• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número2A

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número2A"

Copied!
4
0
0

Texto

(1)

Exiton Trapping in a Periodially

Modulated Magneti Field

J.A.K. Freire 1

,V.N. Freire 1

, G.A. Farias 1

, and F.M. Peeters 2

1

Departamento deFsia,UniversidadeFederaldoCeara, Centrode Ci^eniasExatas,

CampusdoPii,CaixaPostal6030,60455-760 Fortaleza,Ceara, Brazil

2

Departement Natuurkunde, UniversiteitAntwerpen(UIA),

Universiteitsplein1,B-2610Antwerp,Belgium

Reeivedon23April,2000

Thebehaviorofexitonsinspatiallymodulatedmagnetieldsisdesribedtakingintoaountthe

exitonspinontribution.Theresultsshowthattheexitontrappinginperiodimagnetieldsis

possibleanddependentonthemodulationprole.

I Introdution

Inviewof reentdevelopmentsin nanotehnology

fab-riation,thestudyofhargedpartilesunderthe

inu-eneofnonhomogeneousmagnetieldshavebeenthe

subjetofagreatnumberoftheoretial[1℄and

exper-imental [2℄ investigations. Among these systems, the

magnetotransportthroughspatially periodimagneti

eldshasreentlyyieldedveryinterestingresults.

Sev-eral works havebeenperformedon thepossibilitiesof

exiton trapping by using nonhomogeneous stress [3℄

andspatiallyvarying eletrields[4℄.

Reently,irularmagnetieldsproleswereused

to indue exiton trapping[5℄. Inthese magneti

sys-tems, thelow-eld gradientregion reatesaminimum

in theeetiveonnement potentialfor theexitons.

Thus, they an be trapped in the magneti eld

in-homogeneity. To the best of our knowledge, the

on-nement of exitons in periodi magneti elds has

notbeen investigated. The purpose of this work is to

presentresultsonthebehaviorofexitonsin spatially

modulatedmagnetields.

II The modulated magneti eld

struture

Onedimensionalperiodimagnetiprolesanbe

re-ated, e.g., by thedeposition of ferromagnetilms or

stripesontopofasemiondutorheterostruture,with

ahomogeneousmagneti eldapplied perpendiularly

to the planeof thestruture [6℄. These lms are

pat-ternedinsuhawaythatthemagnetidomainsonsists

ofparallelstripeswithmagnetizationperpendiularor

paralleltothelm,hangingsignfromonestripetothe

next,givingriseto aperiodiallymodulatedmagneti

eld in the plane of the semiondutor struture (see

sketh inFig. 1(a)).

Assumingamagnetization perpendiularto thexy

plane, with boundariesx ( a=2;a=2),y ( 1;1),

andz ( h=2;h=2),whereaandhisthestripewidth

andthikness,respetively,theorrespondingequation

forthezomponentofthemagnetieldemergingfrom

onestripeanbewritten asfollows[1,6℄:

B

z

(x)=B

a +B

(x;z+h=2) B

(x;z h=2); (1)

whereB

(x;z)=(

0

M=2)[artan(

+

) artan( )℄,

=(x0:5a)=z,Misthestripemagnetization, zis

thedistaneoftheenterofthestripeto thequantum

well,andB

a

theuniformmagnetield. Theresulting

periodi magneti eldis asuperposition ofthose due

to the individual magnetized stripes, in suh a way

that:

B Total

z

(x)= 1

X

N= 1 ( 1)

N

B

z

(x Nl ): (2)

where N is the numberof stripes and l is a onstant

related to the lattie periodiity. The magneti eld

prole for N = 4is shown in Fig. 1 (b)(see

dashed-dottedline).

TheHamiltoniandesribingtheexitonmotionina

nonhomogeneousmagnetieldanbewrittenas[6℄:

H =H ?

(z

i

)+W(r;z

e ;z

h )+H

2D

(R;r)+H mz

(X); (3)

where H ?

(z

i

) = (~ 2

=2m

i )(

2

=z 2

i )+V

i (z

i

) is the

Hamiltonian desribing the eletron and heavy-hole

onnement in the quantum well; W(r;z

e ;z

h ) =

(e 2

=")f=r [r 2

+(z z ) 2

℄ 1=2

(2)

dierenebetweenthe2Dand3DCoulombinteration

andis treatedasaperturbation;

H 2D

(R;r)=H CM

(R)+H rel

(r;R;r

R

); (4)

with H CM

(R) = (~ 2 =2M)r 2 R and H rel

(r;R;r

R )= (~ 2 =2)r 2 r (e 2 ="r)+u 1 +u 2

,desribestheexiton

motionin thexyplanesubjetedto theperiodi

mag-netield B

z

(X),where randRaretheexiton

rela-tiveandenter-of-massmotionoordinates,r=r

e r

h

and R=( m e r e +m h r h

)=M,respetively,withthe

to-tal exitonmassM =(m e +m h );u 1 (u 2

)is relatedto

the rst (seond)order dependene of therelative

o-ordinateswith thenonhomogeneousmagnetield [6℄,

and=m

e m

h

=M istheexitonreduedmass.

Figure1. (a)Experimentalsetupshowingthestripe

param-eters: a(h)isthestripewidth(thikness),ditsdistaneto

themiddleofthequantumwell,Mthemagnetization,B

a is

theappliedmagnetield,andListhequantumwellwidth.

(b)Eetivepotentialandrespetivemagnetieldforthe

exiton groundstateasafuntionoftheX oordinate. In

this gure,N =4,a=0:5 m,h=0:2m,d=0:08 m,

Ba=0T,andtheironmagnetizationM=1740emu/m 3

.

Finally,thelast termin equation(3),i.e.,

H mz

(X) =

B g e;z S e;z 1 3 g h;z J h;z B z

(X);(5)

desribes the exiton spin interation with the

non-homogeneous magneti eld. In the above equation,

m

z

= 1;2 is the exiton quantum spin number

whih is related to the eletron (S

e;z

= 1=2) and

heavy-hole(J

h;z

=3=2)spinnumbers,andg

e;z (g

h;z )

istheeletron(heavy-hole) gfator.

Weusedtheadiabatiapproahbeausethemotion

spinmotionarefastasomparedtotheenter-of-mass

motion[6℄. Wealsoassumethat alldisplaementsare

deoupledfromeahother insuhawaythat onean

writethetotalexitonwavefuntionas:

m

z

(R;r;z

e ;z

h

)='(R)(r)F(z

e ;z h )L m z (R); (6)

with'(R) =exp(iQ

Y

Y) (X), where Q

Y

is thewave

vetoroftheenter-of-massmotionin theY diretion

(exitonfreediretion).

Theeigenvaluesoftheonnementinthequantum

well, the exiton relativeand spin motion an be

ob-tainedbyapplying the exitonHamiltonian (Eq. (3))

totheabovewavefuntion [6℄. Fortheexiton

enter-of-mass motion, we obtain the following Shr

odinger-likeequation: d dX ~ 2 2M eff (X) d dX V eff

(X)+E

(X)=0; (7)

with M eff (X)=M= 1 e 2 ~ 2 M 2 2 n r m r 4 B z (X) 2 1 ; (8) V eff

(X)= ~ 2 2M eff (X) Q 2 Y + e 2 2 2 n r mr 2 B z (X) 2 + e~ 2 B z (X)m r 1 2 B g ex;z B z (X): (9)

Theaboveequationinludes thedierent

eigenval-uesfor thefast motionthat ontributeasan eetive

potential and also results in an eetive mass. Here,

nr mr and nr mr

(in units of a B 4 and a B 2 , respetively)

areonstantsrelatedtotherelativeradial(n

r

)and

an-gular(m

r

)quantumnumbers[5℄, =(m e 2 +m h 2 )=M, and g ex = g e;z +g h;z

. The eetive potential as a

funtionoftheX oordinateisshownin Fig. 1(b).

III The exiton trapping energy

Inorderto estimate theexitononnement, wehave

denedtheexitontrappingenergyasthedierenein

energybetweenanexitonistateinthehomogeneous

appliedeldB

a

anditsorrespondingstateinthe

peri-odimagnetield.Asaonsequeneofthisdenition,

the Q

Y

term that is not dependent on the magneti

eld ((~ 2

=2M)Q 2

Y

) is not inluded in the alulus of

E

T

,whihgreatlydereasestheexitondependeneon

thewavevetorQ

Y

. Indeed,the inuene ofthe rst

terminEq. (9) ontheexitononnementissosmall

that it will not be further onsidered. In all our

nu-merialalulations, we haveonsidered a = 0:5 m,

h=0:2m,d=0:08m,andM=1740emu/m 3

[3℄.

Thetrappingenergyoftheexitongroundstateas

a funtion of the applied magneti eld B

a

is shown

in Fig. 2 for several number of stripes. The energies

(3)

N 6=1,but theyareverysimilar whenN 2forboth

spinorientation,i.e.,theyareindependentofthestripe

numbers. Theexeptionisthes= 1spinstatease,

whih shows two dierent behaviors when N is even

andwhenitisodd.

Figure2. Trappingenergyoftheexitongroundstateasa

funtionoftheappliedeldBaforthenumberofstripes(a)

N =1,(b)N =2,()N =11and (d)N =20, withspin

m

z

=0(solid),m

z

=+1(dashed),andm

z

= 1(dotted).

Notiethattheexitonisalwaystrappedinthe

pe-riodimagnetipotentialwhenN iseven,independent

of the spin orientation, whih is not true when N is

odd. In this situation, the exiton is not trapped for

s= 1andB

a >0.

Theangular momentum and spin interation with

themagnetieldgivethestrongerontributiontothe

onnementpotential(see Eq. 11). The trapping

en-ergyfortheexitonexitedstates2p ,2s,and2p +

,as

afuntionoftheappliedeldB

a

isshowninFig. 3.

No-tiethatthe2sstateisanevenfuntionoftheapplied

magneti eld, and that the 2p and 2p +

states are

symmetriin B

a

with respetto eah other. This an

beexplainedasfollows: the 2

0

term(seeEq. (9))gives

astrongerontributionasomparedto 1

0

,butevenin

this situation of zeroangular momentum, theexiton

This does not our beause the exiton g fator for

a 80

A well width is very small (g

ex

0:3). Also

duetothesmallgfator,theangularmomentumgives

a bigger ontribution than the spin, and the angular

termis symmetriin B

a

. The2

statesipB

z (X)in

signal,whih explainssuh behavior. Alsonotie that

the trapping energies of the exited states are about

1 order of magnitude larger than those of the ground

state(Fig. 2).

Figure3. Trappingenergyoftheexitonexitedstatesasa

funtionoftheappliedmagnetieldBaforrelative

quan-tumstates(a)2p ,(b)2s,and()2p +

,withspinnumbers

mz =0(solid),mz=+1(dashed)andmz= 1(dotted).

IV Final remarks

The exiton trapping energy in GaAs/Al

0:3 Ga

0:7 As

quantum wells in a periodially modulated magneti

eld whih we have obtained are not within the

a-tualenergy detetionlimitof photoluminesene(PL)

experiments. However, our work undoubtedly shows

that the trapping in periodi magneti strutures

ex-ists,andgivesfurtherinformationonitsharateristis

that ouldguidefutureexperiments. Wewould liketo

suggestthattoinreaseE

T

oneanonnetheexiton

in wide gap semiondutors strutures. In these

sys-tems,theexitonenergyanbehigherthan100times

that oftheorrespondingGaAs situation. Notiethat

an inreaseof 10times should maketheexiton

(4)

Aknowledgments

This work was partially supported by CNPq,

CAPES and FINEP. F. M. Peeters was supported by

FWO-VI,IMEC, andIUAP-IV.

Referenes

[1℄ F. M. Peeters and J. De Boek, Handbook of

nanos-truturedmaterials andnanotehnology,editedbyH.S.

Nalwa(AademiPress,NewYork,1999),Vol.3,p.345.

[2℄ P.D.Ye,D.Weiss,R.R.Gerhardts,M.Seeger,K.von

Klitzing,K.Eberl,andH.Nikel,Phys.Rev.Lett.74,

3013(1995).

[3℄ V. Negoita, D. W. Snoke, and K. Eberl, Appl. Phys.

Lett.75,2059(1999).

[4℄ S. Zimmermann, G. Shedelbek, A. O. Govorov, A.

Wixforth,J.P.Kotthaus,M. Bihler,W.Wegsheider,

andG.Abstreiter,Appl.Phys.Lett.73,154(1998).

[5℄ J.A.K.Freire,A.Matulis,F.M.Peeters,V.N.Freire,

andG.A.Farias,Phys.Rev.B62,7316(2000).

[6℄ J.A.K.Freire,F.M.Peeters, V.N. Freire,and G.A.

Imagem

Figure 1. (a) Experimental setup showing the stripe param-
Figure 3. Trapping energy of the exiton exited states as a

Referências

Documentos relacionados

The harateristis of multi-layered InAs/GaAs self assembled quantum dots (SAQDs) annealed af-.. ter the growth were here studied using a ombination of apaitane-voltage

vestigated in order to shift the optial emission of the strutures toward longer

ment ongurations: paraboli leads (dotted line), 1D-leads. (dashed line) and the hybrid ase

quantum waveguides of dierent shapes when a defet is loated either in the wire region or in the..

proesses leading to the phonon emission. We found that the peak value of the. inelasti transmission probability at the

taking into aount the eetive mass dependene of the Mn onentration and the strain eetsx. In this work we analyze the giant Zeeman splitting due to applied magneti elds and

dene of both 2DEG density and ground state energy. has to

of the potential energy are omparable with the thermal energy of the photoreated