• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número3"

Copied!
4
0
0

Texto

(1)

Dissoiation of Fast Ions Analyzed by Time-of-Flight

C.R. Poniano, R.C.C. Ladeia,V.M. Collado,and E.F.da Silveira

Departamento deFsia,PontifiaUniversidadeCatoliadoRiodeJaneiro,

RuaMarqu^esdeS~aoViente, 225,CP38071, Rio deJaneiro22452-970,Brazil

Reeivedon9May,2001

The fragmentation ofmetastable ions,havingkeVofkineti energy, is analyzedbytime-of-ight

tehnique. Assumingisotropidistributionoffragmentsinafreeeldregion,itisdeduedan

analyt-ialexpressiontodesribetheorrespondingpeakshapesinlinearTOFspetrometers. Metastable

ionmean-lifeandthekinetienergyrelease(Q-value)arethequantitiesextratedfromdatatting.

Asanillustration,thedissoiationofC8H10N +

metastableions,desorbedby 252

Cfssionfragment

impatonorganitarget,isstudied.

I Introdution

Moleular dissoiation has been investigated over

deadesbyphysiistsandbyhemistsforreasons

rang-ingfromfundamentalstudiestopratialappliations.

Suh studies are important gateways for the

under-standing of moleular struture from an interatomi

foredesription.

There are several possible agentsto indue

mole-ulardissoiation,suh aslaser,synhrotronlight,

ele-tronandionbeams,aswellasmanyexperimental

teh-niquestoanalyzetheproduedfragments. These

teh-niquesaredesignedaordingtothespei

harater-istis of the projetile-target system: gaseous or solid

target,absoluterosssetionofthephenomenon,

sele-tivityoftheexitation,moleularstrutureomplexity,

et. Literatureonthissubjetisimmense,sothatthe

followingdisussionwillberestritedtometastableion

speiesdissoiation;somebasireferenesare1-10.

Inthisartile,itisonsideredthesituationinwhih

a fast single-harged metastable preursor dissoiates

into two stable fragments: one neutral and another

single-harged ion. Inontrast to ions produed

usu-allyinlaboratorywithafeweVofkinetienergy,fast

ionsarethosemovingin thekeV-energyrange. Under

this aspet, metastableions maybe dened as

unsta-ble speies that live longenough to beome fast ions,

surviving external high eletri eld aeleration and

having their deay diretlyobserved. Byusing a

typ-ialkV/mm aelerationeletrield, this means- in

pratie- that metastableions have mean-lives larger

than100ns. Amethod,basedontime-of-ight(TOF)

tehniqueisdevelopedtoestimate,theionmean-life,

andtodetermineQ,thekinetienergyinreasedueto

fragmentation. Theanalysisisthenappliedforthe

dis-soiationofdesorbedionsfromsolidtargetsbombarded

byMeVprojetiles.

II PDMS and the experimental

set-up

Themassdeterminationofthedesorbedionswasdone

byahome-madelinearPDMSspetrometer,Fig. 1. A

verybriefdesriptionofPlasmaDesorptionMass

Spe-trometry[11℄follows. A 252

Cfssionfragmentsoureof

about20Ciisusedtoinduedmetastableion

desorp-tionfromsolidsamples: whileonessionfragment

im-patsthetarget,detetionoftheomplementaryssion

fragmentgeneratesastart signalforthe TOF

aquisi-tion system. The desorbed ionsare aeleratedin an

uniform eletrield region (length d

1

) and launhed

towardsamuhlongereletrieldfreeregion(length

L). Ifionfragmentationdoesnotourinnoneofboth

regions, theionsaredetetedin thestopdetetorand

theirtimesofight,T

m

,aremeasured.

DeningU astheextrationpotentialandqas the

ion harge,and onsidering thatthe initialkineti

en-ergy (eV) of the desorbed ions are negligible with

re-spet to their nal energy (E

f

= qU 10 keV), the

massofeahionspeiesisgivenby

m= 2E

f

v 2

=2qU

T

m

2d

1 +L

2

(1)

Anionlterlosetothestopdetetormaybe

ati-vatedonlywhendetetionofneutralfragmentsare

de-sired. Inthis ase,thegrid3potential(U

G3

) mustbe

greaterthanthesamplepotential(U)andEq. 1holds

only for neutrals. Detailed desription of this PDMS

spetrometeranbefoundin referene[12℄.

(2)

Figure 1. Diagramof a 252

Cf- PDMStime-of-ight mass

spetrometer. U isthetargetpotentialandUG3 istheion

lterrepellingpotential. d1 =0.70mandL=134mare

the aelerationandfreeeldregionlengths. Thetime

in-tervalbetweenthestartandthestopsignalsismeasuredby

theTDCunit. Theeletronideviesare: CFD-Constant

FrationDisriminator;TDC-TimeDigitalConverter;PC

-PersonalComputer.

III The fragmentation analysis

Aordingtothepreviousdenition,themetastableion

speies meanlife, , is omparableorlonger than the

traversingtimeovertheaelerationregion

t 1 =d 1 r 2m qU (2)

Moreover,if itis shorterthanitstotaltime ofight

T

m

, a substantial fration of the desorbed metastable

ions disintegratesin the eld free region. The binary

proessm + !m 0 +m + 1

isthemostlikelytoourand

the kinetienergyexess, Q,appearsafter

fragmenta-tion: Q= 1 2 m 0 v 2 0 + 1 2 m 1 v 2 1 1 2 mv 2 (3)

where, in thelaboratoryframe, v

0 and v

1

are the

ve-loities ofthe neutraland harged fragmentsand v is

the preursor metastable ion veloity in the free eld

region.

Inthepreursorionframe,thediretionofthe

frag-mentationaxisisdistributedisotropiallyandthe

frag-ment veloities v arepromptly determined by linear

momentum onservation: v 0 = r 2m 1 mm 0 Q (4a) v 1 = r 2m 0 mm 1 Q (4b)

If fragmentation ours at the instant t

f

after

des-orption, the distane preursor ion to the detetor is

L v(t

f t

1

):Therefore,thearrivaltimesoftheneutral

andhargedfragmentsatthedetetorarerespetively

T 0 =t f + L v(t f t 1 )

v+v

0 os (5a) T 1 =t f + L v(t f t 1 )

v+v

1

os(+)

(5b)

where is theangle betweentheneutralfragment

ve-loity,inthepreursorionframe,andthespetrometer

axis.

Integrationovergeneratesthetime-of-ight

distri-butionn(T)=dN=dT forthefragments,whih shape

dependsdiretlyonQ: largerisQ,broaderistheTOF

peak. This integral should be performed very

are-fully for two reasons: i) the instant t

f

is not xed,

butbelongstoanexponentialdeay-typeprobabilisti

distribution;ii)in thepreursorframe, thedetetor is

movingtowardsthefragments. Thisfat brings

math-ematial diÆulties, whih are partially solved if one

onsidersthatvv:

For an ensemble of fragmentation eventsourring

betweent f andt f +dt f

,theneutralandionfragments

willbedispersedisotropiallyintwoexpanding

spheri-alshellsenteredin thepreursorenterofmass. For

eahshell,thenumberoffragmentsemittedinthesolid

angledis

d dN dt f = d 4 n f (t f ) (6) where n f (t f )= N 0 e tf= (7)

is the fragmentation rate at instant t

f

. Our goal is

toalulatethenumberofpartiles,foreah fragment

speies, dN, arrivingbetweenT andT +dT:The

dis-tributiondN=dT isthequantitytobeomparedtothe

experimentalpeakshape,whihisdiretlyprovidedby

the aquisition system. During the time interval dT,

thefragmentsof eah shell, produed betweent

f and t f +dt f

,reahthedetetorinsidearingorresponding

tod=2sendandin arate

d 2 N dTdt f = 1 4 n f (t f )2send (8)

Thisexpression needsto beintegrated overt

f

, within

limitsompatiblewithfragmentdetetionatinstantT,

and at max

f

must be determined for eah arrival time.

Forexample,itisnotpossiblethatthefragmentarrival

timesbeverydierentfromT

m

iffragmentationours

lose to the detetor. Imposing = 0 in Eq. 5, one

(3)

Inthis expression, oneshoulduse v=v

0

orv =

v

1

respetivelyfortheneutralorionspeies. The

in-tegration of Eq. 8 beomes, after somemathematial

manipulationusing Eqs. 5and7:

dN

dT =

v

2v N

0

Z

t max

f

t

1 e

t

f =

T

m t

f

(T t

f )

2 dt

f

(10)

foreah fragmentspeies.

If t max

f

, the expression 10 an be integrated

analytially,givenapeakshapewhihhasa

logarithm-typedivergene atT =T

m

. If t

1

, thepeakshape

is loseto a 1=(T t

1 )

2

distribution, keepingthe

sin-gularityatT =T

m :

It anbeseenfromthese expressionsthatthe

neu-tral and ion fragmentpeaks appear at the same

posi-tionasthenon-fragmentedpreursorpeak,sothat

ex-perimentallyoneobservestheoverlappingofthethree

peaks. Tosimplify theexperimental analysis,onemay

introdueanion lterjust before thedetetor and let

only neutralfragmentsto be deteted. It is also

pos-sibleto deetedtheyingionsintoaseonddetetor

andseparatethepreursorionpeak fromtheion

frag-mentone. Eqs. 4,9and10alsoshowthatthefragment

peakshapesdependontheionfragmentandpreursor

massratio. Therefore,ifm

1

is notknown,it mayalso

usedasfreeparameterinthepeakshapeanalysis.

IV Results and disussion

In order to understand theeets of , Q and m

1 =m

ontheEq. 10 theoretialpreditions,simulations

or-respondingtopossiblerealongurationsarepresented

in Fig. 2 form = 120u;qU =15 keV, d

1

= 0:70m

andL=134m. Theobtainedneutralfragmentpeak

shape are respetively shown in Figs. 2a, 2b and 2.

Generalommentsare:

i)TheurvesarefairlysymmetriaroundT =T

m .

FragmentationeventswithT <T

m

orrespondto

neu-tral emission towards the detetor (neutral fragments

are faster than their preursor), while T > T

m ones

refertoionfragmentemissioninthisdiretion.

ii)Therearetwobasiontributions: one,produed

bydissoiation farfrom thedetetor andgenerating a

verybroaddistribution; the other oneis produed by

dissoiationslosetothedetetorandgeneratinga

pro-nounedpeak.

iii)Longer is, lessdissoiationsourin theeld

free region and less lear is the border between the

broadandthepeakontributions(Fig. 2a).

iv)LargeristheQ-valueortheionfragmentmass,

broader the dN=dT distribution is, and lower is the

bakgroundlevel(Figs. 2b and2). Infat,note that

inEq. 4a,v inreaseswiththeprodutm Q.

Figure 2. Simulations based on Eq. 10, showing

respe-tively ina,band,the,Qandm

1

parametereets on

theTOFpeakshapeof neutralfragments. Theonsidered

preursoriondissoiationis120 +

!m +

1 +m

0

:The

extra-tionpotentialis15kVandthespetrometerlengthsared1

=0.70mandL=134m. AsingularityoursatTm =

8781ns,thenon-fragmentedpreursorTOF.

Preditions are now ompared with experimental

data obtainedfrom thessionfragmentbombardment

onphenylalaninetarget(moleularmass M =165u).

An ion lter was employed, so that only the neutral

(4)

al-lowed to be deteted in the linear spetrometer. The

obtainedneutralfragmentTOF spetrumis presented

in Fig. 3, in whih themost prominentpeakrefersto

mass 120 u preursor (C

8 H

10 N

+

). It has been

sug-gest [12℄, from TOF-oinidene measurements, that

thetropyliumion(m

1

=91u,C

7 H

+

7

)formationisthe

pathway for the 120 +

fragmentation. Assuming suh

fragmentation,Q=1.0eVand 50swerethebest

parameter values in the data tting with Eq. 10, as

illustrated in Fig. 4. It should be mentionedthat no

modiationin thet max

f

expression(Eq. 9) was

intro-dued dueto theativatedion lter,whihsuppresses

fragmentationintheregionbetweenitandthedetetor.

Figure3. NeutralfragmentTOFspetrumofthedesorbed

positiveionsfromaphenylalaninesample. U =15kVand

UG3=17.6 kV.The120uisthemassofthesingle-harge

preursorion whihdissoiationisbeinginvestigated. The

spetrometermass resolutionan beappreiated fromthe

m=188umasspeakwidth.

V Conlusions

The dynamis of binary fragmentation of a free

metastableioninTOFlinearspetrometerisdesribed

by analytial expressions and peak shapes of neutral

and ion fragment peaks are predited. The method

wasappliedto theneutralfragmentpeakshapetting

of the C

8 H

10 N

+

metastable ion deay, assuming the

120 +

! 91 +

+29 Æ

pathway. A good agreement with

our experimental data was found for Q= 1.5 eVand

50sparameters,givingondenethat themodel

isabletodesribethephenomenon.

Aknowledgements

CNPq, Faperj and PADCT III are gratefully

a-knowledged by their partial support to this work.

Figure4. Comparisonofthe120peakshape,seletedfrom

theneutralfragmentTOFspetrumofFig. 3,withEq. 10

theoretialpreditions. Resultsfromthreesetofparameter

valuesareshown.

Referenes

[1℄ R.G. Cooks, J.H. Beynon, R. M. Caprioli and G. R.

Lester, Metastable Ions, Elsevier Sienti Publishing

Company,1973.

[2℄ W.F.HaddonandF.W.MLaerty,AnalytialChem.

41,31(1969).

[3℄ F.W.MLaerty,Interpretation of Mass Spetra,

Uni-versitySieneBooks,3rdEdition, 1980.

[4℄ B.T. Chait, Int. J. Mass Spetrom. IonPhys.53, 227

(1983).

[5℄ S.Della-NegraandY.LeBeye,Anal.Chem.57,2035

(1985).

[6℄ A.Shueler,R.Beavis,G.Bolbah,W.Ens,D.E.Main

and K.G. Standing, Springer Ser.Chem. Phys. 44, 57

(1986).

[7℄ X.Tang,R.Beavis, W.Ens,F.Lafortune,B. Shueler

and K.G. Standing, Int. J. Mass Spetrom. Ion

Pro-esses,85,43(1988).

[8℄ H.J.Neusser,Int.J.MassSpetrom.IonProesses,79,

141(1987).

[9℄ P.A. Demirev, Mass Spetrometry Reviews, 14, 279

(1995).

[10℄ R.J. Cotter, Time-of-Flight Mass Spetrometry -

In-strumentation andAppliations in BiologialResearh,

ACSProfessionalRefereneBooks,1997.

[11℄ R.D. Mafarlane and D.F. Torgerson, Int. J. Mass

Spetrom.IonPhys.21,81(1976).

[12℄ C.R.Poniano, Dotoral Dissertation,Pontifia

Imagem

Figure 1. Diagram of a 252
Figure 2. Simulations based on Eq. 10, showing respe-
Figure 3. Neutral fragment TOF spetrum of the desorbed

Referências

Documentos relacionados

Knowledge of partile size distribution is very important for the study of magneti uids, magneti.. powders and other

hemial speies are present on the maghemite surfae by hanging the laser exitation energy.. Maghemites modied by the adsorption of asparti and glutami aids as well as those

Some fundamentals of M ossbauer spetrosopy and of utuating magneti hyperne interations..

Thermal diusivity results obtained with the ollinear mirage tehnique, are reported for dierent.. onentrations surfated ferrouid and for a set of aid ferrouids with variable

We onsider that one of the uids is a ferrouid and that an external magneti eld is applied.. The interfaial instabilities whih arise between the uids are studied for various

Ferrouid drops are freely suspended in air by using magneti elds to.. reate an attrative fore

The phase diagram of a magneti olloid in a Hele-Shaw ell is alulated.. As a funtion

the dispersion equation is then used to analyse the apillary-wave resistane, that is the drag fore.. assoiated to the emission of waves by a moving disturbane at a free