• Nenhum resultado encontrado

Lat. Am. j. solids struct. vol.11 número4

N/A
N/A
Protected

Academic year: 2018

Share "Lat. Am. j. solids struct. vol.11 número4"

Copied!
18
0
0

Texto

(1)
(2)

.

0   

0   

t      

0 0 .

t

  

   

  0 0

0

 7

4

10 0

12 8.85 10 

 

0 0 1

. c

 

(3)

, J E

J

V

( ) ( v ).

J E V B E B

t

  

     

 

2 2

0 0 2 0

t

  

   

 ò 

2 2

0 0 2 0

t

  

   

 ò 

2 2

2

2 2 2

1 1

r r r r

  

   

  

r, ,

z

, , , . , ,

rr r rz rr z zz

s s s s s s s T T TR, , Z

, ,

u v w

2 2

1 1

( ) ,

r

rr rz

rr R

s

s s u

s s T

r r z r t

 

   

2 2 2

1

,

r z r

s s s s v

T

r r z r t

   

 

   

2 2 1

.

z

rz zz rz

Z

s

s s s w

T

r r z r t

  

    

(4)

0 0 0

11 12 13 ,

rr rr zz

s  e  e  e

0 0 0

21 rr 22 23 zz,

s  e  e  e

0 0 0

31 32 33 ,

zz rr zz

s  e  e  e

0

44 ,

rz rz

s  e

0

55 ,

z z

s  e

0

66 .

r r

s  e

ij

  ij

2

0 / / /

2

ij ij ij ij

t t

     

  ij

/

ij

/ /

ij

ij.

1 , 2

rr

u e

r  

1 1

, 2

v u e

r r



 

 

1 , 2

zz

w e

z  

1 1

, 2

z

w v

e

r r z

 

 

 

 

1

, 2

rz

w u

e

r z

 

 

 

(5)

1 , 2

zz

w e

z  

1 1

, 2

r

w v

rz

 

 

 

 

 

1 1

, 2

u w

r z r

 

 

 

 

 

1 ( )

.

z

rv u

r r

 

 

 

 

 

J

J

2

2

1 1

( ) ,

r

rr rz

rr

R

s

s s u

s s J

r r z r t

 

 

   

2

2 2

1

,

r z r

s s s s v

J

r r z r t

   

 

   

     

   

2

2 1

.

z

rz zz rz

Z

s

s s s w

J

r r z r t

 

   

    r  0   z

0, 0,

0 i

     

0

 i

 

0

   0 7

(6)

2 0

v

t t

   

       

  

 

 

2 , 0

1

r

r

t  

  

2 , 0

1 t

  

  

2 0

1 .

z

t  

  

v

0,

u

0 w

( , ).

vv r z

0,

rr zz zr

eeee

1 , 2

z

v e

z

     

1

. 2

r

v v e

r r

 

 

1 , 2

r

(7)

0,

 

.

z

v v r r

  

0,

rr zz rz

ssss

2 / / / 66 66 66 2

1

( ) ( ),

2

r

v v s

t t r r

   

  

   

  

2 / / / 55 55 55 2

1

( )( ).

2

z

v s

t t r

   

  

   

  

/

ij

/ /

ij

ij.

  

0 v, 0, 0

c t

  

 

  

 

0, , 0

i

v z

 

 

 

0 v, 0, 0 0, v, 0

c t z

   

 

 

 

2 2

2 0, eH v, 0

z

  

  

(8)

2 2

/ / / / / /

66 66 66 2 55 55 55 2 2

2

2 2

/ / / 2 2

66 66 66 2 2

1 1

( ) ( ) ( )( )

2 2

2 1

( ) ( )

2 e e 2

v v v

v

r t t r r z t t r

t

v v p v

H E

r t t r r z

                                 e

 e

/ / / / / /

, ,

l l l

ij ij ij ij ij ij

C

r C

r C

r 0 m

r   ij  / ij

/ / ij

0 r l m,

2 / / / 66 66 66 2

1 ( ) ( ), 2 l r v v s r

t t r r

              2 / / / 66 66 66 2

1 ( ) ( ), 2 l r v v s r

t t r r

        

  

2 2

/ / / / / /

66 66 66 2 55 55 55 2 2

0 2

2 2

/ / / 2 2

66 66 66 2 2

1 1 ( ) ( ) ( ) ( ) 2 2 2 1 ( ) ( ) 2 2 l l m l e e

v v v

r r

v

r t t r r z t t r

r t

v v p v

r H E

r t t r r z

                                            e

 e

( ) ( ) i z t v r e  

2

2 2

1 2

2 2

( 1) ( 1)

0

l

l l

r r r r r

 

     

(9)

2 / / / 2 2

2 0 55 55 55

1 / / / 2

66 66 66

2 ( )

, i

i

       

    

  

 

 

2 2

2 2

2 / / / 2

66 66 66

2 2

.

( )

eH eE

p

i

 

    

 

 

 

 

 

 

0

ll2

0 l 0

l

2

2

2 2

1 1

( ) 0

r r r r

 

 

    

 

2 2 2

1 2

    

( )

1 1

{ ( ) ( )} i z t

vPJ GrQX Gr e  

/ // 2 ( )

66 66 66 0 1 0 1

2 2

{ } { ( ) ( ) { ( ) ( )

2 2

i z t

r

P Q

s i GJ Gr J Gr GX Gr X Gr e

r r

 

            

 

r

0

( )

r r r

s  

r

0

( )

r r r

(10)

r

0

(r)

0

( ) 0

rr

  

( ) 0

1 1

{ ( ) ( )} i z t

i PJ Gr QX Gr e

c

 

 

   

( )

0

i z t

e     

2

2 2

1

0

r r r

    

 

2

2 2

2 c

  

0( ) 0( ) RJ

r SX

r

  

0

J X0

( )

0 0

{RJ (r) SX (r e)} izt

  

0 1 0 1

{ ( ) 2 ( )} { ( ) 2 ( )} 0 P G J G   J G Q G X G   X G 

0 1 0 1

{ ( ) 2 ( )} { ( ) 2 ( )} 0 P G J G   J G Q G X Ga  X G 

0 1 0 1

0 1 0 1

( ) 2 ( ) ( ) 2 ( )

0

( ) 2 ( ) ( ) 2 ( )

G J G J G G X G X G

G J G J G G X Ga X G

 

(11)

0 1 0 1

0 1 0 1

( ) 2 ( ) ( ) 2 ( )

0

( ) 2 ( ) ( ) 2 ( )

G J G J G G X G X G

G J G J G G X G X G

     

     

 

 

  

2 3

, ...

 

 

3 2

1 0

    

2 2

2 / / / 2 2 2

0 55 55 55

2

/ / / 2 66 66 66

2 ( )

2 2

eH eE

i p

i

 

        

    

 

     

 

 

 

  

1 / c

 

2 2

2 2

2 1

2 / / / 2

0 66 66 66

2 2

2

eH eE p

c

c i

 

     

 

 

 

   

    

 

 

2 ,

k

  55 55/ 55/ / 2

/ / / 2 66 66 66

, i

i

    

    

 

 

 

/ / / 2 2 66 66 66 0

0 2

i

c     

 

,E

/ // 0

ij ij

(12)

3

0 0  0

    

2 2

2

2 66 2 55

2 0

0 66 66

2 2

2 2

eH eE p

c

 

  

   

  

 

  

    

 

 

 

 

 

1

2 2 2

2 0

55 2

2

0 66 66

[ ] 2 2

2 [ ]

eH eE p

c or

c

 

 

  

 

 

  

  

 

 

 

 

2

0 66 2 0

c  

,E

/ //

55 66 0,

ij ij

2 2

2

2 2

2 0

0

2 2

1

2 2

eH eE p

c

 

 

  

  

 

  

    

 

 

 

 

(13)

2 l

2 2

2 2

1

2 2

(3 )

3

( 0

r r r r

   

  

 

1 ( )r r   

2 2

2 1

2 2

1

0

r r r r

 

   

     

 

2 2

2

3    

1 2

( ) ( )

RJ r SX r

    

( )

1 1

1

{RJ ( r) SX ( r e)} i z t

r

 

 

    

1 1 1 1

/ / / 2 ( )

66 66 66

1 1 1 1

{ ( ) ( 2) ( )}

2

( ) 0

{ ( ) ( 2) ( )}

2

i z t r

R

rJ r J r

s i e

S

rX r X r

 

     

 

 

  

 

     

  

 

 

1 1 1 1 1 1 1 1

{ ( ) ( 2) ( )} { ( ) ( 2) ( )} 0

2 2

R S

J J X X

   

             

1 1 1 1 1 1 1 1

{ ( ) ( 2) ( )} { ( ) ( 2) ( )} 0

2 2

R S

J J X X





             

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

{ ( ) ( 2) ( )} { ( ) ( 2) ( )}

0

{ ( ) ( 2) ( )} { ( ) ( 2) ( )}

J J X X

J J X X





   

   

           

(14)

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

{ ( ) ( 2) ( )} { ( ) ( 2) ( )}

{ ( ) ( 2) ( )} { ( ) ( 2) ( )}

J J J J

X X X X

     

        

           

           

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

{ ( ) ( 2) ( )} { ( ) ( 2) ( )}

{ ( ) ( 2) ( )} { ( ) ( 2) ( )}

J J F J F J F

X X F X F X F

     

        

     

     

1

F  

 

  

2 3

, ...

 

 

2 2 2

1 1

1

( 2)    2 1 (   2)

0

 

2 2

2

2 2 2

2 / / / 2

66 66 66

2 2

3 3 ,

( )

eH eE

p

i

 

    

 

 

 

 

       

 

2 / / / 2 2

2 0 55 55 55

1 / / / 2

66 66 66

2 ( )

. i

i

       

    

  

 

 

2 / / / 2

2

2 55 55 55

2 / / / 2

0 2 66 66 66

i c

c i

   



   

 

 

 

 

/ / / 0

ij ij

(15)

1 1 1 1

1 1 1 1

3 1 3 3 3 1 3 3

3 1 3 3 3 1 3 3

{ ( ) ( 2) ( )} { ( ) ( 2) ( )}

{ ( ) ( 2) ( )} { ( ) ( 2) ( )}

J J J J

X X X X

                                     3

2 6 2 3 0

      2 2 2 2 1 66 2 2 3 ,

eH eE p

          

   2 0 2 55 2

3 66 2 ,      

 

2  3

at  1 1

0 l 1 2 2 2 3 55 2 01 66 2 c c                           2

01 66/ 2 0

c  

/ //

55 66 0,

ij ij

2 2 2 2

2 2 2 2

4 1 4 4 4 1 4 4

4 1 4 4 4 1 4 4

{ ( ) ( 2) ( )} { ( ) ( 2) ( )}

{ ( ) ( 2) ( )} { ( ) ( 2) ( )}

J J J J

X X X X

                                     2 2 2 2 2 2 2 3 ,

eH eE p

(16)

02

2 2 2

4

2 2

2

1 c

c

  



 

 

 

 

 

 

02

2

0 2

c

 

0  55/66

2 0

c

c 0

c c

2 0

c

c 0

(17)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0

0.5 1 1.5 2 2.5 3 3.5 4

Diameter/Wavelength

P

ha

se

V

e

loc

it

y

(18)

Referências

Documentos relacionados

In a previous study, Zhang and Yu (2012) employed ping-pong balls to study the dynamic buck- ling behaviors of spherical shells impinged onto a rigid plate by means of air-gun

Analytical solutions for the buckling configurations of beams and the natural frequencies of vibration around the buckled beam are obtained for a variety of non-classical

Simulation of irregular waves over submerged obstacle on a NURBS potential numerical wave tank..

The aim of the present work is to evaluate the quasi-static behavior of the shaft (displacements and opening of the crack) at different angular positions of the rotation.

In this paper, the free vibration behavior of post-buckled function- ally graded (FG) Mindlin rectangular microplates are described based on the modified couple stress theory

Latin American Journal of Solids and Structures 11 (2014) 2379-2407 Figure 4: SEA model of double composite panel lined with elastic porous material.. The equation according to

[r]

[r]