• Nenhum resultado encontrado

Effect of gadolinium on the catalytic properties of iron oxides for WGSR

N/A
N/A
Protected

Academic year: 2021

Share "Effect of gadolinium on the catalytic properties of iron oxides for WGSR"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Catalysis

Today

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

Effect

of

gadolinium

on

the

catalytic

properties

of

iron

oxides

for

WGSR

Caio

Luis

Santos

Silva

a

,

Sérgio

Gustavo

Marchetti

b

,

Arnaldo

da

Costa

Faro

Júnior

c

,

Tatiana

de

Freitas

Silva

d

,

José

Mansur

Assaf

d

,

Maria

do

Carmo

Rangel

a,∗

aGECCATGrupodeEstudosemCinéticaeCatálise,InstitutodeQuímica,UniversidadeFederaldaBahia,CampusUniversitáriodeOndina,Federac¸ão,40

170-280Salvador,Bahia,Brazil

bCINDECA,FacultaddeCienciasExactas,UniversidadNacionaldeLaPlata,calle47y115,1900LaPlata,Argentina cUniversidadeFederaldoRiodeJaneiro,IlhadoFundão,21941-909RiodeJaneiro,RiodeJaneiro,Brazil dUniversidadeFederaldeSãoCarlos,Rod.WashingtonLuiz,Km235,13565-905SãoCarlos,SãoPaulo,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19December2012

Receivedinrevisedform18February2013 Accepted20February2013

Available online 11 May 2013

Keywords: Hydrogen WGSR Gadoliniumferrite Hematite Magnetite Ironcarbide

a

b

s

t

r

a

c

t

Duetotheneedforenergysupplythroughcleanerandmoreefficienttechnologies,theinterestfor thewatergasshiftreaction(WGSR)hasincreasedespeciallyduetoitsroleinpurifyinghydrogen-rich streams.Inordertofindalternativecatalystsforthisreaction,theeffectofgadoliniumanditsamounton thepropertiesofironoxide-basedcatalystswasstudiedinthiswork.Sampleswithdifferentgadolinium toironmolarratio(0.05;0.1and0.15)werepreparedbysol–gelmethodandcharacterizedbychemical analysis,thermogravimetry,differentialscanningcalorimetry,infraredspectroscopy,X-raydiffraction, Mössbauerspectroscopy,specificsurfaceareameasurementsandthermoprogrammedreduction.The catalystswereevaluatedinWGSRat1atmintherangeof250–400◦C.Hematiteandgadoliniumferrite

weredetectedforallfreshcatalystsbasedonironandgadoliniumwhilemagnetiteandironcarbidesand gadoliniumoxidewerefoundforthespentones.Thespecificsurfaceareaincreasedduetogadolinium, relatedtoitsroleasspacer.GadoliniummadethereductionofFe3+andFe2+speciesmoredifficultforall

catalystsandtheninhibitedtheproductionofironcarbidesduringreaction,increasingtheactivity.The catalystwithGd/Fe=0.10showedthehighestactivitythatwasassignedtoitshighestspecificsurface area,whichexposedmoreactivesites.Nomethaneorethanewasfoundindicatingthattheironcarbides wereinactivetoFischer–Tropschsynthesisunderreactionconditions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays,hydrogenisprimarilyproducedfromhydrocarbons

oralcoholsthroughreformingprocesses. Regardlessthekindof

reforming(steam reforming, partialoxidation, dryreforming or

autothermal reforming), the reactor effluent typically contains

mixturesofhydrogen,carbonmonoxide,carbondioxideandsteam

besidesunreactedhydrocarbon[1].Theremovalofcarbon

monox-idefromthishydrogen-richstreamisessentialformanyprocesses

sinceitcanirreversiblypoisonmostofmetalliccatalystsusedin

chemicalandpetrochemicalprocesses[2,3].Carbonmonoxidecan

alsopoisonplatinum electrocatalystsinprotonexchange

mem-branefuelcell(PEMFC),oneofthemostpromisingtechnologies

fortheproductionofcleanenergy[4].Anefficientandwidelyused

waytopurifyhydrogen-richstreamsisprovidedbywatergasshift

reaction(WGSR)[2].Thisreactionhasaconsiderabletechnological

importancebecauseofitshighefficiencyinreducingtheamount

∗ Correspondingauthor.Tel.:+557133790922;fax:+557132374117. E-mailaddresses:mcarmov@ufba.br,mcarmov@gmail.com(M.d.C.Rangel).

ofcarbonmonoxidegeneratedinthereformingofnaturalgasor

hydrocarbons.Inaddition,itallowstheadjustmentofsynthesisgas

composition,amixtureofcarbonmonoxideandhydrogenlargely

usedinmanyindustrialprocessessuchasmethanolsynthesisand

Fischer–Tropschreaction[2,5].

Thereactionisreversibleandexothermic,favoredbylow

tem-peraturesandlargeamountsofsteam.However,inordertoobtain

highconversionsforeconomicalpurposes,theWGSRisusually

per-formedintwostagesinindustrialprocesses.Thefirstoneoccursin

therangeof350–420◦Cunderfavorablekineticconditionsandis

knownasHTS(hightemperatureshift)whiletheotherstep,called

LTS(lowtemperatureshift),isoftenperformedattemperatures

around200–250◦C.Forcommercialuse,iron-based(e.g.,Fe/Cr/Cu)

andcopper-based(e.g.,Cu/Zn/Al)catalystshaveusuallybeenused

forHTSandLTSreactions,respectively[2,5,6].TheHTScatalysts

arebasedonironoxidepromotedwithchromiumoxideandshow

severaladvantagessuchaslowcost,thermalstabilityand

resis-tanceagainstpoisons[2,5,7].Theyarecommercializedashematite

(␣-Fe2O3)andarereducedinsitutoproducemagnetite(Fe3O4)

whichistheactivephase.Thelatestgenerationofsuchcatalysts

alsocontainscopper,whichactsasanelectronicpromoterleading

0920-5861/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

toanincreaseinthecatalyticactivity[8,9].Severalstudies[2,5,10]

haveshowedthatchromiumoxide(Cr2O3)delaysmagnetite

sinter-ing,avoidingthelossofspecificsurfaceareaofthecatalystduring

operation.However,duetothecarcinogenicnatureofchromium,

thereis a needtosearch foralternative dopantsfor such

cata-lysts.Therefore,severalstudieshavebeencarriedoutaimingto

replacechromiumbyotherdopants[3,8,11–15]aswellastofind

alternativecatalystsforWGSR[16–21].

Withthisgoalinmind,gadolinium-containingironoxideswere

studiedinthiswork,inordertofindalternativecatalystsforWGSR.

Thebeneficeffectofgadoliniumregardingtheactivityofiron

com-poundswaspreviouslydemonstratedbyTsagaroyannisetal.[18].

Theyhavefoundthatgadoliniumferriteswerepromisingcatalysts

forWGSR,beingmoreactivethansomeindustrialones,their

activ-itiesdependingonthepreparationmethod.Inthepresentwork,

wehaveinvestigatedtheeffectofdifferentamountsofgadolinium

concerningironoxideactivity(preparedbyadifferentmethod)in

WGSRusingastreamcompositionclosetotheindustrialone.

2. Experimental

2.1. Catalystpreparation

The starting materials used for the preparation of the

cat-alysts were as following: gadolinium (III) nitrate hexahydrate,

Gd(NO3)3·6H2O (Aldrich, 99.9%), iron (III) nitrate nonahydrate,

Fe(NO3)3·9H2O(VETEC,≥98%),andammoniumhydroxide,NH4OH

(Aldrich,ACSGrade).Thesecompoundswereusedwithoutfurther

purification.

Samples were prepared by precipitation by mixing

simul-taneously iron nitrate (Fe(NO3)3·9H2O), gadolinium nitrate

(Gd(NO3)3·6H2O) and ammoniumhydroxide solutions at 25◦C.

SolidswithGd/Femolarratiosof0.05,0.10and0.15wereobtained

besidespureironoxideandgadoliniumoxide.Forpreparingthe

gadolinium-poorestsample(Gd/Fe=0.05),250mLofagadolinium

nitratesolution(0.05molL−1)were added simultaneouslywith

250mLofanironnitratesolution(1.00molL−1)and250mLofan

ammoniumhydroxidesolution(25%)toabeakercontainingwater,

understirring.Afterthecompletemixtureofthereactants,thepH

wasadjustedo11andthesolwaskeptunderstirringfor30min.It

wasthencentrifuged(2500rpm,5min),thegelwashedwithwater

toremoveammoniumandnitrateionsfromthesolidandthen

cen-trifugedagain,thesestepswererepeatedfivetimes.Thegelwas

driedinanovenat120◦C,for24h.Afterdrying,thesolid

(cata-lystprecursor)wasgroundandsievedin100mesh.Thesolidwas

thenheated(10◦Cmin−1)undernitrogenflow(100mLmin−1)at

800◦C,for2h.Forpreparingthesampleswithdifferentgadolinium

contents(Gd/Fe=0.10and0.15)thesameexperimentalprocedure

wasfollowed butvaryingthesolutionconcentrations(0.10 and

0.15molL−1ofgadoliniumnitrate,respectively).Thesame

exper-imentalprocedurewasfollowedtopreparepureironoxideand

gadoliniumoxidetobeusedasreferences.

2.2. Catalystcharacterization

Thecatalystswerecharacterizedbychemicalanalysis,

thermo-gravimetry(TG),differentialscanningcalorimetry(DSC),Fourier

transforminfrared spectroscopy (FTIR),X-raydiffraction (XRD),

specificsurfaceareameasurements,Mössbauerspectroscopyand

temperatureprogrammedreduction(TPR).

IronandgadoliniumcontentsweredeterminedbyX-ray

fluo-rescence(XRF)inaBrukerS2PICOFOXspectrometerconsistingof

amolybdenumanodemetal-ceramicX-raytube(50kV,600␮A),a

multilayermonochromator,a30mm2silicondriftdetectorandan

automaticsamplechanger.Theexperimentsofthermogravimetry

(TG)anddifferentialscanningcalorimetry(DSC)wereperformed

onthecatalystprecursorsinaTAInstrumentsSDT2670.The

sam-ple(0.010g)washeatedat10◦Cmin−1intherangeof35–900◦C,

under nitrogen flow (30mLmin−1). Fourier transform infrared

spectroscopy(FTIR)analyseswereperformedin aPerkinElmer

modelSpectrumOne,usingsamplesdilutedinpotassiumbromide

discswitha1:100ratio.Thespectrawererecordedintheregion

between4000and400cm−1,using32scansandaresolutionof

4cm−1.

X-raydiffractionmeasurementswereperformedatroom

tem-peratureinaShimadzuXRD-6000modelequipmentwithCuK␣

radiation(=1.54059 ˚A)generatedat40kVand30mAwithanickel

filter.Thediffractogramswereobtainedwithascanningvelocityof

2◦min−1intherangeof10–80◦(2).Thespecificsurfaceareaswere

measuredbynitrogenadsorptionat−196◦CusingaMicromeritics

ASAP2010instrumentandcalculatedusingtheBETmodel.Before

analysis,thesample(0.5g)washeatedupto200◦Cundervacuum

inordertoremovevolatilesfromthesolids.

Mössbauerspectrawereobtainedinaspectrometerwith512

channelswithconstant accelerationand geometryof

transmis-sion.Asourceof57CoinRhmatrixofnominally50mCiwasused.

Velocitycalibrationwasperformedagainsta12␮m-thick␣-Fefoil.

Allisomershifts(␦)mentionedinthispaperarereferredtothis

standard.Foreachcomponentofthespectra,Lorentzianslinesof

thesamewidthwereused.The spectrawereobtainedatroom

temperatureandfoldedtominimizegeometriceffects,being

eval-uatedusingacommercialcomputerfittingprogramnamedRecoil.

Thetemperature-programmedreductionanalyseswerecarriedin

aZetonAltamarAMI90 apparatusequippedwitha TCD

detec-tor.Beforeanalyses,thesamples(0.3g)wereheatedupto400◦C

underargonflow(30mLmin−1),inordertoremovewaterandthen

cooledto35◦C.Duringanalyses,thesampleswereheatedfrom35

to1000◦Cunderaflow(30mLmin−1)ofa10%H2/Armixture.

2.3. Catalystevaluation

ThecatalystswereevaluatedinWGSRatatmosphericpressure

intherangeof250–400◦Cinatubularfixedbedmicroreactorusing

stream(135mLmin−1)withsteamtoprocessgasmolarratio(3.7%

CO,3.7%CO2,22.2%H2,70.4%N2)of0.6(steam/carbon

monox-idemolarratio16:1)and150mgofcatalyst.Thegaseouseffluent

wasanalyzedbyonlinegaschromatography,usingaVarianModel

3800instrumentequippedwith2TCDdetectors.Otherrunswere

carriedoutat400◦C,for6hoverallcatalysts.Afterreaction,the

catalystswerecharacterizedbyX-raydiffraction,Mössbauer

spec-troscopyandspecificsurfaceareameasurementsinordertofollow

thechangeswhichmighthaveoccurredduringreaction.

3. Resultsanddiscussion

Table1showstheresultsofthechemicalanalysisforthe

cat-alysts.ForallsamplestheexperimentalGd/Femolarratioswere

thesameastheexpectedvalues,indicatingthattheexperimental

Table1

Chemicalcompositionofthecatalysts.G:gadoliniumoxide;F:ironoxide;FG05, FG10andFG15:gadoliniumandironoxideswithGd/Fe(molar)=0.05;0.10and 0.15,respectively. Sample wt%Fe (±1.0) wt%Gd (±0.8) Gd/Fe(molar) (expected) Gd/Fe(molar)(±0.01) (experimental) F 68.9 – – – FG05 67.4 9.1 0.05 0.05 FG10 65.4 17.9 0.10 0.10 FG15 63.8 25.4 0.15 0.14 G – 74.5 – –

(3)

100 200 300 400 500 600 700 800 900 F FG05 FG10 G Temperature (°C) Weight (a.u.) FG15 dm /d T (a.u .)

(a)

100 200 300 400 500 600 700 800 900 G FG15 FG05 F H eat flo w ( W .g -1 ) Temperature (°C) FG10

(b)

Fig.1. (a)Thermogravimetry(solidlines)andderivativethermogravimetry(dashed lines)curvesand(b)differentialscanningcalorimetrycurvesforthecatalyst pre-cursors.G:gadoliniumoxide;F:ironoxide;FG05,FG10andFG15:gadoliniumand ironoxideswithGd/Fe(molar)=0.05;0.10and0.15,respectively.

conditionsusedwereappropriatefortheprecipitationofironand gadoliniumcompounds.

Thethermogravimetryandderivativethermogravimetrycurves ofthecatalystprecursors(ironand/orgadoliniumhydroxide)are showninFig.1a.Thegadolinium-freesolid(Fsample)presented

thelowesttotalweightloss(12.0%)whiletheFG15sampleshowed

thehighesttotalweightloss(26.1%).ThesolidswithGd/Fe=0.05

and0.10showedtotalweightlossof15.7and15.8%,respectively.

Forpureironhydroxidefourstepsofweightlosswerenoted.The

firstone,intherangebetween42and139◦Cisassociatedwith

theloss ofvolatiles includingadsorbed water [22]. Thesecond

andthirdpeaks,intherangebetween185and309◦C,arerelated

topartialdehydrationofironhydroxide[22,23].Theweightloss

above300◦Ccanbeattributedtocompletedehydrationof iron

hydroxide to form hematite[22]. It is observed that the

pres-enceofgadoliniuminsolidsshiftedthesecond,thirdandfourth

peakstohigher temperatures,indicating that gadoliniummade

thedecompositionofironhydroxidemoredifficult,increasedby

gadoliniumcontent.Puregadoliniumoxideshowedweightlosses

attributedtodecompositionof gadoliniumof carbonatespecies

occurredsimultaneouslywithdehydration,attemperaturesabove

400◦C[24].For allsamplesnoweightlosswasobservedabove

600◦C.

Thedifferentialscanningcalorimetrycurvesofthecatalyst

pre-cursors(Fig.1b)showedthatexceptforpuregadoliniumhydroxide

anendothermicpeak centered in therange of55–66◦C can be

noted,attributedtothelossofvolatilesincludingwater[25],in

agreementwiththeweightlossnotedbythermogravimetryinthis

temperaturerange.Forallcurves,anendothermicpeakcenteredin

therangeof287–291◦Cwasfound,whichisassociatedtopartial

dehydration[22].Forgadolinium-containingsamplesthe

exother-mic peak,characteristic ofhematite(centeredat around350◦C

forpureironhydroxide),wasshiftedtohighertemperaturesand

anotherexothermicpeakcentered at760◦C,attributedto

crys-tallizationandtheformationofgadoliniumferrite(FeGdO3),was

noted[26].Thesephasechangeswerenotrelatedtoanyweightloss

asnotedbyTGcurves.Theseresultsindicatethatgadolinium

hin-dershematiteformationandfavorstheproductionofgadolinium

ferrite(FeGdO3),instead.Theiron-freesolidshowedendothermic

peaksat220,440and530◦C,assignedtothedehydrationprocess

ofgadoliniumhydroxide(Gd(OH)3)toproducegadoliniumoxide

(Gd2O3)[26]aswellastothedecompositionofcarbonatespecies

[24].Thecurvesdidnotpresentthermaleventsattemperatures

above800◦C,indicatingthestabilityofthephasesformed.

FTIRspectrafortheprecursorsandforthecatalystsareshown

in Fig.2. Onecansee bandsat 3400and 1630cm−1 attributed

tostretchinganddeformationvibrationsofOHwatermolecules

bondsandironandgadolliniumhydroxides[27].Forallspectra,

bandsintherangeof1380–1600cm−1 canbenoted,whichare

assigned tocarbonategroups adsorbedonironand gadollinum

(oxyhydr)oxides[24,28,29].For alliron-basedsamplesthereare

absorptionbandsat800,570and460cm−1,whichcanberelated

tostretchingvibrationsofFe-Obond[30].FTIRspectrumof

iron-freesampleshowedstrongabsorptionsat600–400cm−1relatedto

Gd-Ovibrationmodes[31].

FromtheX-raydiffractogramsforthefreshcatalysts(Fig.3a),

itcanbenotedthatthegadolinium-freesampleshoweda

typi-calpatternofhematite,␣-Fe2O3,(JCPDS87-1166)inagreement

withpreviousstudies[8,10].Forgadoliniumandiron-containing

samples,aperovskitephaseofgadoliniumferrite,FeGdO3,(JCPDS

78-0451)wasalsofoundbesideshematite.Thisfindingindicates

that thecalcination temperaturewas suitable totheformation

of this phase, in accordance with previous work [26]. For the

gadolinium-richestsamplethecubicphaseofgadoliniumoxide,

Gd2O3,(JCPDS76-0155)wasalsodetected.Fortheotherironand

gadolinium-containingsolids,this phasecouldnotbeidentified

becausetheir peaksare coincident withsomepeaks related to

hematite.Theiron-freesampleshowedpeakscorrespondingtothe

cubicphaseofgadoliniumoxideinagreementwithprevious

stud-ies[24],only.AfterWGSR,theiron-basedsamplesshoweddifferent

profiles,asshowninFig.3b.Magnetite,Fe3O4,(JCPDS19-0629)was

foundforalliron-basedsamples,indicatingthathematitechanged

tomagnetiteduringreaction,inagreementwithpreviousworks

[8,10,12].Forthegadolinium-freesample,ironcarbidessuchas

␹-Fe5C2(JCPDS20-0509)and␪-Fe5C2(JCPDS76-1877)werealso

detected.Fortheironandgadolinium-containingsolids,␹-Fe5C2

phase wasfoundwhilethepresenceof␪-Fe5C2 phase,

gadolin-iumoxideandgadoliniumferritecouldnotbeconfirmedbecause

theirpeakswerecoincidentamongthemorwiththoserelatedto

magnetite.Onlyforthegadolinium-richestsamplethepresenceof

gadoliniumoxidewasconfirmed.

The Mössbauerspectra for the freshcatalysts are shown in

Fig.4 and the hyperfine parameters are shown in Table2. For

pure iron oxide, it can be noted a sextuplet whose hyperfine

parametersaretypicalofhematite(␣-Fe2O3)[32,33].Fortheiron

and gadolinium-containing samples, thespectra alsoshowed a

sextuplet, but the fitting was not suitable witha single

inter-action, asshown intheinternal lateralofthepeaks(especially

(4)

4000 3500 3000 2500 2000 1500 1000 500 (Fe-O) (O-C-O) (H-O-H) G FG15 FG10 FG05 Transmittance (a.u.) Wavenumber

( cm

-1) F (O-H)

(a)

4000 3500 3000 2500 2000 1500 1000 500 G FG15 FG10 FG05 Transmittance (a.u) Wavenumber ( cm-1) F (Fe-O)

(b)

Fig.2.Fouriertransforminfraredspectrafor(a)theprecursorsandfor(b)the cat-alysts.G:gadoliniumoxide;F:ironoxide;FG05,FG10andFG15:gadoliniumand ironoxideswithGd/Fe(molar)=0.05;0.10and0.15,respectively.

necessarytoincludeasecondsextupletinthefitting.Thesextuplet

withthehighesthyperfine magnetic field hasparameters

typi-calofhematite,similartogadolinium-freesample.Noappreciable

decreaseforthemagnetichyperfinefieldascomparedto“bulk”

hematitewasnoted.Theslightdecreaseofthemagnetichyperfine

fieldinrelationto“bulk”hematiteallowstheestimativeof

aver-agecrystalsizesfordifferentcatalystsusingthemagneticcollective

excitationmodel[34].Avalueofabout150nmwasobtainedforall

samples. 10 20 30 40 50 60 70 80 F FG05 FG10 FG15 G In ten s ity (a .u. )

(a)

10 20 30 40 50 60 70 80 o o o o F-S FG05-S FG10-S FG15-S o o o o o o o o o o Intensity (a.u.) 2θ o G-S o o o o

(b)

(degrees) 2θ (degrees)

Fig.3. X-raydiffractogramsforthefresh(a)andspent(b)catalysts.G:gadolinium oxide;F:ironoxide;FG05,FG10andFG15:gadoliniumandironoxideswithGd/Fe (molar)=0.05;0.10and0.15,respectively.()␣-Fe2O3;()FeGdO3;(O)Gd2O3;(*)

Fe3O4;(␪)␪-Fe3C;(␹)␹-Fe5C2.

Inordertoassignthesecondsextuplet withlowermagnetic

hyperfine field, the formation of an iron and gadolinium

com-poundwasconsidered.Amongthepossiblecompoundsthatcould

beformedintheexperimentalconditions,GdFeO3andGd3Fe5O12

should be considered [35]. The GdFeO3 compound is a cubic

perovskite with all Fe3+ ions located in equivalent octahedral

sites surrounded by oxygen anions then the Mössbauer

spec-trumproducesasinglesextuplet[36,37].Ontheotherhand,the

Gd3Fe5O12compoundisagadoliniumirongarnetwhosegeneral

Table2

Mössbauerparametersforfreshcatalystsat25◦C.F:ironoxide;FG05,FG10andFG15:gadoliniumandironoxideswithGd/Fe(molar)=0.05;0.10and0.15,respectively.

Species Parameters F FG05 FG10 FG15 ␣-Fe2O3 H(T) 51.79±0.01 51.52±0.01 51.56±0.01 51.55±0.01 ı(mm/s) 0.37±0.01 0.37±0.01 0.37±0.01 0.37±0.01 2ε(mm/s) −0.22±0.01 −0.22±0.01 −0.22±0.01 −0.22±0.01 % 100 94±1 92±1 88±1 GdFeO3 H(T) – 48.5±0.1 49.5±0.1 49.4±0.1 ı(mm/s) – 0.36(*) 0.40±0.01 0.37±0.01 2ε(mm/s) – 0(*) 0(*) 0(*) % – 6±1 8±1 12±1

H:hyperfinemagneticfieldinTesla;␦:isomershift(alltheisomershiftsarereferredto␣-Feat25◦C);2␧:quadrupoleshift;:quadrupolesplitting.(*)Parametersheld fixedinfitting.

(5)

Transmiss ion (a. u. ) F FG05 -12 -8 -4 0 4 8 12 FG10 FG15 Velocity (mm/s) Transm iss ion ( a .u .) F-S FG05-S FG10-S -12 -8 -4 0 4 8 12 FG15-S Velocity (mm/s)

(a)

(b)

Fig.4. Mössbauerspectraat25◦Cforthe(a)freshand(b)spentcatalysts.G:gadoliniumoxide;F:ironoxide;FG05,FG10andFG15:gadoliniumandironoxideswithGd/Fe (molar)=0.05;0.10and0.15,respectively.Redline:␣-Fe2O3;blueline:GdFeO3;greenlines:␪-Fe3Cand␹-Fe5C2andpurplelines:Fe3O4.(Forinterpretationofthereferences tocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

formulaisX3B2A3O12,whereGd3+ionsarelocatedinXsites

sur-rounded byeightoxygenanions,whereas Fe3+ionsarelocated

inbothoctahedral(B)andtetrahedral(A)siteswithapopulation ratioof2:3,respectively.Forthisreason,theGd3Fe5O12compound

producedaMössbauerspectrumwithtwoclearlydistinguishable sextuplets,especiallybecausethesignalcorrespondingtoFe3+ions

locatedat A sites have a magnetic hyperfine field significantly smallerthanthoseatBsites(approximately40vs49Trespectively)

[37].Thepreviousdescriptionallowsustoruleouttheexistence

oftheGd3Fe5O12garnetandconfirmthepresenceoftheGdFeO3

perovskite.ItisinterestingtonotethattheamountofGdFeO3phase

waslowerthanthatexpectedtakingtheGd/Feratiointoaccount.

ThetheoreticalweightpercentagesexpectedfortheFG05,FG10

and FG15 sampleswould be14.7, 26.6and36.6%, respectively.

However,theGdFeO3 percentagesdetectedbyMössbauer

spec-troscopywere6±1,8±1and12+1,respectively.Therefore,the

excessgadoliniumshouldsegregate,probablyasgadoliniumoxide

(Gd2O3).ThisphasewasdetectedbyXRDonlyfortheFG15sample,

probablyduetothelowamountofthisphaseintheothersolids.

Therefore,itcanbeconcludedthatthecatalystsconsistofthree

segregatedphases:␣-Fe2O3,GdFeO3andGd2O3.

AfterWGSR,pureironoxide(F-Ssample)showedavery

com-plexMössbauerspectrumwithaboutnine peaksin thecentral

region(betweenvelocitiesofabout−3.9and4.0mm/s),twopeaks

in the negative velocities and two other peaks in the positive

velocitiesforironoxidestypicalvalues(Fig.4bandTable3).This

spectrumwasfittedusingsixsextuplets.Twoofthem,withthe

largest magnetic hyperfine fields, canbe assigned toFe3+ ions

locatedin Asitesand Fe2.5+ ionslocatedin Bmagnetite sites

(Fe3O4)[32,33].Theotherfoursextets,withlowvalues of

mag-netichyperfinefieldsand isomershifts,canbeassignedtoiron

carbides,suchascementite(␪-Fe3C)andtothreesites(I,IIand

III)ofHäggcarbide(␹-Fe5C2)[38].TheMössbauerspectraofspent

gadolinium-containingcatalysts(Fig.4bandTable3)changed

dra-matically ascompared topureiron oxide. Allof them showed

predominantsignalstypicalofironionslocatedinAandBsites

ofmagnetite.Inthecentralregionofthespectraonlysmallpeaks

relatedtoironcarbidesweredetected.Thespectrashowed

dif-ferencesdependingongadoliniumloadinginthesolids.For the

gadolinium-poorestsample(FG05-S),onlyanadditionalsextuplet,

assignableto␪-Fe3C,wasnecessarytocompletethefittingprocess,

probablythethreesitesof␹-Fe5C2arepresentinverylow

concen-trations.Ontheotherhand,forFG10-Ssamplebothironcarbides

(␪-Fe3Cand␹-Fe5C2)withallsitesweredetected.Finally,forthe

gadolinium-richestsample(FG15-S)␪-Fe3CandtheIsiteof␹-Fe5C2

wereidentified. Table4displaystheamountofiron-containing

phaseformedineachcase.Fromtheseresults,itcanbeconcluded

thatthegadolinium-freecatalystisbasicallymadeofironcarbides

whiletheironandgadolinium-basedsolidsaremainlyformedby

magnetite.Therefore,gadoliniumpreventstheproductionofiron

carbides.BycomparingtheseresultswiththoseobtainedbyXRD,

onecanconcludethattheiron andgadolinium-containing

sam-plesaremadeofmagnetite,ironcarbidesandgadoliniumoxide,

sincegadoliniumferritehasnotbeendetectedbyMössbauer

spec-troscopy.

ThephasechangesnotedduringWGSRcanberelatedtoboth

reducing atmosphere and temperature which are able to

pro-ducemetalliciron(␣-Fe)fromhematite(␣-Fe2O3)duringreaction.

Fig.5 illustrated a schemeof thephase changes which is

sup-posedtooccurinreactionconditions.Hematitecanbetransformed

tomagnetite (Fe3O4)and metallic iron (␣-Fe) which is able to

dissociatecarbonmonoxide.Thecarbonatomscanthendiffuse

insidethe␣-Felatticeproducingdifferenttypesofironcarbides.

For gadolinium-containingsolids,theGdFeO3 perovskiteis also

reducedbut gadolinium(asgadoliniumferriteorasgadolinium

(6)

Table3

Mössbauerparametersforspentcatalystsat25◦C.F:ironoxide;FG05,FG10andFG15:gadoliniumandironoxideswithGd/Fe(molar)=0.05;0.10and0.15,respectively.

Species Parameters F FG05 FG10 FG15 Fe3+inAsitesofFe 3O4 H(T) 49.4±0.2 48.90±0.02 48.83±0.03 48.86±0.03 ı(mm/s) 0.28±0.03 0.28±0.01 0.27±0.01 0.27±0.01 2ε(mm/s) −0.03±0.05 −0.02±0.01 −0.04±0.01 −0.04±0.01 Fe2.5+ inBsitesofFe3O4 H(T) 46.0±0.2 45.84±0.03 45.86±0.03 45.88±0.04 ı(mm/s) 0.66±0.03 0.66±0.01 0.66±0.01 0.67±0.01 2ε(mm/s) 0.03±0.05 0.00±0.01 0.02±0.01 0.02±0.01 ␪ironcarbide H(T) 19.7±0.1 20.7±0.2 20.6±0.3 21.1±0.3 ı(mm/s) 0.25±0.01 0.18±0.02 0.20±0.02 0.22±0.03 2ε(mm/s) −0.04 ±0.02 0.06±0.04 0.09±0.03 0.11±0.05

␹ironcarbidesiteI H(T) 18.24±0.05 n.d. 17.9±0.7 18.4(*)

ı(mm/s) 0.18±0.01 n.d. 0.18±0.06 0.22(*)

2ε(mm/s) 0.05±0.01 n.d. −0.1±0.1 0(*)

␹ironcarbidesiteII H(T) 21.55±0.03 n.d. 21.7(*) n.d.

ı(mm/s) 0.24±0.01 n.d. 0.25(*) n.d.

2ε(mm/s) 0.11±0.01 n.d. −0.01(*) n.d.

␹ironcarbidesiteIII H(T) 11.34±0.05 n.d. 11.8(*) n.d.

ı(mm/s) 0.19±0.01 n.d. 0.22(*) n.d.

2ε(mm/s) 0.02±0.01 n.d. −0.09(*) n.d.

H:hyperfinemagneticfieldinTesla;␦:isomershift(referredto␣-Feat25◦C);2␧:quadrupoleshift;(*)Parametersheldfixedinfitting;n.d.:notdetected.ironcarbide: Fe3C(cementite);␹ironcarbide:Fe5C2(Häggcarbide).

Table4

AmountsofironphasesforspentcatalystsobtainedfromMössbauerspectraat 25◦C.F:ironoxide;FG05,FG10andFG15:gadoliniumandironoxideswithGd/Fe (molar)=0.05;0.10and0.15,respectively.

Sample %Fe3O4 %Ironcarbides

F-S 8±1 92±3

FG05-S 93±1 7±1

FG10-S 83±3 17±6

FG15-S 92±1 8±1

onlyminorquantitiesofironcarbidesareproducedandthemain phaseismagnetite.TheproductionofironcarbidesduringWGSR doesnotagreewithpreviousworks[8,10].Thiscanbeassignedto

thehighcalcinationtemperature(800◦C)whichseemstofavorthe

productionofmetallicironintheconditionsofHTSreaction.

ThespecificsurfaceareasofthesolidsarepresentedinTable5.

Thevalues are typically low asa result of thehighcalcination

temperatureofthesolids.Asexpected[2,7,26]gadoliniumoxide

showedavaluehigherthanironoxide.Theadditionof

gadolin-iumtoiron-basedsolids generated a solid withhigher specific

surfaceareas ascompared to pureiron oxide,showingits role

astexturalpromoter.Thiseffectcanbeassignedtotheactionof

gadoliniumasaspacer,creatingabarrieramong theironoxide

Table5

Specificsurfaceareasofthecatalystsbefore(Sg)andafter(Sg*)WGSRperformedat 400◦CandhydrogenconsumptionobtainedfromTPRcurves.G:gadoliniumoxide;

F:ironoxide;FG05,FG10andFG15:gadoliniumandironoxideswithGd/Fe=0.05; 0.10and0.15.

Sample Sg(m2g−1) Sg*(m2g−1) Hydrogenconsumption (␮molg−1) F 10 11 4129 FG05 11 11 2904 FG10 17 17 3831 FG15 12 9 1938 G 18 12 0

particles and preventing sintering, as noted previously for the ammoniasynthesis catalysts[39] andforaluminum-doped iron

oxidecatalystsforWGSR[8].DuetothelargerGd3+ions(107pm)as

comparedtoFe3+ions(69pm),theyarenotexpectedtoenterinto

hematiteormagnetitelatticebutrathersegregateasgadolinium

oxideorasgadoliniumferriteasconcludedbyMössbauer

spec-troscopyandXRD.Thesamplewiththeintermediateamountof

gadolinium(Gd/Fe=0.10)showedthehighestspecificsurfacearea

(17m2g−1)whilethegadolinium-poorestsampleshowedthe

low-estvalue.Duringreaction,thespecificsurfaceareas(Table5)did

(7)

100 200 300 400 500 600 700 800 900 TiOnset = 544 ºC Ti Onset = 517 ºC TiOnset = 516 ºC TiOnset = 515 ºC TmOnset = 379 ºC TmOnset = 371 ºC Tm Onset = 364 ºC FG15 FG10 F

Hydrogen consumption (a.u)

FG05 TmOnset = 403 ºC

Temperature (°C)

1000

Fig.6. TPRcurvesforthecatalysts.G:gadoliniumoxide;F:ironoxide;FG05,FG10 andFG15:gadoliniumandironoxideswithGd/Fe(molar)=0.05;0.10and0.15, respectively.

notchangesignificantly,exceptforthegadolinium-richestsample

(FG15),probablyduetothepresenceoflargeramountof

gadolin-iumoxide and/or gadolinium ferrite which show typically low

specificsurfaceareas.

Thecurvesoftemperatureprogrammedreductionforthe

cat-alystsareshowninFig.6andthehydrogenconsumptionduring

theTPRexperimentsareshowninTable5.Puregadoliniumoxide

(Gsample)showednoreductionpeakatthetemperaturerange

oftheexperiment. On theotherhand, pureiron oxide(F

sam-ple)showedareductionpeakbeginningat403◦Cattributedtothe

reductionofFe3+toFe2+speciesandthepeakathigher

temper-aturesbeginningat544◦CrelatedtothereductionofFe2+toFe0

species[8,40].Itcanbenotedthatthegadoliniumadditionshifted

thepeakstolowertemperatures.Gadoliniumledtoadecreasein

hydrogenconsumption,thereducibilityofthesolidsincreasedin

theorderFG15<FG05<FG10<Fandthennoregulartrendcould

beobserved.Thesefindingscanberelatedtodifferentamountsof

hematite,gadoliniumferriteandgadoliniumoxidesaswellasto

theirdistributioninthedifferentsamples.Fromtheseresultsone

canconcludethatgadoliniummakesthereductionofFe3+andFe2+

speciesdifficult,probablyduetothediffusioneffectsofhydrogen

intheparticlesofdifferentsizes,aswellastodifferentamounts

ofthesephasesineachsample.Theseresultscanexplainwhythe

gadolinium-containingsamplesproducedlessironcarbidesfrom

metalliciron.

Fig. 7a shows the conversion of carbon monoxide over the

catalystsasafunctionofreactiontemperature.Asexpected,the

conversionincreasedwithtemperatureduetokineticfactors.At

hightemperatures(350–400◦C),thecatalyticactivityofironoxides

increasedduetogadoliniumandthiscanbeassignedtothe

abil-ityofthisdopantindelayingtheproductionofmetallicironand

thenironcarbides,asfoundbyTPRandMössbauerspectroscopy.

Therefore,moremagnetiteisproducedingadolinium-doped

sam-plesinsteadofironcarbides.Theactivityincreasedwiththedopant

amountuptothesamplewithGd/Fe=0.10(FG10),indicatingthat

thereisanoptimumamountofgadoliniumforitspromoteraction.

Asthissamplehasthesmallestamountofmagnetite,itssuperior

activitycanberelatedtoitshighestspecificsurfacearea,

allow-ingtheexpositionof moreactive sitesonthesurface.Previous

works[5,41]haveshownthattheHTSreactionoccursover

iron-based catalyststhrough the regenerative mechanism according

towhich thesurfacegoesonsuccessivecyclesofoxidation and

250 300 350 400 0 3 6 9 12 15 CO Con v er s ion (% )

(a)

0 30 60 90 120 150 180 210 240 270 300 330 360 0 3 6 9 12 15 18 21 CO Co nve rsi on (%)

(b)

Temperature (°C) Time (min)

Fig.7.Conversionofcarbonmonoxideoverthecatalystsasafunctionof(a)reaction temperatureandof(b)reactiontimeinWGSRperformedat400◦C.G(--)sample: gadoliniumoxide;(-–)Fsample:ironoxide;(-䊉-)FG05,(--)FG10and(--)FG15: gadoliniumandironoxideswithGd/Fe(molar)=0.05;0.10and0.15,respectively.

reduction bycarbonmonoxideand water,respectively, toform

hydrogenandcarbondioxide.Itiswell-knownthattheactivephase

ofhematite-basedcatalystsismagnetite(Fe3O4)[42,43],inwhich

latticethequantum jumpsbetweentheFe2+ and Fe3+levelsin

theoctahedralsitesenablestheironoxidation andreductionby

waterandcarbonmonoxide,respectively,duringWGSR.Thelow

amountofmagnetiteexplainsthelowactivityoffree-gadolinium

sample[44].Ontheotherhand,theroleofgadoliniumferritein

catalyzingtheWGSRhasbeenpointoutearlierbyHaralambous

et al.[45,46],who assigned itsperformance tothe presenceof

pointdefectsinthelatticeassociatedtop-typesemiconductivity,

favoringthechemisorptionofcarbonmonoxidemoleculesontheir

surface[45,46].However,inthepresentworkgadoliniumferriteis

notsupposedtoplayarole,onceitisconvertedtomagnetiteand

ironcarbidesduringreaction.

Theresultsofconversionovercatalystsasafunctionofreaction

time,performedat400◦Cfor6h(Fig.7b),showedthatthe

cat-alystswerestableunderexperimentalconditions,indicatingthat

thephasechangesoccurredinthefirstminutesofreaction.Only

carbondioxideandhydrogenweredetectedandnomethaneor

ethanewasfoundforallcatalysts,indicatingthattheironcarbide

phaseswereinactivetoFischer–Tropschsynthesisinthereaction

(8)

4. Conclusions

The hydrolysis of iron nitrate and gadolinium nitrate with

ammoniahydroxide,followedbycalcinationat800◦C,producesa

mixtureofhematite,gadoliniumoxide(Gd2O3)andGdFeO3

perov-skite.Forthesesolids,gadoliniumleadstoanincreaseofspecific

surfaceareaandadecreaseinreducibility.Thesecatalystswere

activein water gasshiftreaction(WGSR) andselective onlyto

hydrogenandcarbondioxide.Duringreaction,theygoonphase

change,producingmagnetite andironcarbidesco-existingwith

gadoliniumoxide.Thepresenceofgadoliniuminhibitsthe

produc-tionofironcarbides,increasingtheactivityofthecatalysts.Iron

carbidesareinactivetoFischer–Tropschsynthesisandthendonot

affecttheselectivityofthecatalysts.Themostactivecatalystisthe

solidwithGd/Fe(molar)=0.1,afactthatwasrelatedtoitshighest

specificsurfaceareaallowingtheexpositionofmoreactivesiteson

thesurface.

Acknowledgments

CLSSthanksCNPqforhisscholarship.Theauthorsaregratefulto

Dr.S.T.deOlivaforhishelpintheX-rayfluorescenceanalyses.The

authorsacknowledgeCNPqandFINEPforthefinancialsupport.

References

[1]D.Holladay,J.Hu,D.L.King,Y.Wang,CatalysisToday139(2009)244–260.

[2]D.S. Newsome, Catalysis Reviews-Science and Engineering 21 (1980) 275–318.

[3]J.L.R.Costa,S.G.Marchetti,M.C.Rangel,CatalysisToday77(2002)205–213.

[4]S.X.Wang,D.Gao,Z.Yuan,N.Liu,C.Zhang,InternationalJournalofHydrogen Energy33(2008)3710–3718.

[5]L.Lloyd,D.E.Ridler,M.V.Twigg,in:M.V.Twigg(Ed.),CatalysisHandbook,Wolfe ScientificBooks,London,1996,pp.283–339.

[6]E.M.Fuentes,A.C.F.Júnior,T.F.Silva,J.M.Assaf,M.C.Rangel,CatalysisToday 171(2011)290–296.

[7]M.C.Rangel,R.M.Sassaki,F.Galembeck,CatalysisLetters33(1995)237–254.

[8]G.C.Araujo,M.C.Rangel,CatalysisToday62(2000)201–207.

[9]E.B.Quadro,M.L.M.Dias,A.M.M.Amorim,M.C.Rangel,JournaloftheBrazilian ChemicalSociety10(1999)51–59.

[10]A.L.C.Pereira,G.J.P.Berrocal,S.G.Marchetti,A.Albornoz,A.O.deSouza,M.C. Rangel,JournalofMolecularCatalysisA:Chemical281(2008)66–72.

[11]I.LimaJr.,J.Millet,A.Mimoun,M.C.Rangel,AppliedCatalysisA-General283 (2005)91–98.

[12]A.L.C.Pereira,N.A.dosSantos,M.L.O.Ferreira,L.A.M.Albornoz,M.C.Rangel, StudiesinSurfaceScienceandCatalysis167(2007)225–230.

[13]J.Y.Lee,D.W.Lee,K.Y.Lee,Y.Wang,CatalysisToday146(2009)260–264.

[14]C.Martos,J.Dufour,A.Ruiz,InternationalJournalofHydrogenEnergy34(2009) 4475–4481.

[15]L.Zhang,J.M.M.Millet,U.S.Ozkana,JournalofMolecularCatalysisA:Chemical 309(2009)63–70.

[16]M.S.Santos,G.J.P.Berrocal,J.L.G.Fierro,M.C.Rangel,StudiesinSurfaceScience andCatalysis167(2007)493–498.

[17]P.S.Querino,J.R.C.Bispo,M.C.Rangel,CatalysisToday108(2005)920–925.

[18]J.Tsagaroyannis,K.J.Haralambous,Z.Loizos,G.Petroutsos,N.Spyrellis, Mate-rialsLetters28(1996)393–400.

[19]M.Laniecki,M.Ignacik,CatalysisToday116(2006)400–407.

[20]S.YuChoung,M.Ferrandon,T.Krause,CatalysisToday99(2005)257–262.

[21]C.Wheeler,A.Jhalani,E.J.Klein,S.Tummala,L.D.Schmidt,JournalofCatalysis 223(2004)191–199.

[22]A.M.Gadalla,T.W.Levingston,ThermochimicaActa145(1989)1–9.

[23]R.Furuichi,M.Hachiya,T.Ishi,ThermochimicaActa133(1988)101–106.

[24]I.Y.Park,D.Kim,J.Lee,S.H.Lee,K.J.Kim,MaterialsChemistryandPhysics106 (2007)149–157.

[25]R.G.Villacelos,L.Herman,J.Morales,J.Tirado,JournalofColloidandInterface Science101(1984)393–397.

[26]J.Tsagaroyannis,K.J.Haralambous,Z.Loizos,N.Spyrellis,MaterialsLetters14 (1992)214–221.

[27]R.A.Niquist,R.O.Kagel,InfraredSpectraofInorganicCompounds,Academic Press,Orlando,1971.

[28]J.R.Bargar,J.D.Kubicki,R.Reitmeyer,J.A.Davis,GeochimicaetCosmochimica Acta69(2005)1527–1542.

[29]G.A.M.Hussein,JournalofPhysicalChemistry98(1994)9657–9664.

[30]S.H.Yariv,E.Mendelovici,AppliedSpectroscopy33(1979)410–411.

[31]J.A.Goldsmith,S.D.Ross,SpectrochimicaActaPartA23(1967)1909.

[32]E.Murad,J.H.Johnston,in:G.J.Long(Ed.),MössbauerSpectroscopyAppliedto InorganicChemistry,vol.2,PlenumPublishingCorporation,NewYork,1987.

[33]R.E.Vandenberghe,E.DeGrave,C.Landuydt,L.H.Bowen,HyperfineInteractions 53(1990)175–196.

[34]S.Mørup,H.Topsøe,AppliedPhysics11(1976)63–66.

[35]F.Söderlind,L.Selegård,P.Nordblad,K.Uvdal,P.-O.Kall,JournalofSol-Gel ScienceandTechnology49(2009)253–259.

[36]M.Eibschütz,S.Shtrikman,D.Treves,PhysicalReview156(1965)562–577.

[37]S.C.Zanatta,L.F.Cotica,A.Paesano,S.N.Medeiros,J.B.M.Cunha,B.Hallouche, JournaloftheAmericanCeramicSociety88(2005)3316–3321.

[38]R.LCohen,ApplicationsofMossbauerSpectroscopy,vol.II,AcademicPress, NewYork,1980.

[39]A.Nielsen,H.Bohlbro,InvestigationonPromotedIronCatalystsforthe Syn-thesisofAmmonia,Ed.GjllerupForlag,Copenhagen,1968,pp.p.221.

[40]J.C.Gonzalez,M.C.Gonzalez,M.A.Laborde,N.Moreno,AppliedCatalysis20 (1986)3–8.

[41]J.K.Boreskov,T.M.Yureva,A.S.Sergeeva,KineticsandCatalysis11(1970) 1476–1478.

[42]C.H.Bartolomew,R.J.Farrauto(Eds.),FundamentalsofIndustrialCatalytic Pro-cesses,JohnWiley&Sons,Hoboken,NJ,2006.

[43]C.Lund,IndustrialandEngineeringChemistryResearch35(1996)2531–2534.

[44]C.Rhodes,G.J.Hutchings,A.M.Ward,CatalysisToday23(1995)43–48.

[45]K.J.Haralambous,Z.Loizos,N.Spyrellis,MaterialsLetters11(1991)133–138.

Referências

Documentos relacionados

This paper presents the development and optimization of the synthesis of magnetic nanoparticles composed of iron oxides by a solvothermal method with benzyl alcohol using iron( III

The darkening and browning of iron oxides treated by an Nd:YAG laser can be quantified by RGB color evolu- tion according to a method based on digital color intensity

Efect of aging time of ZnO sol on the structural and optical properties of ZnO thin films prepared by sol–gel method. Applied

The following factors were selected for process description: the quantity of Al employed for the reduction reaction, the iron amount added, the type of iron compound (Fe 0 and/or

Samples were produced by different routes and characterized by scanning electron microscopy, differential thermal analysis, thermogravimetric analysis and X-ray diffraction, whereas

The Effect of Different Chemical Treatments on the Structure and Stability of Aqueous Dispersion of Iron- and Iron Oxide-Filled Multi-Walled Carbon Nanotubes..

In this work, a simple, selective and sensitive method for the simultaneous determination of iron and aluminum by catalytic spectrophotometry is presented, based on

Iron nanoparticles supported in silica gel were prepared by a green method using the polyphenolic-rich extract of the plant yerba mate and successfully applied in degradation of