• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número2

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número2"

Copied!
6
0
0

Texto

(1)

Charge Carrier Mobility and Eletroluminesene in

a Green-Emitting Alternating Blok Copolymer

with a Methoxy Bi-Substituted Chromophore

Dongge Ma,I. A. Hummelgen

Departamento deFsia,

Universidade FederaldoParana,

CaixaPostal19081,81531-990 CuritibaPR,Brazil

Xiabin Jing, Daike Wang y

,Zhiyong Hong z

, LixiangWang, Xiaojiang Zhao,and FosongWang

ChanghunInstitute ofAppliedChemistry,

ChineseAademyofSienes,Changhun 130022, P.RChina

ReeivedFebruary,1998

We determine the mobility of positive and negative harge arriers in a soluble green-emitting

alternating blok opolymer with a methoxy bi-substituted onjugated segment. The negative

harge arrier mobility of 610 11

m 2

/V.s is diretly determined using spae-harge-limited

urrentanalytialexpressions. Positive hargearrier transportisalsospae-harge-limited,with

amobilityof110 8

m 2

/V.s. Theeletrontrapdistributionisexponential,withaharateristi

energy of 0.12 eV. A hole trap with energy0.4 eV was observed. This opolymer is used as

emissivematerialinorganilight-emittingdiodes thatpresent brightnessof900d/m 2

at12.5

V.

I Introdution

Asreentlyanalytiallydemonstrated, theharge

ar-riermobilityisaparameterthatplaysaruialrolein

the performane of pristine-semiondutor-

polymers-based light-emitting devies (LEDs) [1℄. The

distri-bution oftheemissiveregionoftheeletroluminesent

material in athin lm devie is diretlyontrolled by

thehargearriermobilities. Inmostof theasesthe

positivehargearriermobilityisuptoafewordersof

magnitudelargerthanthenegativehargearrier

mo-bility,onningthelightemissionregiontotheathode

neighborhood [2℄. Wider distributions would be

ob-servedwhentheratiobetweenthemobilityofpositive

andnegativehargearrierstendstoone[1℄.

ForLEDappliationsastrengthontrolofthe

emis-sion wavelength may beinteresting. The use of blok

opolymers permits to ontrol the emission in a way

similar to the variation of oligomer moleular mass,

but withoutlossoftheusefulmehanialpropertiesof

polymers. Inthis asethe opolymersare onstituted

by alternated bloks of onjugated (hromophor)and

non-onjugated (spaer)segments. Theemission olor

ontrol is ahievedby the ontrol ofthe length of the

onjugatedsegment[3,4℄.

Someof these eletroluminesent alternatingblok

opolymers present high photoluminesene eÆieny

in thesolidphase,whih wasattributed togreater

ex-itonionnementprovidedbytheblokopolymerby

virtue ofphase segregatedmorphology[5℄. One ould

expet thatthis harateristiassoiatedto awide

re-ombinationzoneinsidethepolymerlayerofaLEDalso

wouldimprovetheeletroluminesenteÆieny dueto

reduedeletrodequenhingofexitons. Toahievethe

ontrolthehargearriermobilitybymoleulardesign

is neessary to understand how the mobility is

inu-enedby severalof theopolymerharateristis suh

ashromophorelength,spaelengthandsubstitution.

The positive harge arrier mobilities observed in

aseriesofeletroluminesentalternatingblok

opoly-mers [6-9℄ is onsistentwith the fat that aredution

in the spaer length implies in a redution in the

Eletronimail:iahsia.ufpr.br

y

Presentaddress:DepartmentofPhysis,TheOhioStateUniversity,Columbus,Ohio43210-1106,USA.

(2)

erage tunneling distane, making harge transport by

hopping more faile. When the spaer is maintained

onstant, higher mobilities observed in polymers with

longer onjugated segments have been tentatively

ex-plained as being due to a higher onjugated material

to spaer material volume ratio, whih then redues

theaveragetunnelingdistane[6℄. Thenegativeharge

arriermobility hasagainanon-trivialdependene on

the spaerlength. It hasbeenobservedthat forshort

aliphatisegments(spaers)the energetidisorder

ex-pressedthroughtheharateristienergyoftheeletron

trapenergydistributioninthepolymersistemperature

dependent [9℄. Depending on temperature and spaer

length, the moleular fores responsible for the

ener-geti disorder an not morebe aommodatedby the

spaer, leading to a deeper trap distribution into the

gap [9℄.

Inthisontributionweinvestigatetheharge

trans-port harateristis of the eletroluminesent

alter-nating blok opolymer presented in Fig. 1 using

metal/polymer/metal devies. We demonstrate that

similarly toseveralotherorganimaterials[10-15℄and

speially, other eletroluminesent alternating blok

opolymers[6-9℄,eletronandholetransportis

spae-harge-limitedforthepolymerlayerthiknessused. We

determinethemobilitiesofpositiveandnegativeharge

arriers and investigate the appliation of this blok

opolymer as emissive layer in LEDs. The

theoret-ial bakground as well as the proedure adopted in

thisworkforthemobilityalulationissimilartothat

usedinearlierreports[6-9℄,permittingomparisonwith

othereletroluminesentalternatingblokopolymers.

Figure 1. Struture of the eletroluminesent alternating

blokopolymerinvestigatedinthiswork.

II Spae-harge-limited

trans-port

Fortheaseofexisteneofasingledisretesetof

shal-lowtrapsinsolids,atlowvoltages,eletrialondution

isohmiandtheurrentdensityisdesribedby[17℄,

j =q

eff n 0 V d ; (1)

where q is the eletroni harge,

eff

is the eetive

harge arrier mobility, d is the lm thikness, V is

the voltage, n

0

isthefreearrierdensity. As the

volt-Beauseoftheexisteneoftraps,theurrentdensityis

expressedas[17℄,

J = 9 8 V 2 d 3 ; (2) where = n

n+n

1

or = p

p+p

1

(3)

foreletronsandholes,respetively(nisthedensityof

freeeletrons,n

t

isthedensityoftrappedeletrons,pis

thedensityoffreeholesandp

t

isthedensityoftrapped

holes). Inthisase,

eff

(isthefreeharge

ar-riermobility). Taking the temperature dependene of

n, p, n

t , p

t

and onsequently of into aount,

eff

anbewritten intheform[9℄

eff = N N t exp E t E T ; (4)

yieldingastrongtemperaturedependene for

eff and leadingto j= 9 8 N N t exp E t E T V 2 d 3 : (5)

IntheexpressionsaboveN

isthedensityofstatesin

thevaleneband,N

t

isthedensityof traps,E

f isthe

relevantFermilevel,E

ismobilityedgeenergyfor

pos-itivehargesand E

t

is theenergylevelofthetraps;

istheBoltzmann onstant.

Todistinguish between(whih equals

eff when

1)and

eff

amoredetailedinvestigationinluding

temperature dependene of the urrent [see Eqs. (4)

and(5)℄mustbeperformed[6,9℄.

Inamorphousmaterialsasingledisreteenergylevel

mayno longerbeareasonableapproximation. In this

ase,theloalizedstates(traps)densityisexpeted to

beintheformofanexponentialdistributionatenergies

Ewithin theforbiddenenergygap,suhthat

h(E)= N t E exp E E ; (6) where E

is the harateristi energy of the

distribu-tion. Thej(V;d)dependeneinthisaseisoftheform

[17℄ j/ V m+1 d 2m+1 (7)

wheremT

=T;E

kT

(T istheabsolute

tempera-tureandT

istheharateristitemperature). Thus,if

j(V) is measuredfor dierent temperatures them(T)

urve an be onstruted and the value of E

anbe

determined(assuming atemperatureindependent E

) using: E =kT =k m T 1 (8)

(3)

someaseselddependentmobilitieswerealsoreported

forseveral organiompounds(see, forexample,Refs.

[10-12,18℄). As reently demonstrated[19℄, the

exper-imental j(V) urve annot be desribed for theentire

rangeofj(V)data takingthespae-hargeeets due

tolowhargearriermobilityintoaount,neitherfor

thePoole-Frenkelmodel[20℄,norforthehargedipole

interation model [21℄. The valuesobtainedusing the

high eld approximation expression due not oinide

withthatdeterminedwithhelpofEq.(2)whenthehigh

eldmobilityisextrapolatedtoE=0[19℄. Thevalues

determinedin thisworkusing theproeduredesribed

inthissetion,orrespondtotheeldindependent

mo-bilityase,whih isobservedatlowelds [19℄.

III Experimental

Themetal/polymer/metaldevies were preparedon a

glasssubstrate. Thebottommetaleletrodewasev

ap-oratedontotheglassandthepolymerwasspinoated

in CHCl

3

solution(5mg/ml)ontothis eletrode. The

topmetaleletrodewasthenevaporatedontothe

poly-merlayer. ThemetalsusedwereAlandAu,withwork

funtions () of 4.3 eV and 5.1 eV, respetively. The

polymer lm thikness was measured using a surfae

proler. Details onerning sample geometry were as

reported earlier [16℄. The urrent-voltage I(V)

mea-surements were made by inreasing the voltage from

zero to a maximum value at a rate of 0.1 V.s 1

and

thendereasingtozeroatthesamerate. Measurements

werearriedoutatroomtemperature,exeptwhenthe

temperature dependene wasdetermined. The

diele-trionstantofthepolymerwasassumedto be3.

LEDs were onstruted in an ITO/opolymer(d =

100 nm)/PMMA:PBD/Alq

3

/Al [ITO: indium-tin

ox-ide; PMMA: poly(methyl metharylate and PBD:

2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole;

Alq

3

: tris(8-quinolinolato)aluminum(d=8nm)℄LED

multilayer struture (see Ref. [22℄ for details). The

photoluminesene and theeletroluminesentspetra

were measured with a SPEX FL-2T2 spetrometer.

TheluminanewasmeasuredwithaalibratedST-900

luminanemeter.

IV Results

In Fig. 2 we present the I(V) (I: urrent; V:

ap-plied voltage) harateristis and I(d) (d:

opoly-mer layerthikness) dependene at onstant V foran

Au/opolymer/Aldevie, for Au positively biased. In

theI(V)urve,threeintervalsanbedistinguished: (a)

and() orrespondingtoj /V 2

; and(b)whih

orre-spondstoatrapllingregion[6,9℄wherethevalueof,

and onsequently,

eff

hangesabruptly. This I(V;d)

Figure2. I(V) harateristis ofanAu/opolymer/Al

de-vie(d=40nm)forAupositivelybiased. Inset: I(d;V =

1V)dependeneforsampleswithdierentthikness.

ApplyingEq. (2) to the data of segments(a) and

() of Fig. 2 (15 samples) leads to

eff

equal to

(1:30:3)10 10

m 2

/V.sand to (1:40:3)10 8

m 2

/V.s, respetively. The hange in the

eff value

onrms that segment (b) orresponds to trap lling.

Fromtheinsetof Fig. 2itis possibleto observethat,

takingtheI(V)datafromsampleswithdierent

thik-ness, for V = 1V, logI

logd

3; just as also expeted

fromEq. (2).

In Fig. 3 we present the I(V) harateristis of

anAu/opolymer/Aldeviefordierenttemperatures.

Themeasuredrangeorrespondstosegment(a)inFig.

2. Intheinset,wepresentthetemperaturedependene

of

eff

. Using Eq. (4), 0.4 eV was determined. The

I(V)urveisalmosttemperatureindependentfor

volt-ageslargerthanthetrapllingvoltage.

Figure3. I(V) harateristis ofanAu/opolymer/Al

de-vie(d=30nm)atdierenttemperatures(diamonds: 229

K;triangles: 250K;irles: 275K;squares:293K) forAu

positivelybiased. Inset: Temperaturedependeneofeff.

In Fig. 4 we present the I(V) harateristis of

an Al/opolymer/Aldevie. This I(V) urveis

har-aterized by three distint segments: (a) ohmi, i.e.,

(4)

j / V m+1

=d 2m+1

and; () j / V 2

. In the inset of

Fig. 4, we present the V(d 2

), where V(I =110 8

A) was taken for dierent samples (with dierent d).

Form>2;V isexpetedtobeapproximately

propor-tionaltod 2

[seeEq. (7)℄ifthetransportisspae-harge

limitedduetoanexponentialdistributionoftraps.

Ap-plying Eq. (2) to the segment () of the I(V) urves

of 14samples,weobtained

eff

=(5:92:3)10 11

m 2

/V.s.

Figure 4. I(V) harateristis of anAl/opolymer/Al

de-vie(d=44nm).Inset: V(d 2

;I=110 8

A)dependene

for sampleswithdierentthikness.

In Fig. 5, I(V) urves taken at dierent

temper-atures using Al/opolymer/Al devies are presented

(the voltagerangewaslimitedto avoidpossibledevie

degradation). The values m(T) were determined and

E

C

' 0:12 eV alulated using Eq. (8). The m(T)

dataarepresentedin theinsetofFig. 5.

Figure 5. I(V) harateristis of anAl/opolymer/Al

de-vie(d=40nm)atdierenttemperatures(diamonds: 154

K;irles: 194K;triangles:292K).Inset: m asafuntion

ofT 1

.

In Fig. 6 the photoluminesene (PL)

spetrum of the opolymer is ompared with

ITO/opolymer/PMMA:PBD/Alq3/Al LED. In Fig.

7 we ompare the urrent and the brightness

evolution with inreased applied voltage for the

ITO/opolymer/PMMA:PBD/Alq3/AlLED.

Figure 6. Photoluminesene spetrum of the opolymer

is ompared with the eletroluminesene spetrum of an

ITO/opolymer/PMMA:PBD/Alq3/AlLED.

Figure 7. Comparison of the urrent and the

bright-ness evolution with inreased applied voltage for the

ITO/opolymer/PMMA:PBD/Alq3/AlLED.

V Disussion

The I(V) urve presented in Fig. 2 is obtained

us-inganAu/opolymer/Aldevie. Consideringthework

funtions of the eletrodes and the fat that the

val-uesofionizationpotentialofthehromophoresare

ex-petedtobeneartothoseobservedin PPVoligomers,

thehargetransport is predominantly due to positive

hargearriers. The

eff

valuesdeterminedusingthese

(5)

dependentbeforetraplling[segment(a)inFig. 2℄and

almosttemperatureindependentforlargervoltages,the

valuedeterminedfromsegment()orrespondstothe

freepositivehargearrier(1).

The urrent in Fig. 5 also arrives a region

[seg-ment()ofFig. 4℄whereitbeomestemperature

inde-pendent. Consequently,thehargearriermobility

ex-tratedfrom thissegmentistemperatureindependent,

indiatingthatalltraplevelsarefull(1).

Consider-ingthatthismobilityvalueislowerthanthoseobserved

inAu/opolymer/Aldevies,itisattributedtoanother

typeofhargearrier,i.e., tonegativehargearriers.

In Fig. 8 we ompare the reported harge arrier

mobilitiesfordierenteletroluminesentblok

opoly-mers [6,8,9℄. Inthe series of polymers theonjugated

segments are of the same length, with spaers of

de-reasinglength. AsshowninFig. 8,both,thenegative

harge arriermobilityand thepositivehargearrier

mobilityinreasewithdereasingspaerlength.

Figure8. Comparisonofthepositive(

h

)andnegative(e)hargearriermobilitiesfordierentblokopolymersreently

investigated.

Theharateristienergyoftheeletrontrap

distri-bution of opolymerI (0.12eV)is signiantlyhigher

than observed in opolymers II and III [0.06 eV and

0.05eV(atroomtemperature),respetively℄. Polymer

I hasthelongestspaer,sothatitshould beexpeted

thatitwouldbeabletoaommodatetensionsand

re-duetheenergetidisorder,ontrarilythan

experimen-tally observed. This disagreement may suggest that

the methoxy groupspresent in theentral ringof the

hromophore in thisopolymerare responsibleforthe

inreaseintheenergetidisorder.

It has been observed that

poly(2-methoxy-p-phenylene vinylene), MeO-PPV, presents a lower

de-gree of strutural order than PPV and

poly(2,5-dimethoxy-p- phenylene vinylene), DMeO-PPV [26℄.

This fat was attributed to the opolymer struture

stitution. Thisobservationmaybepartiallyappliedto

opolymerI. Evenfor aplanar hromophore,two

dif-ferent ongurations of the hromophore are possible

due to rotation of the entral ring, leading to

dier-entpossibleinterationsbetweenneighboringmoleular

segments,inreasingenergetidisorder.

CopolymerI isgreen-emitting (seeFig. 6)

indiat-ing that the methoxy bi- substitution in the entral

ring of the hromophore produes a red-shift in the

eletroluminesent spetrum. Copolymers II and III

areblue-emittingandthenon-substitutedanalogueof

opolymer I has an emission maximum near 470 nm

[23℄. Ithasbeenobservedthatboth,theabsorptionand

the emission spetraof eletroluminesent alternating

blokopolymersaredeterminedbytheirhromophori

(6)

with shorter spaer, but with the same hromophori

unit[25℄,havesimilaremissionspetra,whihonrms

that the red- shift is due to the introdued methoxy

groups.

LEDsonstrutedwithananalogueopolymerwith

shorter spaer have presented higher EL intensity as

well aslowerthreshold voltage for lightemission [25℄.

This maybeattributed in partto thehigher mobility

expetedfortheopolymerwithshorterspaer,

indiat-ingthatfromthehargetransportpointofview

opoly-mers with shorterspaers (but longenoughto permit

aommodationofforesthatwouldpromoteenergeti

disorder) aremostappropriateforLEDappliations.

VI Conlusion

Weinvestigatethetransportharateristisofan

ele-troluminesent alternating blok opolymer with a

methoxy bi-substituted hromophore and determine

the mobility of positive and negative harge arriers

in thispolymer.

We observed that the methoxy substitution

pro-dues, when this polymeris ompared withanalogues

with the same onjugated segment length, a red-shift

in theemission spetra. Thehargearriermobilities

in this polymer are lower thanthat observedin other

blokopolymerswithonjugatedsegmentsofthesame

length,but withshorterspaers.

LEDs onstruted using this blok opolymer as

emissivematerialpresentabrightnessof 900d/m 2

whenoperatingat 12.5V.

Aknowledgements

The authors would like to thank CNPq and

PADCT/CNPq(Projet62.0081/97-0CEMAT)for

-nanial support. X. J., L. W. and F. W. thank the

nanialsupport fromNNSFandCASF.

Referenes

[1℄ M. Koehler, M. G. E da Luz and I. A. Hummelgen,

submittedtoPhys.Rev.B.

[2℄ J.Gruner,M.RemmersandD.Neher,Adv.Mater.9,

964(1997).

[3℄ Z. Yang,I.SokolikandF.E.Karasz, Maromoleules

26,1188(1996).

[4℄ R.M.Gurge,M.Hikl,G.Krause,P.M.Lathi,B.Hu,

Z.YangandF.E.Karasz,Polym.Adv.Tehnol.9,504

(1998).

[5℄ B.HuandF.E.Karasz,Synth.Met.92,157(1998).

[6℄ Ma Dongge, I. A. Hummelgen, Bin Hu, and F. E.

Karasz,J.Appl.Phys.86,3181 (1999).

[7℄ DonggeMa,I.A. Hummelgen,Bin Hu,F.E.Karasz,

J.Phys.D:Appl.Phys.32,2568 (1999).

[8℄ DonggeMa,I.A. Hummelgen,Bin Hu,F.E.Karasz,

Xiabing Jing, Lixiang Wang and Fosong Wang, Sol.

Stat.Comm.112,251(1999).

[9℄ DonggeMa,I.A. Hummelgen,Bin Hu,F.E.Karasz,

Xiabing Jing, Zhiyong Hong, Lixiang Wang,

Xiao-jiangZhao,andFosongWang,J.Appl.Phys.,87,312

(2000).

[10℄ D.M.Pai,J.F.JanusandM.Stolka,J.Phys.Chem.

88,4714(1984).

[11℄ B.M. Abkowitz, H.Bassler andM.Stolka,Phil.Mag

B63,201(1991).

[12℄ L.B.Shein,Phil.Mag.B65,795(1992).

[13℄ P. E. Burrows, Z. Shen, V. Bulovi, D. M. MCarty,

R.S.Forrest, J.A. Cronin, and M. E.Thompson, J.

App.Phys.79,7991(1996).

[14℄ A.J. Campbell, D. D. C.Bradley,and D. G.Lidzey,

J.App.Phys.82,6326 (1997).

[15℄ P.W.M. Blom,M. J.M.deJong,andJ.J.M.

Vleg-gaar,Appl.Phys.Lett.68,3308 (1996).

[16℄ L.S.Roman,I.A.Hummelgen,F.C.Nart,L.O.Peres

eE.L.deSa,J.Chem.Phys.105,10614(1996).

[17℄ EletrialTransport in Solids, K. C. Cao and W.

Hwang, Pergamon,1981.

[18℄ L.Bozano, S.A.Carter, J.C.Sott, G.G.Malliaras

andP.J.Brok,Appl.Phys.Lett.74,1132(1999).

[19℄ J.A.Freire,DonggeMaandI.A.Hummelgen,Organi

Eletronis,submitted.

[20℄ J.Frenkel,Phys.Rev.54,647(1938).

[21℄ D. H. Dunlap, P.E. Parris and V. E. Kenkre, Phys.

Rev.Lett.77,542(1996).

[22℄ Ma Dongge, Zhao Xiaojiang, Hong Zhiyong, Wang

Daike,JingXiabinandWangFosong,SieneinChina

B41,272(1998).

[23℄ Z.Yang, B.Huand F.E. Karasz, J. Maromol.Si.,

PureAppl.Chem.,A35,233(1998).

[24℄ Bin Hu, F. E. Karasz, D. C. Morton, I. Sokolik and

ZhouYang,J.Lumines.60&61,919(1994).

[25℄ Q.Zheng,R. Sun,T. Kobayashi,Z. Hong,D. Wang,

X.Jing,F.Wang,N.Minami,K.YaseandT.Masuda,

Synth.Met.97,13(1998).

[26℄ W.B.Liang,M.A. MasseandF.E.Karasz, Polymer

Imagem

Figure 2. I (V ) harateristis of an Au/opolymer/Al de-
Figure 4. I (V ) harateristis of an Al/opolymer/Al de-
Figure 8. Comparison of the positive (

Referências

Documentos relacionados

for all hadroni systems, to total ross-setions whih.. inrease with the energy [3℄ somewhat like

Using a oherent amplitude analysis to t the Dalitz plot of this deay, we.. nd strong evidene that a salar resonane of mass

defets formed in symmetry breaking phase transitions. To explore the similarities and dierenes.. here has been a very fruitful experiene for both sides. On one hand, topologial

theory of the Casimir fore taking into aount orre-. tions up to the 4th order both in surfae

detetor data from the front-end eletronis to the

A Bohm-de Broglie piture of a quantum geometrodynamis is onstruted, whih.. allows the investigation of these

neutrino anomalies and their possible interpretations in terms of osillation indued by neutrinoN. mass and

We present some aspets of the study of quantum integrable systems and its relation to