(greydash)whileintheabseneoftheouplingbeam

( = 0) the suseptibility is desribed by the solid grey

urve.

-

5

-

2.5

0

2.5

5

δ

p

0

0.2

0.4

0.6

G

T

Figure 2. Transmission oeÆient GT vs. the probe

fre-quenydetuninginunitsof2P;thebakgrounddieletri

onstantis1=6:5+i210 3

,theslabthiknessd=35m

whiletheotherparametersarethesameasinFig. 1.

-

0.5

-

0.25

0

0.25

0.5

δ

p

0.002

0.003

0.004

0.005

0.006

0.007

G

T

Figure 3. Same as in Fig.2 exept for a slab thikness

d=60m, a oupling Rabi frequenies =2P = 0.2, and

(3)

TheobservationofafullydevelopedEITregimefor

intrinsi exiton lines in semiondutors would open

the wayto many opportunities involvingeither devie

appliationsofEITorfundamentalissuessuhas,e.g.,

the role of polaritoni eets and of ponderomotive

fores intheEITontext.

III Fresnel light drag under EIT

Thephaseveloityoflightdependsonwhetherlightis

propagating in a moving or in a stationary medium.

This eet, whih gives rise to the familiar Fresnel

light{drag[15℄, hasbeenobservedfortherst timein

Fizeau's owingwaterexperiment[16℄ andhad a

pro-found inueneonthehange ofourpereption ofthe

nature of spae and time at the turn of the entury.

Severalotherobservationsoflight{dragshavefollowed

inwhihdierentdraggingmediaanddierent

interfer-ometri measurementtehniqueshavebeenemployed.

Therestillremains,however,aformidablehallengeto

performhigh-preisionmeasurementsoflight{dragsas

theyhavenotyetreahedthelevelofaurayofother

tests ofspeialrelativity[17℄.

Inorder to perform ahigh{preision measurement

of theFresnel-Fizeaueetoneneeds ratherhigh

sen-sitivity to veloity indued phase shifts whih means

largesamplespeeds. Atthesametime,inorderto

pre-servehighontrastoftheinterferenefringepattern,

vi-brationstransmittedfromthesamplemovementtothe

interfereometeritselfhavetobeminimized. Tothis

ex-tentwehereantiipatethatpreisionanbeimproved

throughEIT whenthisisdevisedto ourin aslabof

uprousoxide(Cu

2

O)usedasadraggingmedium.

Im-provementsonsistinquitelargepositiveandnegative

light{drags that enable one to ahieve high

interfero-metri sensitivities evenfor lowdrag veloities. Large

drags are assoiated with the steep dispersion

our-ringwithin atransparenywindowenteredat the2P

exitonresonaneandarisingfromthequantum

inter-fereneinaspeipump{probeongurationwhih

involvestheground,the1S andthe2P exitonlevels,

asshownabove.

Not onlyan oneinreasepreision,but in a

sam-ple rendered anisotropi by a suitable hoie of the

pump polarization onean also make the phase shift

orrespondingtothe light-dragto vanish. This means

that in a typial interferometri experimentno fringe

shift would be observedfor lightpropagating through

the movingmedium with respet to lightpropagating

throughthemediumatrest. Thissomewhatsurprising

onlusionholdsforallveloitiesofexperimental

inter-estwhiletuningofthelight{dragtozeromayturnout

to bequite favorable forinvestigatingthe

eletromag-netiandmehanialbalaneofthemomentum

assoi-We then examine Cu

2

O under EIT as dragging

medium and look at the Fresnel drag experiened by

aweakprobebeamoffrequeny!tunedaboutthe2P

\yellow"exiton lineof resonantfrequeny!

2P , while

astrong beam of Rabi frequeny

is resonant with

the1S to2P exitontransition. Forapump Rabi

fre-queny

p

2P

1S

EITtakesplaewherebya

nar-rowtransparenywindowwitharathersteepdispersion

appearsaroundthe2P exitonline.

Theeetive dieletritensorseenby theprobein

thepresene ofthepumpis ingeneralanisotropi,

de-pending onthepumppolarizationandonthedetailed

strutureoftheexitonlevelsinvolved. Forthesakeof

simpliity, wehereassumethat the

4

statesarewell

separatedfrom all other 2P statesand the pump

po-larizationis along the ubi axisx^ 0

(See Fig.4). The

resulting dieletri tensor is uniaxial with the optial

-axis alongx^ 0

, i.e.,

x 0

x 0 =

k ,

y 0

y 0 =

z 0

z 0 =

? and

j 0

6=k

0 =0andforaresonantpumpbeamonehas

? =

EIT =

1 +

A

2P (Æ

p i

1S )

p i

2P )(Æ

p i

1S

)

2

=4

;

while

k

is obtained by setting

! 0 in the above

equation.

α

v

c

axis

x

y

S

x

'

y

'

S

'

L

n

(

ω

'

,

α

)

k

p

Figure4. ProbebeampatharossaCu2Oslabmovingwith

veloityvinthelaboratoryframeS. Theprobewavevetor

k

p

, the slabveloity and itssurfae normal are all in the

samediretionx.^ Thepumpisdiretedalong^z=z^ 0

andits

polarizationisparalleltotheoptialaxis^x 0

whihmakesa

xedanglewithx.^

In a typial onguration [18, 17℄ a slab of

(4)

on-thelaboratoryframeSasskethedinFig.4. The

quan-tityofexperimentalrelevaneistheveloitydependent

phase-shift experiened bytheprobeuponsingle{

pass transmission. We do not aount here for small

tilt angles between the surfaenormal and the avity

axisx^employedinpratie[17℄toavoidmultiple

ree-tions. We givethephase{shiftfor aprobesingle{pass

at normalinideneasitissuÆienthereto illustrate

the eet of frequeny and angular dispersion

assoi-atedwithEIT onthelight{drag.

The shift is arelativisti invariantand anbe

onveniently evaluated in the slab rest frame S 0

.

Un-der EIT thedispersionequation for aprobe polarized

in the x 0

y 0

plane is that of an extraordinary ray [19℄

whoseomplexrefrativeindexisgivenby

n 2

(! 0

;)=

k (!

0

)

1+

r (!

0

)os 2

;

r (!

0

)

k (!

0

)

? (!

0

) 1;

withn 0

andn 00

respetivelyitsrealandimaginaryparts.

Inthelaboratoryframethesingle-passphaseshift,

in-ludingontributionstorstorderin,anbewritten

as[7℄

'

0

!L

1 n 0

(!; ) ! n

0

(!; )

!

0

!L

d ;

where

0

orresponds to the shiftindued by a

sta-tionaryslaband

d

representstheeetivephaseshift

oeÆient in termsof the probelaboratoryframe

fre-queny!. The usualdenition [20℄ of thedrag

oeÆ-ientforthephaseveloityoflightanberelatedtothe

measurablequantity

d

[14℄. OwingtoEITthe

absorp-tive partn 00

onlyappearsasahigher{orderorretion

to andanthereforebenegleted.

ThemagnitudeandsignoftheoeÆient

d anbe

ontrolled through the leavageangle and the

ou-pling beam Rabi frequeny

. In the following, we

disussnumerialresultsforaresonantpump.

0

0.5

1

1.5

2

c

-

15

-

10

-

5

0

5

10

15

20

α

e

a

Figure5. CoeÆient d vs. inunitsof2P fora

reso-nantprobe rossingaCu2O slab. Heretheleavage angle

is'5 o

and2P =1meV.

-

1.5

-

1

-

0.5

0

0.5

1

1.5

δ

p

-

20

-

10

0

10

20

α

e

b

Figure 6. CoeÆient d vs. Æp inunitsof 2P for a Rabi

frequenyof=2P =0.18(solid),0.7(dash)and0(grey).

TheotherparametersarethesameasinFig.5.

Fig.5 shows the variation of

d

as a funtion of

for a resonant probe. Notie that

d

vanishes at

~

' 0:18 meV but an be as large as 17, that is

over one order of magnitude larger than the

d 's of

dragging glasses [17℄ typially used for high{preision

measurementsoftheFresnel{drag. Thisnoveland

im-portant feature is due to the anisotropy and to the

strongdispersionbothharateristioftheEITregime.

Fig.6 shows instead the variation of

d

as a funtion

of the probe detuning for xed pump intensities.

Be-ause of EIT, transmission is quite largein the range

p

j < 0:5

2P

; for a slab thikness L = 25m this

varies between 10 30 % despite the 2P exiton

resonane[6℄. Apart from the bakground absorption,

the 1S exiton linewidth

1S

is the material

parame-ter thatmostlylimitsthepossibilityofontrollingthe

magnitudeof

d

throughEIT.

IV Cherenkov radiation in the

EIT regime

Thereentobservationof ultraslowgroupveloities in

oherentlydrivenmedia[21,22,23℄hasopenedtheway

towardsnewregimesoflightpropagation[24℄andnon{

linear optis at very weak intensities [25℄. Here, we

investigate the eet of ultraslow group veloities on

the Cherenkov radiation emitted by a harged

parti-le uniformly moving with a veloity larger than the

phase veloity of light. In the ase of isotropi and

non-dispersivemedia, thesurfae on whih the

inten-sitypeaksoinideswiththewellknownwaveone

or-thogonaltothewavevetoroftheemittedlightandthe

apertureofwhihisdeterminedbytheusualCherenkov

oherene ondition. In the ase of highly dispersive

media,asweshowhere,theintensityisinsteadpeaked

on thesurfaeof agroup one [26℄ neither orthogonal

to thephase nor to the groupveloity of the emitted

(5)

developageneraltheoryforCherenkovemissionin

ar-bitrarydispersiveand non-isotropimediafrom whih

we obtain analytial expressions for the eletri eld

intensity proleand, in partiular, for the group one

aperture. Then, asanexample,weinvestigatethe

op-tial properties of an ultraold atomi loud of 23

Na

atomsintheEITregimewhihappearstobeamenable

to theobservationofsuhasingularbehaviour.

Considerahargedpoint-likepartile moving with

onstant veloity w = w^z = ^z through a

non-absorptiveandhomogeneousmedium haraterizedby

an anisotropiand dispersivehermitian dieletri

ten-sor (!)^ =

i;j

(!). The eets of a weak absorption

will be onsidered afterward for the ase of interest.

UsingMaxwellequationsinFourierspae,wewritethe

(k;!)omponentoftheradiated eletromagnetield

E(k;!) in terms of theorrespondingFourier

ompo-nentsoftheurrentdensityJ(k;!)=2qÆ(! kw )w

as

E(k;!)= 4i! 2 k 2 ^ P k ! 2 2 ^ (!) 1

J(k;!) (1)

where ^ P k i;j =Æ i;j k i k j k 2

istheprojetionoperatoronto

the subspaeorthogonal to kand k 2 = P i k i k i is the

squaremodulusofk.

Thepolesof(1)determinethepropagatingmodesof

theeletromagnetield throughthewell-knownF

res-nel equation[20℄

k 2 ^ P k ! 2 2 ^ (! ) e ()

=0: (2)

Foreahwavevetork,thedierentmodesare

hara-terized by the frequeny!

and the polarization unit

vetore ()

normalizedashe () je () i= P i e () i e () i =

1. Wewillnotaounthereforlongitudinalmodes,

as-suming ! 2

6= 0 and det [ ^(!)℄ 6= 0 for all values of !.

Foreahmode,thegroupveloityanbeshowntobe

v () g =r k ! = 2 2k e () he () jki e () hkje () i e () ! (! 2 ^ (!)) e () : (3)

This expression for v

g

orresponds to theratio of the

Poynting vetor Sand the energy density u [20℄. We

shall alsorestritourattentionto thesimpleaseofa

mediumwithrotationalsymmetryaroundthediretion

ofthehargeveloity;inthisase,therevolution

sym-metry of thedispersionsurfae!

(k)= ! guarantees

theparallelismoftheomponentsofthegroupveloity

andthewavevetorperpendiularto the^zaxis.

The eletri eld at a position x = (x

? ;z) =

(x

? ^ u

?

;z) an be obtained from the inverse Fourier

transform of (1). At suÆiently large distanes from

the hargetrajetory, onlythe poles of (1) eetively

ontributeto the Fouriertransform. Infat, the

ele-trieldatthesedistanesisgivenbytheresonant

ex-itation ofpropagating modes, whilethenon-resonant

ontributionfrom allother modes deays outin spae

with a faster power law. In the eletri dipole

emis-sion,asimilardistintionisdonebetweenthenearzone

(kr1)andtheradiationzone(kr1). Withinsuh

anapproximationweanwrite forthei th omponent, E i (x ?

;z;t) = 2iq 2 Z 1 0 d! X =1;2 k () ? !he ()

jw i^

s i 2k () ? x ? e ik () ? x ? e i ! w (z wt) e () i (4)

Here,w^ =w =wisthediretionofthehargeveloityw

and = e () k ? k 2 ^ P k e ()

is aweight fator.

Inobtainingtheexpression(4)theangularintegration

in k

?

has been already performed in the large k

? x

?

limitsothat, foreahpositionx

?

, onlytheeld

om-ponentswithk

?

paralleltox

?

haveastationaryphase

and therefore give anonvanishing ontribution to the

integral.

α

=1

α

=2

k

z

k

k

z

=

ω

/ c

β

3

k

z

=

ω

/ c

β

2

k

z

=

ω

/ c

β

1

Figure7. Shematiplot ofthe longitudinal ross setion

ofthedispersion surfaesfor thetwopropagating=1;2

modesatagiven!.Thevertiallinesaretherosssetions

ofthe kz =!=planes. For =1,noCherenkov

radi-ationoursat !;=2 isthe thersholdveloity for the

=1mode;for =3,bothmodesareexited.

Depending on theveloity of theharged partile,

for eah diretion u^

?

and frequeny !, at most two

distint poles at k ()

?

( = 1;2) ontribute to the

in-tegral, whih orrespond to propagating modes with

wavevetork () =(k () ? ^ u ?

;!=w)andpolarizatione ()

.

As shown in Fig.7, at agivenfrequeny ! Cherenkov

lightisemittedinto themodeonlyifthek

z

=!=

planehasanon-vanishingintersetionwiththe

disper-sionsurfae !

(k) =! ofthe mode. Inthe aseof a

mediumwithrotationalsymmetry,thisonditionis

sat-isedifthepartileveloityexeedsthephaseveloity

ofmodeforkparallel tow ,i.e.

(6)

and the intersetion is the k

? = k

()

?

irle. Here

()

?

(!) are the eigenvalues of the dieletri onstant

in the plane perpendiular to the ^z axis. For an

isotropimedium,theondition(5)reduestotheusual

Cherenkovondition 2

(!)>1 [27℄.

Thetheorydevelopeduptonowhasonsideredthe

ase of a non-absorptive medium for whih the poles

k ()

?

are real; the eet of aweak absorption onsists

in the introdution of a small and positive imaginary

partIm[k ()

?

℄intheargumentoftheexponentialin(4)

without modifying the pole struture of the integral.

Theresultingdampingfatore Im[k

()

? ℄x

?

aountsfor

absorptionoftheemittedradiationduringpropagation.

We now onsider a medium with a narrow

trans-parenywindowenteredat!; forasinglepolarization

state=1,theabsorptionfatorin theneighborhood

of!anbeapproximatedbyIm [k (1)

? ℄'

2 (! ! )

2

with

=

2

Im[k (1)

? ℄=!

2

. Insertingthisexpression into(4),

wenally obtainanexpliitexpressionfor theeletri

eld intensityprole

jE(x;t)j 2

= Aq

2

x 2

? exp

"

1

x

?

z

w +

x

?

v

r t

2 #

he (1)

j ^

w i

2

; (6)

d

wheree (1)

isthepolarizationvetorofthemodeat

fre-queny! and A=4k (1)

? ! 2

= 4

2

1

. Theradialveloity

v

r

isdenedaordingto

v 1

r =

"

k

?

!

k

z =

!

w #

= w v

k

g

wv ?

g

(7)

wherev ?

g andv

k

g

arerespetivelytheperpendiularand

parallelomponentsofthegroupveloityv (1)

g

with

re-spettothediretionw^ =w =wofthehargeveloity.

AsitanbeobservedinFig.8,suÆientlyfarfromthe

harge, i.e. at points x

?

=v

2

r

, the eletrield

intensity(6)ispeakedonthegroup onedesribedby

x

?

v

r +

z

w

=t (8)

whoseaperture isequalto

tan=v

r

=w: (9)

Ingeneral,isdierentfromtheapertureofthewave

one orthogonalto the wavevetorsof theemitted

ra-diation,whih isinsteadgiven by tan=!=wk (1)

? . A

simplephysialinterpretationofthegrouponeanbe

put forward in terms of group veloity [26℄

onsider-ingthat,foreahdiretion aroundthehargeveloity,

the burst of Cherenkov light is emitted into a group

of modes entered at k (1)

while thepeak of the pulse

movesin spaewith a veloity equalto the group

ve-loity v (1)

g

experiening an almost negligible

absorp-tion. The one dened by this geometrial

onstru-tion(Fig.9)anbeproveninallasestobeequivalent

to the groupone dened by (8) and to oinide, for

the aseof an isotropi medium, with the groupone

introdued byFrank[26℄. Notie that this one turns

out to be in general neither orthogonal to the group

veloitynortothewavevetor. Intheaseofisotropi

and non-dispersive media, in whih v

g = v

ph =

^

k,

n being the refrative index, the groupand the wave

ones oinide and have anaperture dened by the

usualCherenkovonditionnsin=1.

The weak dispersion of ommon dieletris makes

the dierene between the group and the waveones

verysmalland haspreventeduptonowits

experimen-tal observation [26℄. Whenthe groupveloityis muh

smaller than the phase veloity the groupone is

ex-petedto bewellseparatedfromthewaveone(g.9)

and to have an extremely narrow shape 1.

Fol-lowingthereentobservationsofultraslowlightin

o-herentlydrivenhot[21,22℄andold[23℄atomigases,

suhmediaappearaspromisingandidatesforthe

ex-perimentalharaterizationoftheroleofgroupveloity

in Cherenkovradiation.

10000

5000

0

z

Ξ

100

50

0

50

100

x

Ξ

Figure 8. Intensity ontour{plotof the longitudinal

ross-setionofthegroup oneatt=0forv ?

g

(7)

A

B

C

D

w

t

v

g

t

Group Cone

Wave Cone

θ

w z

φ

v

ph

t

Figure 9. Geometrial onstrution for the group one.

During the time t, the harge movesfrom A to B with

~

AB =wt, while the radiation emitted inA propagates

from A to C with ~

AC =v

g

t. As disussed inthe text,

thestraightlinejoiningBandCisageneratrixofthegroup

one.

Weonsider aloud of ultraoldatoms in a

three-level-typeongurationunder EITregime. In usual

EIT experiments the eet of Doppler broadening in

hot gasesis overome byhoosing a dressingeld

o-propagatingwiththeprobeeld[2℄;unfortunately,the

onialgeometryofCherenkovemissiondoesnotallow

for suh ahoie, sothat oneis hereforedto use an

ultraold sample in whih Doppler broadening is

ab-sent. Wetake,asaspei example,the aseof 23

Na

atoms (Fig.10) magnetiallytrapped in theM

F = 1

sublevel of the F

g

= 1 ground state. Let !

g

be the

frequeny of suh a state. The other hyperne

om-ponent of the S

1=2

groundstate is a metastable state

withF

m

=2approximately1:8GHzblue-detunedwith

respettothegroundstate. Aweak oherenteld

po-larized along the trap magneti eld drives the

opti-al transition from themetastablestatetothe F

e =2

hyperne omponent of the P

1=2

exited state. Its

Rabi frequeny is smaller than the exited state

linewidth

e

'210MHzwhileitsfrequenyistaken

tobeexatlyonresonanewiththetransitionbetween

the M

F

= 0 Zeeman omponents !

dr = !

e [M

F =

0℄ !

m [M

F

=0℄. Assumingthe hargeveloity tobe

parallel tothetrapmagnetield,therotational

sym-metryofthesystemaroundthe^zaxisimplies[28℄ the

followingdeompositionofthedieletritensor^(!)=

z

(!)j^zih^zj+

+ (!)j^

+ ih^

+

j+ (!)j^ ih^ j. For

eahfrequeny!anddiretion ^

k,thetwopropagating

modesdened by(2) aregenerallynon-degenerate

ex-eptathighsymmetrypointsandhaveelliptial

polar-izations;fromthepointofviewofthespatialsymmetry

oftheoptialonstants,thepolarizedatomiloudisin

fat not onlyuniaxial, but alsooptially ative. Sine

thelinewidth

m

ofthemetastablemstateisordersof

magnitudesmaller[23℄thanthatoftheexitedestate

e

,eletromagnetiallyinduedtranspareny(EIT)

o-ursonthe^

+

polarizationinanarrowfrequeny

win-dow of linewidth = 2

=

e

e

around !

+ =

!

e [M

F

=0℄ !

g

[2℄whereabsorptionisquenhedand

dispersion enhaned so asto give slowlight

propaga-tion. Inthesamefrequenywindow!'!

+

,the

tran-sitionsfromthegroundstatetotheM

F

= 2; 1

sub-levelsoftheexited statearesuÆientlyo-resonane

(!

z; = !

e [M

F

= 1; 2℄ !

e [M

F

= 0℄

e ) so

astogiveapositiveandrelativelyfrequeny-at

bak-groundontributiontothe^ and^zomponentsofthe

dieletritensor

+

= 1+

4f

+

!

+ i

e !

jj 2

!

+ i

m !

(10)

z;

= 1+4 1

z;

=1+ 4f

z;

!

z;

: (11)

The osillator strengths f

;z

are proportional to the

atomidensitytimes thesquareof thedipole moment

oftheoptialtransitionanddierfrom eah other

de-pending on the relevant Clebsh-Gordan oeÆients.

Thedetunings!

z;

followfromtheZeemansplitting

oftheatomilevels,whihimpliesthatthebakground

refration anbe experimentally ontrolled by tuning

themagneti eld; with 23

Na atoms, a splitting !

of about240MHzours in a reasonablemagneti

eldoftheorderof80G. Giventhedierentmagneti

moments of metastable and exited states, the weak

dressingeldannoteetivelydresstheoptial

tran-sitionsotherthantheresonantonebetweentheM

F =0

sublevels. Thanksto theirlargedetuningwith respet

to!

+

,alltransitionsinvolvingtheotherhyperne

om-ponentsoftheexitedstateanbenegleted.

P

1/2

(F=2)

S

1/2

(F=2)

S

1/2

(F=1)

σ

+

z

σ

−2

−1

0

1

2

M

F

g

m

e

Figure10. Shemeofthe 23

Naatomilevelsinvolvedinthe

optialproessunderexamination.

The threshold veloity (5) for Cherenkov emission

at !

+

is determined by the bakground refrative

in-dex (11). If the veloity is larger than the threshold

value,lightisradiatedintoamodewithnon-vanishing

k (1)

?

; in presene of EIT, suh aradiation will

propa-gate with ultraslow group veloity without being

ab-sorbed. The magnitude of the group veloity (3) is

mainlydeterminedbythedispersivepropertiesofEIT

whileitsdiretiondependsonthebakgroundrefrative

index only. Group veloities aslow as17m/se have

beenreportedin anultraoldsodiumgas[23℄and this

means that the group one would have an extremely

narrow shape, pratially a ylindrial one ( 1).

From theparameters of [23℄,the harateristi length

=v 2

r ' v

?2

g

turns outof the order of 10m and

thebakgroundsuseptibility4 1

(8)

10 2

, i.e. muh largerthan that usually found in gas

Cherenkovounters[27℄.

Thetheory wehave developed is basedon the

as-sumption of a homogeneous medium. This

approxi-mation is reasonable provided the overall size of the

atomiloudismuhlargerthanthewavelengthofthe

Cherenkov lightwhose detetion should be performed

within theloud itself so to avoid reetion eets at

the edges of the loud. For the aseof EIT media, a

piture of thegroup one an betaken exploiting the

verylargerosssetionforresonanttwo-photon

absorp-tion proesses [30℄: the absorption oeÆient

experi-enedbyalasereldonresonanewithanotheroptial

transition starting from the M

F

= 0 sublevel of the

metastable m state is in fat proportional to the

lo-al intensity of the Cherenkov radiation at !

+ whih

forms the narrow group one [25℄. Sine the

intera-tion ofthe hargewith the atoms of theloud results

notonlyonCherenkovemissionbutalsoonother

heat-ing andionization proesses[20℄, itis neessaryto

re-due the importane of suh short-range proessesby

makingthehargetravelinaregionofspaefreefrom

atoms. For the ase of an atomi loud, this an be

ahievede.g.byusingtherepulsivepotentialofa

blue-detunedlasersoastoreateasortof\tunnel"through

theloud;asmallylindrialholewitharadiusofthe

order of the wavelength does redue the yield of the

Cherenkov radiation, but does not aet the

qualita-tivefeaturesoftheCherenkovpulsepropagatinginthe

surroundingmedium [29℄. Unfortunately,theintensity

oftheCherenkovradiationemittedbyasingleeletron

isratherlow. Forthe 23

Naparametersandstatistially

independenteletrons,aphotonisemittedinthemode

under onsideration eah 10 7

eletrons. This problem

may be overome by looking at the eletrield

gen-erated by averylarge numberof eletronsat a time:

sine the radial veloity v

r

is muh smaller than the

harge veloityw, the proleof thegroupone would

notbesmearedoutevenifthespatialextensionofthe

bunhof eletronsismuhlongerthanthewavelength

oftheemittedlight.

Unlike in isotropi and non-dispersive media, the

grouponeis heremuhnarrowerthan thewave one

denedbytheusualCherenkovohereneonditionand

isneitherorthogonaltothephasenorthegroup

velo-ity. Thisoneptualdistintionbeomesofgreat

physi-alrelevaneinmediaexhibitingslowlightpropagation.

For the realisti ase of a oherently driven ultraold

23

Nagas, thegeometrial and dispersivepropertiesof

thedieletritensorare shownto befavourabletothe

experimental haraterization ofthe role of the group

veloityin theproessof Cherenkovemission.

Referenes

[1℄ G.Alzetta,A.Gozzini,L. Moi,G.Orriols,Nuovo

Ci-NuovoCimento17,(1976)333.

[2℄ S.Harris, Physis Today50,(1997)36; E.Arimondo,

Progress in Optis XXXV, Ed.E. Wolf (Elsevier

Si-ene,Amsterdam1996)257; andreferenestherein.

[3℄ A.Aspet,E. Arimondo,R.Kaiser, N.Vansteenkiste,

C.Cohen-Tannoudji, Phys.Rev.Lett.61,826(1988).

[4℄ A.S. Zibrov, M.D.Lukin, D.E.Nikonov, L. Hollberg,

M.O. Sully, V.L. Velihansky,H.G. Robinson, Phys.

Rev.Lett.75,1499 (1995).

[5℄ K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod.

Phys.70,1003 (1998).

[6℄ M. Artoni,G.C. LaRoaandF.Bassani,EuroPhys.

Lett.s49,(2000)445.

[7℄ M. Artoni, I. Carusotto, G.C. La Roa, F.Bassani,

Phys.Rev.Lett,86,2549 (2001).

[8℄ Y.Zhao,C.Wu,B.S.Ham,M.K.Kim,andE.Awad,

Phys.Rev.Lett.79,(1997)641.

[9℄ G.B.Serapiglia,E.Parpalakis,C.Sirtori,K.L.

Vodopy-anov,C.G.Phillips,Phys.Rev.Lett.84,(2000)1019.

[10℄ B. S. Ham, M. S. Shahriar, and R.P. Hemmer, Opt.

Lett.s 22, (1997) 1138; K. Ihimura, K. Yamamoto,

andN.Gemma,PhysRev.A58,(1998)4116.

[11℄ S. Nikitine, J.B. Grun, M. Sieskind, J. Phys. Chem.

Solids17,(1961)292;Landolt-Bornstein,seriesIII,17

(Semiondutors),(Springer,Berlin,1984).

[12℄ D. Frohlih, A. Nothe, and K. Reimann, Phys. Rev.

Lett. 55,(1985) 1335; D. Frohlih,Ch. Neumann, B.

UebbingandR.Wille,phys.stat.sol.(b)159,(1990)

297.

[13℄ F.BassaniandG.PastoriParraviini,EletroniStates

and Optial Transitions in Solids (Pergamon Press,

Oxford 1975); P. Yu and M. Cardona, Fundamentals

ofSemiondutors (Springer,Berlin1996).

[14℄ M.Artonietal.,tobepublished.

[15℄ A.Fresnel,Ann.Chim.Phys.9,57(1818).

[16℄ H.Fizeau,C.R.Aad.Si.B33,349(1851).

[17℄ G.A.Sandersetal.,J.Opt.So.Am.B,5,674,(1988).

[18℄ W.Maeketal.,J.Appl.Phys.35,2556(1964).

[19℄ M.BornandE.Wolf,PriniplesofOptis,(Pergamon

Press,Oxford1993)

[20℄ L.D. Landau and E.M. Lifshitz, Eletrodynamis of

ontinuousmedia,(Nauka,Mosow1982)

[21℄ M.M.Kashetal.,Phys.Rev.Lett.82,5229 (1999)

[22℄ D.Budker,D.F.Kimball,S.M.Rohester,andV.V.

Yashhuk,Phys.Rev.Lett.83,1767(1999)

[23℄ L.V.Hau,S.E.Harris,Z.Dutton,andC.H.Behroozi,

Nature397,594(1999)

[24℄ D.F.Phillipsetal.,Phys.Rev.Lett.86,783(2001);C.

Liu,Z.Dutton,C.H.Behroozi,andL.V.Hau,Nature,

409,490,(2001).

[25℄ G. S. Agarwal and W. Harshawardhan, Phys. Rev.

Lett. 77, 1039 (1996); S. E. Harris and L. V. Hau,

(9)

[26℄ I. M. Frank, Nul. Instr.Meth. A 248, 7(1986) and

referenestherein

[27℄ J. V.Jelley, Cherenkov radiationand its appliations,

Pergamon Press,London(1958).

[28℄ J. F. Cornwell, Group theory in physis, Aademi

Press, London,1994

[29℄ V. L. Ginsburg and I. M. Frank, Dokl. Akad. Nauk

SSSR56, 699 (1947); L. S. Bogdankevih and B.M.

Bolotovskii,Zh.Exsp.Teor.Fiz.32,1421 (1957)

[30℄ S.E. Harris andY. Yamamoto, Phys.Rev.Lett. 81,

Imagem

Figure 2. Transmission oeÆient GT vs. the probe fre-
Figure 4. Probe beam path aross a Cu2 O slab moving with
Figure 5. CoeÆient d vs.  in units of 2P for a reso-
Figure 8. Intensity ontour{plot of the longitudinal ross-
+2

Referências

Documentos relacionados

vestigated in order to shift the optial emission of the strutures toward longer

ment ongurations: paraboli leads (dotted line), 1D-leads. (dashed line) and the hybrid ase

quantum waveguides of dierent shapes when a defet is loated either in the wire region or in the..

proesses leading to the phonon emission. We found that the peak value of the. inelasti transmission probability at the

taking into aount the eetive mass dependene of the Mn onentration and the strain eetsx. In this work we analyze the giant Zeeman splitting due to applied magneti elds and

dene of both 2DEG density and ground state energy. has to

The results show that the exiton trapping in periodi magneti elds is.. possible and dependent on the

of the potential energy are omparable with the thermal energy of the photoreated