• Nenhum resultado encontrado

Rev. Bras. Hematol. Hemoter. vol.39 número4

N/A
N/A
Protected

Academic year: 2018

Share "Rev. Bras. Hematol. Hemoter. vol.39 número4"

Copied!
4
0
0

Texto

(1)

rev bras hematol hemoter. 2017;39(4):368–371

w w w . r b h h . o r g

Revista

Brasileira

de

Hematologia

e

Hemoterapia

Brazilian

Journal

of

Hematology

and

Hemotherapy

Case

Report

DNA

microarray

expression

profiling

of

a

new

t(8;13)

AML

case

allows

identification

of

possible

leukemogenic

transformation

markers

Aline

Rangel

Pozzo

a

,

Fernanda

Costas

Casal

de

Faria

a

,

Luize

Otero

de

Carvalho

a

,

Marcos

Barcelos

de

Pinho

b

,

Raquel

Ciuvalschi

Maia

a,∗

aInstitutoNacionaldeCâncer(INCA),RiodeJaneiro,RJ,Brazil

bUniversidadeFederaldoRiodeJaneiro(UFRJ),RJ,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received10April2017 Accepted23June2017 Availableonline22July2017

Introduction

Acutemyeloidleukemia(AML)isadiseasecharacterizedby clonalproliferationandaccumulationofmyeloidprogenitor cellsinthebonemarrow(BM),inhibitionofcell differentia-tion,increasedproliferativeindexanddefectiveapoptosis.1 AMLsecondarytomyelodysplasticsyndrome(MDS–sAML)is characterizedbydiversecytogeneticandmolecularchanges including del(5q), as well as changes in the RNA splicing pathway, TET2, EZH2, FLT3, NRAS, NPM1, RUNX1, DNMT3a, IDH1, IDH2, TET2, TP53 genes, etc.2 Established prognostic factors inAMLinclude age, the cytogeneticand molecular profileandhistory ofhematologicdisorders,suchasMDS.1 About40%ofelderlyAMLpatientswerepreviouslydiagnosed with MDS, which is usually refractory to chemotherapy.1 Wepresent a caseof asAML, which showed a singleand

Correspondingauthorat:LaboratóriodeHemato-OncologiaCelulareMolecular,InstitutoNacionaldeCâncer,Prac¸adaCruzVermelha

23,6◦andar,Centro,20230-130RiodeJaneiro,RJ,Brazil. E-mailaddress:rcmaia@inca.gov.br(R.C.Maia).

previouslynotdescribedabnormality,achromosomal translo-cationbetweenchromosomes8and 13t(8;13) identifiedby conventionalcytogenetics,andseveralalteredgenesdetected by DNA microarray assay, suggesting that the t(8;13) rear-rangedregionresultsinalteredgeneexpressionpatterns.

Case

report

Thepatientwasa72-year-oldfemaleadmittedtothe Insti-tuto Nacional de Cancer(INCA), Rio deJaneiro, Brazil.She presentedwithahistoryofincreasingfatigueanddyspnea. Pastmedicalhistoryincludedarterialhypertension,coronary arterydisease,myalgiaandpneumonia.Thelaboratoryresults atdiagnosisrevealed:whitebloodcellcount36.9×109/Lwith

41%monocytoidblasts,hematocrit23%,hemoglobin7.6g/dL, platelets131.0×109/Landlactatedehydrogenase806IU/L.A

http://dx.doi.org/10.1016/j.bjhh.2017.06.003

(2)

rev bras hematol hemoter. 2017;39(4):368–371

369

bone marrow aspirate showed 34% myeloid and monocy-toidblasts(FABM4)withdysplasticfeaturesinerythroidand myeloid cells. Flowcytometry immunophenotyping identi-fiedCD33+,CD14+,CD11b+,CD13+,CD38,HLA-DR,CD15+,

MPO−, CD117+, TDT, cCD79a, CD2, and CD7cells.

Reversetranscription-polymerasechainreaction(RT-PCR)for RUNX1/RUNX1T1, BCR/ABL1 and MYH11/CBFB, showed no fusiontranscripts.G-bandingrevealedanabnormalkaryotype andthegeneexpressionprofilewasinvestigatedforaltered genesintherearrangedt(8;13)region.

This study was approved by the institutional review board of INCA (number 110/06). The study was conducted in accordance with the Helsinki Declaration as revised in 2008.

Methods

Cytogenetic analysis was performed on unstimulated BM cellsfor24haccordingtostandardprotocolswiththe karyo-typebeingdescribedaccording tothe InternationalSystem for Human Cytogenetic Nomenclature (ISCN, 2013).3 The geneexpressionprofilewasinvestigatedusinganAffymetrix GeneChipHumanGene1.0STArray(AffymetrixInc.,Santa Clara, CA, USA) following the manufacturer’s instructions toidentifydifferentiallyexpressedgenesin therearranged t(8;13)region.Arraydatawereextractedandprocessedwith the open softwarepackagesfrom the BioconductorProject

(www.bioconductor.org). In brief, the data was normalized

withRobustMulti-ArrayAverageexpressionmeasure. Subse-quently,anon-specificfilterwasappliedwiththegenefilter package4 in order toremove Affymetrix probes and genes that exhibited low variance across samples; differentially expressedgenes were selectedusing the linearmodels for microarray data package and summarized at log2>2. RNA extractedfromsAMLperipheralbloodwascomparedto nor-mal peripheral blood using a pool of six healthy donors. Patient’srelativegeneexpressionlevelswerecomparedtothe controlsamplelevel and listsof‘up-regulated’ and ‘down-regulated’genesweregeneratedbytheprogram.

Results

G-banding revealed an abnormal karyotype with a translocation involving chromosome 8 and 13, resulting in the previously undescribed karyotype 46,XY,t(8;13)(q22;q11)[4]/46,XX[28] (Figure 1) according to thecatalogsofcancercytogenetics.5Themicroarrayanalysis labeled874asdifferentiallyexpressedinover28,000genes. Thegeneexpressionlevels(foldchange), showninTable1, demonstrated down-regulated genes involved in myeloid development or apoptosis, including CEBPB, RARA, GATA3, TRIB1, TRIB2 and TNFRSF10C (TRAIL-R3). In addition, up-regulated genesrelated toproliferation,differentiation and drugresistance,suchasKIT,IDH1,ERG,BIRC3andABCC4were observed by microarray analysis. The gene RUNX1 (AML1) requiredforthegenerationofdefinitivehematopoieticstem cellsduringembryogenesiswasup-regulated.Thebrainand acuteleukemiacytoplasmic (BAALC)gene,locatedinthe8q22 region,andtheFLT3andRB1genes,locatedinthe13q12and 13q14 regions, respectively, appear to beintimately linked to the t(8;13). These genes were up-regulated suggesting that they could be altered due to the rearrangement of this region. Another gene that may have been inactivated duetothisrearrangementistheTRIB1gene,locatedinthe 8q24.13region,whichisapotentnegativeregulatorofMAPK signaling.

Discussion

sAMLdevelopsinapproximately 40%ofpatientswithMDS andtheclinicaldiscriminationbetweenAMLandMDSisbased oncytomorphologicalanalysis,sincepatientswithMDShave dysplastichematopoiesisandamyeloblastcountoflessthan 20%,whereasthosewithamyeloblastcountof20%ormore have AML.6 sAMLhas clinical and biological heterogeneity linkedtochromosomeaberrationsormolecularchangeswith theassociationbetweenthemsuggestingthatthose mecha-nismsaresignificantlyinvolvedinleukemogenesis.1Thiscase

1

6

13

19 20 21 22 X

14 15 16 17 18

8

7 9 10 11 12

3

2 4 5

(3)

370

rev bras hematol hemoter. 2017;39(4):368–371

Table1–Up-regulatedanddown-regulatedgenesint(8;13)acutemyeloidleukemiasecondarytomyelodysplastic syndrome.

Gene Description aFoldchange Chromosomallocation

TRIB2 Tribbleshomolog2(Drosophila) −4.57 2p24.3

IDH1 Isocitratedehydrogenase1(NADP+),

soluble

4.03 2q33

KIT V-kitHardy-Zuckerman4feline

sarcomaviraloncogenehomolog

44.89 4q11-q12

TNFRSF10C Tumornecrosisfactorreceptor

superfamily,member10c,decoy withoutanintracellulardomain

−9.26 8p21-p22

BAALC Brainandacuteleukemia,cytoplasmic 9.13 8q22

TRIB1 Tribbleshomolog1(Drosophila) −6.72 8q24.13

GATA3 GATAbindingprotein3 −4.54 10p15

BIRC3 BaculoviralIAPrepeat-containing3 4.29 11q22

FLT3 FMS-relatedtyrosinekinase3 12.15 13q12

RB1 Retinoblastoma1 5.55 13q14

ABCC4 ATP-bindingcassette,sub-familyC

(CFTR/MRP),member4

7.00 13q32

RARA Retinoicacidreceptor,alpha −4.57 17q21

CEBPB CCAAT/enhancerbindingprotein

(C/EBP),beta

−4.28 20q13.1

RUNX1 Runt-relatedtranscriptionfactor1 4.26 21q22

ERG V-etserythroblastosisvirusE26

oncogenehomolog(avian)

7.89 21q22.3

a Ratiosbetweenpatientrelativegeneexpressionlevelsandcontrols.

reportshowsevidencethatt(8;13)(q22;q11)couldbeinvolved inthepathogenesisandseverityofAML.Thetranslocation t(8;13)withbreakpointsat(8q22)and(13q11)hasneitherbeen reportednordescribedforpossiblealteredgenes.Thegene expressionprofilewas performedtodeterminethe specific signatureincellsfromthispatientandtotrytoclarifyanew possiblemolecularpathwayinvolvedindiseaseevolution.Of the874genesdifferentiallyexpressed,wefocusedmainlyon genesrelatedtoAMLpathogenesis,prognosisandresponseto standardtherapy,andthegeneslocatedinthealtered chro-mosomeregion.ImportantgenessuchasCEBPB,whichplaysa pivotalroleinproliferationanddifferentiation,including sup-pressionofmyeloidleukemogenesis,7RARA,whichisrequired foroptimalmyelomonocyticdifferentiation7andGATA3 asso-ciatedwitherythropoiesis8weredown-regulatedaswasthe tumorsuppressorgeneTRIB2andTNFRSF10C(TRAIL-R3)which isimportantininitiatingapoptosis.9,10 Genesinvolvedwith anti-apoptoticfunctionsandresistancetodrugtherapysuch asBIRC3andABCC4,11,12aswellasgenesthatparticipatein theinhibitionofdifferentiationorinductionofproliferation suchas,KIT, IDH1and ERGwereup-regulated.13–15 Another genethat wasup-regulated istheRUNX1 gene,which acts asaregulatoroftheexpressionofvariousgenesspecificto hematopoiesis,andplaysanimportantroleinmyeloid differ-entiation.RUNX1amplificationisassociatedwithincreased risk of relapse and worse overall outcome in AML.16 The BAALCgene,locatedinthe 8q22.3region,isanovel molec-ularmarkerindicatinganunfavorableoutcomeinAMLwith normal cytogenetics.17 Its high expression may act as an adverse prognostic factor through prompting cell prolifer-ation and inhibiting apoptosis in leukemia cells such as in AML, acute lymphoblastic leukemia (ALL), and chronic myelogenousleukemiainblastcrisispatients.17Highlevels

oftheFLT3-wild-typereceptormaypromoteconstitutive acti-vation ofthis receptorinmalignantcells and isassociated withaworseprognosisandhighriskofrelapseinpediatric AMLpatients.18TheRB1 gene,locatedinthe13q14 region, isknownasatumorsuppressor;abnormalitiesaffectingthe RB1pathwayarenotalwaysrelatedtogeneexpression.These abnormalities areusuallyassociatedwithalackofthepRB proteinortheexpressionofamutantpRB,andinappropriate phosphorylationofpRB,leadingtoderegulatedG1-S transi-tion,thatfrequentlyoccursinmalignant disorders.19 There arealternativemechanismsthatdown-regulatepRBprotein levelsthatincludereducedtranslationoftheRB1mRNA,or reducedhalf-lifeofthemRNAandproteinshavingarolein leukemogenesis.19TheTribblesgene(TRIB-1)isapotent neg-ative regulatorofMAPKpathwaysthat influenceapoptosis, differentiation and cell-cycle progression.It isknown asa tumorsuppressorandisusuallydown-regulatedinAML.9The expressionoftheBAALC,FLT3andRB1genesinthisspecific regionappearsrelevantforthepathogenesisofAMLasthey couldberegulatedtogetherinoneregulatorymodule.Such combined expressionsuggests aprobablehigher functional relevancewhencomparedtotheexpressionofeachgene inde-pendently.

Conclusions

(4)

rev bras hematol hemoter. 2017;39(4):368–371

371

thiscaseoft(8;13).Abetterunderstandingofthemolecular processesaffectedbythefusionofthesegenesinvolvedin sAMLmayshedlightontheroleofthistranslocationin leuke-mogenesis,diseaseprogressionanditsprognosticeffects.

Contributions

ARPandRCMwereinvolvedindesigningthestudyandthe lit-eraturesearchonthesubject;RCMwasinvolvedingathering theclinicaldata;LOCwasinvolvedinperformingthe cyto-geneticanalysis;FCCFandMBPwereinvolvedinperforming geneexpressionanalysis;ARP,FCCF,LOC;MBPandRCMwere allinvolvedinwritingandeditingthemanuscript.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

Theauthors thank toMarcos Antonio M. Scheiner for his invaluable comments. This study was supported by INCT, CNPqandFAPERJ.

r

e

f

e

r

e

n

c

e

s

1. LowenbergB,DowningJR,BurnettA.Acutemyeloid

leukemia.NEnglJMed.1999;341:1051–62.

2. MilosevicJD1,PudaA,MalcovatiL,BergT,HofbauerM,

StukalovA,etal.Clinicalsignificanceofgeneticaberrations

insecondaryacutemyeloidleukemia.AmJHematol.

2012;87(11):1010–6.

3. ShafferLG,McGowan-JordanJ,SchmidM.ISCN2013:an

internationalsystemforhumancytogeneticnomenclature.

1sted.S.Karger;2013,140p.

4. SmythGK,MichaudJ,ScottHS.Useofwithin-arrayreplicate

spotsforassessingdifferentialexpressioninmicroarray

experiments.Bioinformatics.2005;21(9):2067–75.

5. MitlemanandAtlasofGeneticsandCytogeneticsinOncology andHematology,http://atlasgeneticsoncology.org/.

6. VardimanJW,ThieleJ,ArberDA,BrunningRD,BorowitzMJ,

PorwitA,etal.The2008revisionoftheWorldHealth

Organization(WHO)classificationofmyeloidneoplasmsand

acuteleukemia:rationaleandimportantchanges.Blood.

2009;114(5):937–51.

7.TruongBT,LeeYJ,LodieTA,ParkDJ,PerrottiD,WatanabeN,

etal.CCAAT/enhancerbindingproteinsrepresstheleukemic

phenotypeofacutemyeloidleukemia.Blood.

2003;101(3):1141–8.

8.VisvaderJ,AdamsJM.Megakaryocyticdifferentiationinduced

in416BmyeloidcellsbyGATA-2andGATA-3transgenesor

5-azacytidineistightlycoupledtoGATA-1expression.Blood.

1993;82(5):1493–501.

9.GilbyDC,SungHY,WinshipPR,GoodeveAC,ReillyJT,

Kiss-TothE.Tribbles-1and-2aretumoursuppressors,

down-regulatedinhumanacutemyeloidleukaemia.

ImmunolLett.2010;130(1–2):115–24.

10.RiccioniR,PasquiniL,MarianiG,SaulleE,RossiniA,Diverio

D,etal.TRAILdecoyreceptorsmediateresistanceofacute

myeloidleukemiacellstoTRAIL.Haematologica.

2005;90(5):612–24.

11.HessCJ,BerkhofJ,DenkersF,OssenkoppeleGJ,SchoutenJP,

OudejansJJ,etal.Activatedintrinsicapoptosispathwayisa

keyrelatedprognosticparameterinacutemyeloidleukemia.

JClinOncol.2007;25(10):1209–15.

12.JedlitschkyG,BurchellB,KepplerD.Themultidrugresistance

protein5functionsasanATP-dependentexportpumpfor

cyclicnucleotides.JBiolChem.2000;275:30069–74.

13.YardenY,KuangWJ,Yang-FengT,CoussensL,MunemitsuS,

DullTJ,etal.Humanproto-oncogenec-kit:anewcellsurface

receptortyrosinekinaseforanunidentifiedligand.EMBOJ.

1987;6(11):3341–51.

14.SmolkováK,Je ˇzekP.Theroleofmitochondrial

NADPH-dependentisocitratedehydrogenaseincancercells.

IntJCellBiol.2012;2012:273947.

15.MarcucciG,BaldusCD,RuppertAS,RadmacherMD,Mrózek

K,WhitmanSP,etal.OverexpressionoftheETS-relatedgene,

ERG,predictsaworseoutcomeinacutemyeloidleukemia

withnormalkaryotype:aCancerandLeukemiaGroupB

study.JClinOncol.2005;23(36):9234–42.

16.ReichardKK,KangH,RobinettS.PediatricB-lymphoblastic

leukemiawithRUNX1amplification:clinicopathologicstudy

ofeightcases.ModPathol.2011;24(12):1606–11.

17.XuB,ChenG,ShiP,GuoX,XiaoP,WangW,etal.

shRNA-mediatedBAALCknockdownaffectsproliferationand

apoptosisinhumanacutemyeloidleukemiacells.

Hematology.2012;17(1):35–40.

18.KangHJ,LeeJW,KhoSH,KimMJ,SeoYJ,KimH,etal.High

transcriptlevelofFLT3associatedwithhighriskofrelapsein

pediatricacutemyeloidleukemia.JKoreanMedSci.

2010;25(6):841–5.

19.ZhuYM,BradburyD,RussellN.Decreasedretinoblastoma

proteinexpressioninacutemyeloblasticleukaemiais

associatedwiththeautonomousproliferationofclonogenic

Imagem

Figure 1 – Abnormal karyotype identified by G-banding with a translocation involving chromosome 8 and 13:
Table 1 – Up-regulated and down-regulated genes in t(8;13) acute myeloid leukemia secondary to myelodysplastic syndrome.

Referências

Documentos relacionados

Conclusion: Patients belonging to the general population diagnosed with classical Hodgkin’s lymphoma in Northeastern Mexico had a significantly low progression-free survival rate

autologous stem cell transplant in patients with multiple myeloma: impact on overall survival and progression-free survival. Durie BG, Harousseau JL, Miguel JS, Bladé J, Barlogie

Due to the similarity between allergic hypersensitivity reactions and non-allergic hypersensitivity reactions and hyperammonemia, the differential diagnosis of the reactions related

Bone mineral density, vitamin D, and nutritional status of children submitted to hematopoietic stem

This syndrome results from several factors related to the aircraft cabin (immobilization, hypo- baric hypoxia and low humidity) and the passenger (body mass index, thrombophilia,

splenectomy can lead to thromboembolic events, particularly in splenectomized patients with thalassemia

Complete remission of multiple myeloma after auto immune hemolytic anemia: possible association

However, it is important to note that restarting imatinib can only be considered in the context of initial deep molecular responses being achieved by a second generation TKI or if