• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número5"

Copied!
6
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Validated

high

performance

thin

layer

chromatography

method

for

the

quantification

of

bioactive

marker

compounds

in

Draksharishta,

an

ayurvedic

polyherbal

formulation

Divya

Pillai,

Nancy

Pandita

DepartmentofChemistry,SunandanDivatiaSchoolofScience,ShriVileParleKelavaniMandalNarseeMonjeeInstituteofManagementStudies,VileParle(West),Mumbai,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14December2015 Accepted23March2016 Availableonline16June2016

Keywords:

Bioactivemarkercompounds Draksharishta

HPTLC

Methodvalidation

a

b

s

t

r

a

c

t

DraksharishtaisanayurvedicpolyherbalformulationwithDraksha(VitisviniferaL.,Vitaceae)aschief ingredientprescribed for digestive impairment, respiratory disorders and weakness. Theseherbal medicinescontainingbiologicallyactivecompoundsplayasignificantrole.Thereforeitisnecessary tocarryoutthechemicalstandardizationofbioactivemarkercompoundspresentinthepolyherbal ayurvedicformulationlikeDraksharishta.Theaimofthepresentworkwastodevelopandvalidatea HPTLCmethodfordeterminationofgallicacid,catechinandresveratrolincommerciallyavailable mar-ketedandin-housepreparedformulationsofDraksharishta.Thisisthefirstreportofquantificationof bioactivemarkercompoundresveratrolusingHPTLCinDraksharishta.Themethodemployedsilicagel precoatedthinlayerchromatographyplateswithF254asthestationaryphase.Therespectivemobile phaseswereusedtodeveloptheplateswhichseparatedbandsaccordingtothemarkercompound. CamagscannerVwasusedfordensitometricscanning.Further,themethodwasvalidatedaccording toInternationalConferenceofHarmonization(ICH)guidelines.TheRfvaluesofthethreemarker

com-poundsweremeasured.Correlationcoefficientswerecalculatedfromthestandardgraphoflinearity. Accuracy,precisionandrecoverywereallwithintherequiredlimits.ThedevelopedHPTLCmethodsfor bioactivemarkercompoundspresentinin-houseandmarketedformulationswerefoundtobesimple, accurate,preciseandrobust.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Inthemodernpharmacologyanddrugdevelopmentthesingle chemicalentitywhichispresentisresponsibleforthemain ther-apeuticactivityofthedrugwhereasthepreparationsofAyurvedic formulationsare based ontwo principles: useof a single herb or useof more than one herb, which is known as polyherbal formulation.Inpolyherbalformulationsthecombiningeffectof differentmedicinalherbshelptoenhancethepotencyofthe formu-lationtermedas“polypharmacyorpolyherbalism”(Kumaretal., 2008;Parasuramanetal.,2014).Amarkerisachemicalcompound whichmayormaynotbetherapeuticallyactivewhilebiomarkers aretherapeuticallyactivecompoundspresentinmedicinalherbs (Bhutani,2000).Theseayurvedicpolyherbalformulationsisabig taskinvolvingqualitycontrolconsistencythatwillensurethe ther-apeuticactivityofthefinishedherbalproductsasclaimedbythe

Correspondingauthor.

E-mail:nancy.pandita@nmims.edu(N.Pandita).

standardAyurvedicbooksandmanufactures.However,mostofthe conclusionsdrawnintheayurvedictextsarebasedontheancient knowledgeandclinicalobservations;theylackthemodern obser-vationsbyanalyticalmethodsduringpreparationofadrug(Garg andBhutani,2008).Hencethereisaneedforthedevelopmentof areliableprotocolforqualityassessmentoftheherbal/polyherbal productsbyusingmodernscientificanalyticaltools.

ThefruitsofVitisviniferaL.Vitaceae,arecommonlyknownas Draksha(raisins)intheIndiansub-continentandareusedin tradi-tionalayurvedicmedicinetotreatrespiratorydisorders,digestive disorders and generalweakness. Draksharishta is an ayurvedic polyherbalalcoholic formulationincludedintheAyurvedic For-mulary of Indiain which dried fruitsof V. vinifera is thechief ingredient.Draksharishtacontains5–10%ofself-generatedalcohol withthechemicalconstituentsandpropertiesofV.viniferawidely studiedandreported(APII,2000;TiwariandPatel,2012).V.vinifera

containslargeamountofphenoliccompoundssuchasresveratrol, catechins,epicatechin,quercetin,gallicacid,procyanidinsofwhich resveratrolis themajorconstituent (Baydaretal.,2004;Galgut etal.,2011).Thesecompoundshavebeenshowntohavevarious

http://dx.doi.org/10.1016/j.bjp.2016.03.015

(2)

pharmacological activities like antiviral, anti-inflammatory, antimicrobialandantioxidant,whichshowfavourableeffectson humanhealthsuchasloweringlowdensitylipoproteins,reduction ofheartdisease,cancer,digestiveandrespiratorydisorders and improvingtheimmunesystem(Frankeletal.,1993;Mayeretal., 1997;Teissedreetal.,1996).AHPTLCmethodhasbeendeveloped and reported for the quantitative determination of gallic acid andcatechinindraksharishta (Tiwarietal.,2013).The hyphen-ated techniques likeHigh Performance LiquidChromatography (HPLC), Liquid Chromatography–Mass Spectrometry (LC–MS), Gas Chromatography–Mass Spectrometry (GC–MS), and Capil-laryElectrophoresis(CE)havebeenusedforthedeterminationof resveratrol(Galgutetal.,2011).ThisisfirstreportofHPTLCmethod developmentanditsvalidationforthepresenceofresveratrolin Draksharishta.

In recent years, the reporting of various active ingredients (i.e. marker profiling) have shown to be a useful method for standardizationand quality controlof various herbalmaterials, especially when there is a lack of authentic standards for the identification of all active components present in these com-plexnaturalproducts(Liangaetal.,2004;Chenetal.,2006).For rawmaterials/herbalproducts,Thin-LayerChromatography(TLC) andHigh-performanceThin-LayerChromatography(HPTLC) has becomeanefficientanalytical toolfor theiranalysis.HPTLChas beenwidelyused forthe identityand qualityof thebotanicals because of its versatility, reliability, high-throughput and cost effectiveness(Diet al.,2003; Larsen etal., 2004).Furthermore, simultaneousanalysisofseveralcomponentsinapolyherbal for-mulation or herbal extracts becomes possible (Patravale et al., 2001;AbourashedandMossa,2004).

AccordingtotheICHguidelines(ICH,1996,2005)inourpresent studythevalidation parameters developed wereaccuracy, pre-cision, specificity and robustness for gallic acid, catechin and resveratrolinthethreebatchesofin-houseformulationsandtwo marketedformulationsofDraksharishta.

Experimental

Standardsandchemicals

Theanalyticalgradesoforganicsolventswereprocuredfrom MerckspecialitiesPvtLtd.(Mumbai).Gallicacid(≥99.5%purity) waspurchasedfromLobaChemie,catechin(>95%purity)was pur-chasedfromNaturalRemediesandresveratrol(≥99%purity)was purchasedfromSigma–Aldrich.

Plantmaterialsandformulations

TheherbsusedasingredientsinthepreparationDraksharishta wereprocuredfromAyurvedicPharmacyfromthelocalmarket (Mumbai).Itwasdepositedandauthenticatedunderthe supervi-sionofDr.A.S.UpadhyeatAgharkarResearchInstitute,Pune.The respectivevouchernumbersweregivenforeachherbasshown inTable1.Materialswerestoredinairtightcontainers.Thetwo marketedformulationofDraksharishtawerepurchasedfromthe AyurvedicPharmacy(Mumbai).

PreparationofDraksharishta

Thethree batchesof in-houseformulations ofDraksharishta werepreparedbythemethodasgiven inAyurvedic Formulary ofIndia,Part-I.Identificationofalltheindividualplantmaterial wasdoneasperAyurvedicPharmacopoeiaofIndia.Accordingto themethod given in thestandard book, thein-house formula-tionwaspreparedatlabscalelevel.Afterpropercrushing,48.9g driedfruitsofV.viniferawasplacedinbrassvesselandallowed

Table1

Authenticationof10herbspresentintheformulationDraksharishta.

Herbs Code Partused VoucherNo.

Vitisvinifera VV Fruit F-202

Cinnamomumzeylanicum CZ Stembark S/B-140

Callicarpamycrophylla CM Flower I/F-040

Woodfordiafructicosa WF Flower I/F-041

Pipernigrum PN Fruit F-200

Piperlongum PL Fruit F-203

Embeliaribes ER Fruit F-209

Mesuaferrea MF Stamens I/F-042

Cinnamomumtamala CT Leaves L-071

Elettariacardamomum EC Seed F-201

tosoakovernightin1000mlofwater.Thismaterialwasboiled untilthewaterwasreducedtoonefourth250ml(decoction)of theoriginal.Heatingwasstoppedatthispointanddecoctionwas filteredthroughmuslinclothinacleanvessel.Thiswasfollowed by adding 200gof jaggery and stirred properly until homoge-neoussolutionwasobtainedfollowingafinalfiltration.Then,to thisfiltrate8gofWoodfordiafructicosa(Dhatakiflowers)and1gof coarselypowderedprakshepadravyasincludingCinnamomum zey-leynicum(stembark),Eletteriacardamomum(seeds),Cinnamomum tamala (leaves), Mesua ferrea (stamens), Callicarpa macrophylla (flowers),Pipernigrum(fruits),Piperlongum(fruits),Embeliaribes (fruits) was added, stirred well and filtered again and this fil-teredfluidwasplacedforfermentation.Thefermentedpreparation wasthenfilteredwithmuslinclothandkeptincleanbottlesand labelled properly. Sampleswere prepared fromthese three in-housebatchesandthetwomarketedformulationsofdraksharishta forHPTLCanalysis.

Preparationoftestsample

Thethree in-houseandtwo marketedformulationsof 50ml each were dried on a water bath until the alcohol was com-pletelyremoved.Then50mlofwaterwasaddedtotheresidue leftbehind.Itwasthensubjectedtosuccessivesolventextraction, firstwithhexane(150ml)followed bychloroform(150ml)and ethylacetate(150ml).ForHPTLCanalysis,ethylacetatefraction ofthein-houseandtwomarketedformulationswasevaporated todrynessandreconstitutedwithmethanolasgiveninAyurvedic FormularyofIndia,Part-I.Theconcentrationsofthreein-houseand twomarketedformulationsobtainedwere86.5,92.5,90.5,100.5, 74.5mg/mlrespectively.Asampleof10mg/mlconcentrationwas preparedforallthein-housebatchesandmarketedformulations. 2.0␮lofeachformulationwereappliedonTLCplatesforHPTLC analysis.

Preparationofstocksolutionandworkingstandardsolutionof gallicacid,catechinandresveratrol

Acommonstocksolution(1mg/ml)ofgallicacid,catechinand resveratrolwaspreparedbydissolving10mgofeachinmethanol and making the volume of solution up to 10ml. The working standardsolutionof100␮g/mlwaspreparedforeachbydiluting 10timesthestocksolutionwithmethanol.Thealiquots(2–7ml of gallic acid),(3–8mlof catechin), (0.5–1ml resveratrol) were transferredto10mlvolumetricflasksanddilutedtovolumewith methanolandappliedonTLCplates.

HPTLCinstrumentation

TLCplateswithadimensionof20cm×10cmprecoatedwith 0.20mmlayersofsilicagel60F254(Merck,Darmstadt,Germany)

(3)

widebandsand11.3mmwasthedistancekeptbetweenthetwo bandsby useof sample applicator CamagLinomat V equipped withasyringeof100␮lcapacity.Aconstantapplicationrateof 150nLs−1wasused.CamagScannerVcontrolledbywinCATS

Pla-narChromatographymanagersoftwareversion1.4.6wasusedasa densitometricscanner.Theslitdimensionswere6×0.45mmand thescanningspeed20mm/s.Theradiationsourceusedwasa deu-teriumlampatawavelengthof254nmforgallicacidand280nm forcatechinand306nmforresveratrol.

Chromatographiccondition

The mobile phase selected was a mixture of toluene, ethyl acetateandformicacid(6:4:0.8,v/v)forgallicacid,toluene,ethyl acetateandformicacid(5:4:1,v/v)forcatechinandchloroform, ethylacetateandformicacid(5:4:1,v/v)forresveratrol.Plate devel-opmentwasdone in a Camag20cm×10cm glass twin-trough chamber. Before insertion of the plate,the chamber was satu-ratedwithmobilephase vapourfor5minatroomtemperature (25±2◦C),withthesolventfront(development distance)being

7cm.AftertheTLCplatesweredevelopedanddriedbyusingan airdryer,densitometryscanningwasperformedatawavelength of =254nmforgallicacid, =280nmforcatechinand =306nm forresveratrol.

Calibrationcurvesofgallicacid,catechinandresveratrol andtheiranalysisinformulations

Todeterminethelinearity,calibrationcurveswereplotted.A 10␮lofeachconcentrationrange(20–70␮g/ml)wasappliedon TLCplatestogetfinalconcentration200–700ng/spotforgallicacid, (30–80␮g/ml) 300–800ng/spot for catechin and (5–10␮g/ml) 50–100ng/spot for resveratrol. The densitometry scanning was performed for each standard and the presence of gallic acid, catechinandresveratrolpresentinthein-houseandmarketed for-mulationswerequantifiedbymeansofcalibrationplot.

Methodvalidation

Precision

Sixreplicatesofsameconcentrationofgallicacid(300ng/spot), catechin(300ng/spot)andresveratrol(60ng/spot)wereusedfor thedeterminationofinstrumentalprecisionandtherepeatability ofthemethodwasestimatedbycarryingoutintra-dayand inter-dayprecisionatthreedifferentconcentrationlevels200,400and 700ng/spotforgallicacid,300,500and800ng/spotforcatechin and50,70and100ng/spotforresveratrol.

Limitsofdetectionandquantification

Inordertoestimatethelimitofdetection(LOD)andlimitof quantification(LOQ),blankmethanolwasspottedsixtimesina similarwaytothatofthecalibrationcurveandthesignal-to-noise ratiowasdetermined.Thecalculationwasbasedonthestandard deviation(SD)oftheresponseandtheslope(S)ofthecalibration curve.TheLODwasconsideredas3:1(SD/S)andLOQas10:1(SD/S).

Accuracyandrecoverystudies

The accuracy of themethod was determined by calculating therecovery of gallic acid, catechin and resveratrolin mixture bystandard additionmethod.Tomeasure theaccuracy,known amountofstandardsolutionsofgallicacid,catechinand resver-atrolwerespikedto80,100and120%ofapre-quantifiedsample

solutionandthentheirresponse(peakarea)wasmeasuredand percentagerecoverywascalculated.Eachresponsewastakenas theaverageofthreedeterminations.

Robustness

Thecompositionofmobilephasewaschangedslightlyandthe effectsontheresultswereexamined.Toluene,ethylacetateand formic acid(6.5:4.5:0.8, v/v) forgallic acidwhiletoluene, ethyl acetateandformicacid(5.5:4.5:1,v/v)forcatechinandchloroform, ethylacetateandformicacid(5.5:4.5:1,v/v)forresveratrolwere selectedandthechromatogramsandrun.Theamountofmobile phase,temperatureanddurationofsaturationwerevariedatrange of+5%.TimefromspottingofallthethreestandardsonTLCplate tothedevelopmentoftheplateandthetimefromdevelopmentof platetoscanningwasvariedas10,20and30min.Robustnessof themethodwascheckedfollowingthesamethreedifferent con-centrationlevelsasmentionedinprecision.

Specificity

Thespecificityofthemethodwasascertainedbyanalysing ref-erencestandard,testsample,diluentandmobilephase.Thespotof theeachstandardinthesamplewasconfirmedbytheRfvaluesof

theseparatedbandswiththoseofthestandards.Thepeakpurityof gallicacid,catechinandresveratrolweremeasuredbycomparing thespectraatthreedifferentlevelsi.e.peakstart,peakapexand peakendofthespot.

Resultsanddiscussion

Optimizationofmobilephase

Asmobilephaseplaysaveryimportantroleinthe chromato-graphic method,the first step for development of a successful methodistooptimizethesolventsystemforgoodextraction effi-ciency.Methodthatgivesdenseandcompactspotswithsignificant valuesfordeterminationofgallicacid,catechinandresveratrolin formulationswasdeveloped.Tooptimizethemobilephase, differ-entratiosofToluene:ethylacetate:formicacidwasstudied.Use oftoluene,ethylacetateandformicacid(6:4:0.8,v/v)(Vadivelu andSaraswathy,2013)resultedinsharp,welldefinedgallicacid peaksofRf0.32±0.02whilesolventsystemtoluene,ethylacetate

andformicacid(5:4:1,v/v)(Dhalwaletal.,2008)resultedinsharp catechinpeaksofRf0.44±0.02andchloroform,ethylacetate,and

formicacid(5:4:1,v/v)(RolfsandKindl,1984)resultedinsharp, welldefinedresveratrolpeaksofRf0.58±0.02.Beforetheplate development, the chamber was pre-saturated withthe mobile phasefor5minatroomtemperature.ThethreedimensionalHPTLC overlayofgallicacid,catechinandresveratrolareshowninFig.1.

Calibrationcurvesofgallicacid,catechinandresveratrol andtheiranalysisinformulations

(4)

0 0.10 0.20 0.30 0.40 0.50 [Rf] 0.70

(a) Chromatogram of gallic acid Rf–0.32 (200–700 ng/spot); (b) Chromatogram of catechin Rf–0.44 (200–700 ng/spot); (c) Chromatogram of resveratrol Rf–.58 (50–100 ng/spot)

0 50 100 200 [mm] 100 200 300 400 500 600 700 900 400 900 700 600 500 400 300 200 100 0 0.46 0.48 0.50 0.52 0.54 0.56 0.60 0 50 100 [mm] 200 [Rf] 300 250 200 150 100 50 0 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.75 0 50 100 200 [mm] [Rf] [AU] [AU]

a

Gallic acid Catechin Resveratrol

Track 1 – Standard Track 2 – Standard Track 3 – Standard Track 4 – Standard Track 5 – Standard Track 6 – Standard Track 7 – Batch 1 Track 8 – Batch 1 Track 8 – Batch 2 Track 8 – Batch 2 Track 8 – Batch 3 Track 8 – Batch 3 Track 8 – MKT 1 Track 8 – MKT 1 Track 8 – MKT 2 Track 8 – MKT 2

b

c

[AU]

Fig.1. 3DoverlayofHPTLCchromatogramsofgallicacid,catechin,resveratrol,in-houseandmarketedformulations.

Table2

Methodvalidationparametersforthequantificationofgallicacid,catechinand resveratrol.

Methodproperty Gallicacid Catechin Resveratrol

Rf 0.32 0.44 0.58

Instrumentalprecision(RSD[%]n=6) 3.0 3.1 3.2 Intraassayprecision(RSD[%]n=6) 2.7 2.5 3.1 Intermediateprecision(RSD[%]n=6) 3.5 2.5 3.2 Correlationcoefficient,r 0.999 0.995 0.993 Calibrationrange[ng] 300–700 300–800 60–100

LOD 300 300 60

LOQ 900 900 180

Specificity Specific Specific Specific

Robustness Robust Robust Robust

demonstratingitssuitabilityforanalysisandalsoindicated adher-enceofthemethodtoBeer’slaw.Gallicacidwasfoundtobe1.767, 1.841,1.911,1.361,and1.595% whilecatechinwasfoundtobe 3.241,3.142,3.222,0.080,and0.049%,andresveratrolwasfoundto be0.541,0.537,0.538,0.086,and0.116%inin-houseformulation 1,23,andmarketed1and2formulations,respectively.

Precision

In order to control scanner parameters, that is, repeatabil-ity of measurement of peak area, instrumental precision was checkedbyrepeatedscanning(n=6)ofthesamespotofgallicacid

Table3

Intraandinter-dayprecisionofHPTLC(n=6).

Amount(ng/spot) Intra-dayprecision Inter-dayprecision

Meanarea SD %RSD Meanarea SD %RSD

Gallicacid

300 2294.2 1.16 0.051 2174.2 0.45 0.021

500 3598.5 1.03 0.028 3526.6 1.53 0.043

700 4267.7 1.32 0.031 4193.3 2.06 0.049

Catechin

300 1272.9 1.44 0.113 1228.5 1.33 0.108

500 2020.1 1.21 0.059 1983.2 1.12 0.056

800 2849.7 1.09 0.038 2786.4 1.48 0.053

Resveratrol

60 545.2 0.66 0.121 522.5 0.48 0.092

80 1397.9 1.10 0.078 1296.5 0.77 0.059

100 1960.6 1.25 0.063 1925.7 1.50 0.077

(300ng/spot),catechin(500ng/spot)andresveratrol(80ng/spot) andwereexpressedas%RSDandwasfoundtobelessthan3% asshowninTable2,ensuringrepeatabilityofdevelopedmethod aswellasproperfunctioningoftheHPTLCsystem.Theintra-day referstotheuseofanalyticalprocedurewithinalaboratoryovera shortperiodoftimeandinter-dayprecisioninvolvesestimationof variationsinanalysiswhenamethodisusedwithinalaboratoryon differentdays.TheresultsareshowninTable3.Themethodwas

6000

Gallic acid @ 254nm Y=462.3+6.256 x r=0.9991

Catechin @ 280nm Y=402.5+3.04 x r=0.9953

Resveratrol @ 306nm Y= –1454+34.43 x r=0.9926 4500 2500 2000 1500 1000 500 0 4000 3500 3000 2500 2000 1500 1000 500 0

0.00 200.00 400.00

Standard concentration (ng)

600.00 800.00 1000.00 1200 0.00 20.00 40.00 60.00 80.00 100.00 5000 4000 3000 2000 1000 Standard A UC 0

0.00100.00200.00300.00400.00500.00600.00700.00

a

b

c

(5)

Table4

Recoverystudyofgallicacid,catechinandresveratrol.

Compound Amountpresentinsample(␮g) Amountadded(␮g) Amountfound(␮g) Recovery(%) Averagerecovery(%)

Gallicacid 0.153 0.32 0.421 89.00

0.153 0.40 0.489 88.43 87.50

0.153 0.48 0.538 85.10

Batch2 Catechin 0.841 0.40 1.285 103.6

0.841 0.50 1.456 108.6 105.70

0.841 0.60 1.511 104.9

Resveratrol 0.047 0.08 0.111 87.26

0.047 0.10 0.126 85.80 87.00

0.047 0.12 0.146 87.90

Gallicacid 0.196 0.32 0.471 91.30

0.196 0.40 0.535 89.91 89.74

0.196 0.48 0.594 88.01

Mkf-1 Catechin 0.338 0.4 0.752 102.02

0.338 0.5 0.880 105.05 103.86

0.338 0.6 0.980 104.52

Resveratrol 0.029 0.08 0.087 80.38

0.029 0.10 0.111 86.17 85.33

0.029 0.12 0.133 89.44

foundtobeprecisebasedontheresultsobtainedintheintra-day andinter-dayprecisionevaluationstudy.

Limitofdetectionandquantification

Detectionandquantitationlimitswithsignal-to-noiseratiosof 3:1and10:1wereconsidered.Undertheexperimentalconditions employed,limitofdetectionisthelowestamountofanalytethat couldbedetectedwasfoundtobe300ng/spotforgallicacidand catechinand60ng/spotforresveratrolandlimitofquantification, thelowestamountofanalytethatcouldbequantifiedwasfound 900ng/spotforgallicacidandcatechinand180ng/spotfor resver-atrolasshowninTable1whichindicatestheadequatesensitivity ofthemethod.

Accuracyandrecoverystudies

Accuracyofananalyticalmethodistheclosenessoftestresults totruevalueanalyte (Patel etal., 2011).It was determinedby theapplicationof analytical proceduretorecoverystudies.The pre-analyzedin-housesampleofDraksharishtaanditsmarketed formulationwerespikedwith80,100and120%ofgallicacid, cat-echinandresveratrolstandardand themixtureswereanalyzed again,intriplicate,bytheproposedmethod,tochecktherecovery ofdifferentamountsofthesemarkercompounds.Average recov-eryforgallicacid,catechinandresveratrolwasfoundtobe87.50, 105.70and87%,respectivelyforin-housesampleand89.74,103.86 and85.33%,respectively,forthemarketedformulationof Drakshar-ishtaasdepictedinTable4.Thisshowstheaccuracyofthemethod inadesiredrange.

Robustness

Thestandarddeviationsofpeakareaswerecalculatedforeach parameterand%RSDwasfoundtobelessthan3%.Thelowvalues of%RSDobtainedafterintroducingsmalldeliberatechangesinthe developedHPTLCmethod,indicatedtherobustnessofthemethod. ThedevelopedHPTLCmethodremainedtobeunaffectedbythe smallbut deliberatevariationsin theexperimentalparameters, indicatingsuitabilityandreliabilityofthedevelopedmethod dur-ingnormaluse,therebyindicatingtherobustnessofthemethod.

Specificity

Specificity is the ability of an analytical method to assess unequivocally the analyte in the presence of sample matrix

analyte(Pateletal.,2011).Thepeakpuritywascalculatedasper regression(r2).Thevaluesforgallicacidwasr2

(start,middle)=0.9980 andr2

(middle,end)=0.9973,for catechinr2(start,middle)=0.9969and

r2

(middle,end)=0.9973andforresveratrolr2(start,middle)=0.9985and

r2

(middle,end)=0.9990. Chromatographic specificity was investi-gatedbycomparingtheRfvalueofstandardsandsamplesandit

wasfoundtobeidentical.Noimpuritiesordegradationproducts werefoundalongwiththepeaksofstandarddrugsolutions,hence makingthemethodspecific.

Conclusions

The identification and quantification of active ingredients in polyherbal ayurvedic formulations like asavas and arishtas canbeevaluatedbyuseofvalidatedanalyticalmethods.Anew HPTLC method has been developed for the identification and quantificationofgallicacid,catechinandresveratrolinin-house preparedandmarketedformulationsofdraksharishta.Lowcost, fasterspeed,andsatisfactoryprecisionandaccuracyarethemain featuresofthismethod.Themethodwassuccessfullyvalidatedas perICHguidelinesandstatisticalanalysisprovesthatthemethod issensitive, specific,repeatableandrobust.Thismethodcanbe conveniently employed for routine quality control analysis of all the three marker compounds for marketed formulations in Ayurvedic/Herbalindustry.

Author’scontribution

DP (PhD student) contributed in collecting plant sample, formulations, preparation of formulations, performing the lab-oratory work, i.e. chromatographic analysis and drafted the paper.NPdesignedthestudyandsupervisedtheoverallproject work.Authorshavereadthefinalmanuscriptand approvedthe submission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

(6)

References

Abourashed,E.A.,Mossa,J.S.,2004.HPTLCdeterminationofcaffeineinstimulant herbalproductsandpowerdrinks.J.Pharm.Biomed.Anal.36,617–620. API-I,2000.ControllerofPublication.GovernmentofIndia,MinistryofHealthand

FamilyWelfare,DepartmentofIndianSystemsofMedicineandHomeopathy, pp.15–16.

Baydar,N.G.,Ozkan,G.,Sagdic,O.,2004.Totalphenoliccontentsandantibacterial activitiesofgrape(VitisviniferaL.)extracts.FoodControl.15,335–339. Bhutani,K.K.,2000.FingerprintingofAyurvedicdrugs.East.Pharm.43,21–26. Chen,S.B.,Liu,H.P.,Tian,R.T.,Yang,D.J.,Chen,S.L.,Xu,H.X.,Chan,A.S.,Xie,P.S.,2006.

High-performancethin-layerchromatographicfingerprintsofisoflavonoidsfor distinguishingbetweenRadixPuerariaeLobateandRadixPuerariaeThomsonii.J. Chromatogr.A1121,114–119.

Dhalwal,K.,Shinde,V.M.,Biradar,Y.S.,Mahadik,K.R.,2008.Simultaneous quantifi-cationofbergenin,catechin,andgallicacidfromBergeniaciliataandBergenia ligulatabyusingthin-layerchromatography.J.FoodCompos.Anal.21,496–500. Di,X.,Chan,K.K.C.,Leung,H.W.,Huie,C.W.,2003.Fingerprintprofilingofacid hydrolyzatesofpolysaccharidesextractedfromthefruitingbodiesandsporesof Lingzhibyhighperformancethin-layerchromatography.J.Chromatogr.A1018, 85–95.

Frankel,E.N.,Kanner,J.,German,J.B.,Parks,E.,Kinsella,J.E.,1993.Inhibitionof oxi-dationofhumanlow-densitylipoproteinbyphenolicsubstancesinredwine. Lancet341,454–457.

Galgut,J.M.,Peter,J.,Ali,S.A.,2011.EstimationofresveratrolinArachishypogaea fruitskinextractsbyHigh-PerformanceThin-LayerChromatography.Biosci. Biotechnol.Res.Commun.4,33–36.

Garg,S.,Bhutani,K.K.,2008.Chromatographicanalysisofkutajarishta–anayurvedic polyherbalformulation.Phytochem.Anal.19,323–328.

ICH,1996.Q2B.Validationofanalyticalprocedure:methodology.In:International ConferenceonHarmonization,Geneva.

ICH,2005.Q2A.Validationofanalyticalprocedures:textandmethodology.In: Inter-nationalConferenceonHarmonization,Geneva.

Kumar,V.,Mukherjee,K.,Kumar,S.,Mal,M.,Mukherjee,P.K.,2008.Validationof HPTLCmethodfortheanalysisoftaraxerolinClitoriaternatea.Phytochem.Anal. 19,244–250.

Larsen,T.,Axelsen,J.,Ravn,H.W.J.,2004.Simplifiedandrapidmethodforextraction ofergosterolfromnaturalsamplesanddetectionwithquantitativeand semi-quantitativemethodsusingthin-layerchromatography.J.Chromatogr.A1026, 301–304.

Lianga,Y.Z.,Xieb,P.,Chanc,K.,2004.Qualitycontrolofherbalmedicines.J. Chro-matogr.B812,53–70.

Mayer,A.S.,Yi,O.S.,Person,D.A.,Waterhouse,D.L.,Frankel,E.N.,1997.Inhibitionof humanlow-densitylipoproteinoxidationinrelationtocompositionofphenolic antioxidantsingrapes(Vitisvinifera).J.Agric.FoodChem.45,1638–1643. Parasuraman,S.,Thing,G.S.,Dhanaraj,S.A.,2014.Polyherbalformulation:concept

ofayurveda.Pharmacogn.Rev.8,73–80.

Patel,R.B.,Patel,M.R.,Bhatt,K.K.,Patel,B.G.,2011.Developmentandvalidationof HPTLCmethodforestimationofcarbamazepineinformulationsandit’sinvitro releasestudy.Chromatogr.Res.Int.,http://dx.doi.org/10.4061/2011/684369. Patravale,V.B.,D’Souza,S.,Narkar,Y.,2001.HPTLCdeterminationofnimesulidefrom

pharmaceuticaldosageforms.J.Pharm.Biomed.Anal.25,685–688.

Rolfs,C.H.,Kindl,H.,1984.Stilbenesynthaseandchalconesynthase:two differ-entconstitutiveenzymesinculturedcellsofPiceaexcelsa.PlantPhysiol.75, 489–492.

Teissedre,P.L.,Frankel,E.N.,Waterhouse,A.L.,Peleg,H.,German,G.B.,1996. Inhibi-tionofinvitrohumanLDLoxidationbyphenolicantioxidantsfromgrapesand wines.J.Sci.FoodAgric.70,55–61.

Tiwari,P.,Sen,D.J.,Patel,R.K.,2013.DevelopmentandvalidationofHPTLCmethod forquantificationofgallicacidandcatechinfromDraksharishta.AsianJ.Res. Chem.6,248–253.

Tiwari,P., Patel,R.K.,2012.Validation ofHPTLCmethodforquantificationof quercetinandrutinindraksharishta.AsianJ.Pharm.Sci.Res.1,7–18. Vadivelu,L.,Saraswathy,A.,2013.Quantificationofpharmacologicallyactive

Imagem

Fig. 1. 3D overlay of HPTLC chromatograms of gallic acid, catechin, resveratrol, in-house and marketed formulations.

Referências

Documentos relacionados

Pain sensation can be produced by various types of stimuli (i.e., mechanical, thermal and chemical), hence the existence of mechanosensitive, thermosensitive and chemosensi- tive

edulis showed sedative effects by the reduction of exploratory activity and increased duration of immobility in the open field test for the group of animals that received the

(D) 2K1C + FLC (200 mg/kg) (group-IV) showed no significant protection against hypertension (E) 2K1C + FLC (400 mg/kg) (Group V) showed decrease in collagen deposition and

Acute administration reduced the immobility in the forced swimming test and tail suspension test and increased Na + ,K + -ATPase activity in cerebral cortex 1 h after treating,

Systolic blood pressure (SBP) after intra jugular administration of differ- ent doses of hexanic celery seed extract and nifedipine in an invasive model of normotensive and

This study aimed to evaluate the antiproliferative effect of the essential oils from four Lippia species in CT26.WT colon tumor cells, as a measurement of cell cycle phase

In OTGT it was possible to observe that both the ECb and the GCb presented effect on glucose metabolism, with a significant reduc- tion of blood glucose when compared with DTA,

The leaves are suitable for green synthesis and we present in this research the eco-friendly, sim- ple and low cost synthesis of silver nanoparticles and the synthetic